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Abstract—For dielectric periodic gratings, we propose the combina-
tion of a spectral-domain volume integral equation and Fourier fac-
torization rules to address the Gibbs phenomenon caused by jumps in
both the fields and the permittivity. From a theoretical point of view
we discuss two ways to overcome the computational complexity caused
by the inverse rule by changing the fundamental unknowns of the un-
derlying electromagnetic problem. The resulting numerical system is
solved iteratively and the corresponding matrix-vector product has an
O(NM log M) complexity, where M is the number of Fourier modes
and N is the number of sample points in the longitudinal direction.

1. INTRODUCTION

Several powerful numerical methods to study scattering by periodic
dielectric media are based on expansions in terms of Fourier series in
the directions of periodicity, which lead to a natural decomposition
of the Maxwell equations. The most well-known are the rigorous
coupled wave analysis (RCWA) and the differential method. In spite
of the natural decomposition, the performance of these methods was
historically plagued by poor performance when arbitrarily polarized
fields were considered in combination with piecewise homogeneous
grating profiles. The matter was eventually resolved by the motivation
and subsequent consistent derivation of the Fourier factorization
rules [1–3], which gave rise to field-material interaction matrices that
consist of proper combinations of the Laurent rule and the inverse
rule. In turn, the Fourier factorization rules led to another approach,
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originally defined for the differential method, based on the selection
of the continuous components of the electric field and flux densities,
via the definition of normal-vector fields at material boundaries and
the subsequent continuation of these fields to the entire body of the
grating profile [4]. Both methods have been combined successfully with
RCWA [3, 5].

Here, we discuss the impact of both Fourier factorization methods
on the efficiency and accuracy of the volume integral method,
formulated in the (transverse) spectral domain. Although the volume
integral method leads to a full three-dimensional problem that needs
to be solved as a whole, as opposed to the modular approach of
RCWA, the special structure and the bounded nature of the integral
operators have the potential to lead to an efficient numerical scheme
by employing iterative techniques in combination with an efficient
matrix-vector product. In principle, the volume integral method can
be formulated both in the spatial domain [6, 7] or in the (transverse)
spectral domain [8, 9]. For the spatial-domain formulation, a critical
issue is to efficiently compute the Green’s function in terms of double-
infinite series, which can be handled via the Ewald transformation.
In the spectral domain, the Green’s function is directly and efficiently
available per Fourier mode but now the field-material interactions need
careful attention, in view of the Fourier factorization rules that have
become so widespread in RCWA and the differential method. For two-
dimensional setups with one-dimensional periodicity, the use of the
normal-vector-field framework in combination with a volume-integral
equation was proposed in [10] and approximate Fourier factorization
rules for the three-dimensional case were employed in [9]. However,
in both cases no special attention was paid to the complexity of the
field-material interactions that arise due to the inverse rule, which
requires a matrix inverse that is defined across all the Fourier modes
involved. The direct consequence of the inverse rule is that the
efficiency deteriorates rapidly for an increasing number of Fourier
modes. It is the aim of the present paper to discuss measures to
overcome this computational bottleneck by reformulating the volume
integral method such that the effect of the inverse rule is taken into
account without suffering the consequences of the increase in the
asymptotic computational complexity of the rule and generalize the
work presented in [11], where an explicit Fourier factorization approach
was presented for the simplified setup of block-shaped gratings.

The paper is organized as follows. After a short introduction
to the volume integral method, Li’s approach is reformulated in
terms of the volume integral method while keeping track of the
computational complexity. It is shown theoretically that this can lead
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to an increase in the size of the numerical system in case of complicated
grating geometries. Subsequently, the normal-vector-field formulation
is considered and it is shown that this approach does not lead to an
increase of the size of the linear system. The combination of the
volume integral method and the normal-vector field approach is then
demonstrated numerically.

2. THE VOLUME INTEGRAL METHOD

The volume integral equation method (VIM) for the time-harmonic
solution, using the exp(jωt) time convention, of Maxwell’s equations
consists of two parts. The first one is an infinite set of integral
representations, one for each Fourier mode, that describe a Fourier
component of the total electric field e(m1, m2, z) in terms of the
Fourier component of the incident field ei(m1,m2, z) and the Fourier
component of the contrast current density j(m1,m2, z

′), where the
latter interacts with the Green’s function G(m1,m2, z, z′), viz

ei(m1, m2, z) = e(m1,m2, z)−
∫

z′∈R
G(m1,m2, z, z′)j(m1, m2, z

′)dz′, (1)

where m1, m2 ∈ Z denote the index of the pertaining Fourier mode.
The Green’s functions is defined for a planarly stratified medium in
the z direction. A more detailed discussion on the Green’s function is
presented in [9, 11].

The second part to arrive at the volume integral method is formed
by the field-material interactions that establish the relation between
the contrast current density and the total electric field. This relation
is most suitably formulated in the spatial domain as
J(x, y, z)=jω [ε(x, y, z)−εb(z)]E(x, y, z)=jωχ(x, y, z)E(x, y, z), (2)

where J denotes the contrast current density, ω is the angular
frequency, ε(x, y, z) is the permittivity of the configuration, εb(z)
is the permittivity of the stratified background, and E denotes the
total electric field. The transformation of the latter equation to a an
approximation in finite Fourier series in the xy plane is the main focus
here. For simplicity, we will assume that the Fourier series comprises
a number of modes that is symmetrical and identical in the x and y
direction, with upper and lower index ±M .

A straightforward approach is to transform Equation (2) directly
to the spectral domain

j(m1,m2, z) =
M∑

k=−M

M∑

`=−M

χs(m1 − k, m2 − `, z)e(k, `, z), (3)
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which amounts to a discrete convolution, also known as the Laurent
rule. Further, χs(k, l, z) are the Fourier coefficients of the contrast
function χ(x, y, z) with respect to the transverse (xy) plane. However,
one of the major numerical issues in dealing with field-material
interactions in a spectral basis is the observation that a simple product
equation in real space is not always accurately reproduced by a
convolution in Fourier space if one or both representations of the
product variables have a finite (or truncated) Fourier expansion (as
is the case in numerical implementations). In more detail, it has
been shown that if both variables of the product satisfy a so-called
concurrent complementary jump condition, then the “inverse rule” [1]
has much better accuracy properties than the Laurent rule, which
is the standard convolution for the truncated Fourier expansions.
This observation has been worked out in full detail for 2D and 3D
field-material interactions and given a solid theoretical foundation by
Li [2, 3], within the context of RCWA.

For the volume integral method in the spectral domain,
these observations are equally relevant since we employ a spectral
discretization of the electric field and the contrast current density.
Although the jumps in E and the contrast function are concurrent, they
are not complementary, since the contrast function is zero outside the
support of the perturbing geometry with respect to the background.
Therefore, the rationale of Li’s rules needs careful consideration. A
second issue within the volume integral method is the efficiency of
the inverse rule. Whereas the Laurent rule has a low computational
complexity as a matrix-vector product, owing to implementations via
FFTs, the inverse rule typically leads to a full-complexity matrix-vector
product, which seriously degrades the efficiency of the method.

2.1. Cartesian Rules on a Tensor Grid

We consider the case of isotropic media for a binary grating in a
homogeneous isotropic background layer with permittivity εb. Then
the Li rules require modifications only for the field components in the
transverse plane, i.e., the xy plane, since the electric-field component
in the z direction is then continuous everywhere. We build the
permittivity function on a tensor grid, i.e., out of a number of aligned
blocks, which may or may not be adjacent. For a circular cross section,
a possible approximation on a tensor grid is show in Figure 1. In
particular, we write the permittivity function and the corresponding
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Figure 1. Circular geometry captured on a tensor grid.

inverse permittivity function as

ε(x, y) = εb


1 +

I∑

i=1

J∑

j=1

χi,jΠx
i (x)Πy

j (y)


 , (4)

ε−1 = ε−1
b


1 +

I∑

i=1

J∑

j=1

χ̂i,jΠx
i (x)Πy

j (y)


 , (5)

where Πβ
α is a pulse function in the direction β ∈ {x, y} with support

on the full interval associated with the label α. In the x direction, there
are I intervals and in the y direction there are J intervals. Further,
χi,j are constants or continuous scalar functions on the support of the
function Πx

i (x)Πy
j (y), and χ̂i,j = −χi,j/(1 + χi,j).

From the relation Ex = ε−1Dx for the x components of the electric
field and flux, we obtain

Ex = ε−1
b


1 +

I∑

i=1

J∑

j=1

χ̂i,jΠx
i (x)Πy

j (y)


Dx, (6)

where, according to Li’s line of reasoning [2, 3], Πx
i Dx is factorizable in

Fourier space, but Πy
jDx is not. Since the pulse functions Πβ

α can be
interpreted as projection operators, we can employ the following.

Let I be the identity operator and Ai be a sequence of bounded
operators that commute with the mutually orthogonal projection

operators Pi, then the operator 1 +
I∑

i=1
AiPi has a bounded inverse
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of the form 1+
I∑

i=1
BiPi, where Bi = −Ai(1+Ai)−1. The proof follows

by working out the algebra and taking into account the idempotency
of the projection operators.

With this result, we can now express the electric flux component
in terms of electric-field component as

Dx =εb


1−

I∑

i=1

J∑

j=1

χ̂i,jΠx
i (x)Πy

j (y)

(
1 +

I∑

k=1

χ̂k,jΠx
k(x)

)−1

Ex, (7)

where the commutation property of Ai and Bi with Pi has been used.
Analogously, we have for the y components

Dy = εb


1−

I∑

i=1

J∑

j=1

χ̂i,jΠx
i (x)Πy

j (y)

(
1 +

J∑

`=1

χ̂i,`Π
y
` (y)

)−1

Ey. (8)

Now each of the multiplication operators are Fourier factorizable after
the inverse operations that operate directly on the components of the
electric field have been performed. From these relations, we can derive
the contrast current density in the usual way. The transformation
of the above formulas to the spectral domain is now readily obtained
by replacing the direct multiplication operators by the Laurent rule,
which has a Toeplitz-matrix representation, and the inverses of the
operator combinations by the ”inverse rule”, i.e., the inverse of a
Toeplitz matrix. As a final step, we note that the contrast current
density is then obtained by subtracting the electric flux density and
the electric field, i.e.,

J = jω(D− εbE). (9)

From the above relations it becomes clear that every interval along
the x and y direction gives rise to an inverse operator, i.e., a total
of I + J inverses. Each of these inverses can be avoided if we
introduce auxiliary variables (vector fields) and corresponding linear
equations to the matrix-vector product, to simultaneously solve both
the volume integral equation, the field-material interaction relations,
and the relations between the electric field e and the auxiliary variables
grouped in f , i.e., we can write

(
I −G 0
Ir 0 C1

0 Ir C2

) (e
j
f

)
=




ei

0
0


 , (10)

where I denotes the identity matrix and G represents the Green’s
function matrix per Fourier mode, as in Equation (1). Further Ir



Progress In Electromagnetics Research B, Vol. 36, 2012 139

is a matrix that repeats the identity matrix several times over its rows

in blocks, C1 represent the sequence of operators (1 +
I∑

k=1

χ̂k,jΠx
k(x))

or (1+
J∑

`=1

χ̂i,`Π
y
` (y)) whose inverse in Equations (7) and (8) was to be

avoided, and C2 represents the remaining sum of projection operators
in Equations (7) and (8). Note that each of the operators forming
C1 or C2 can be represented as a Toeplitz matrix (C1) or a block-
Toeplitz matrix (C2) and therefore each corresponding matrix-vector
product can be executed via one-dimensional or two-dimensional FFTs,
respectively.

Hence, we preserve the efficiency of the matrix-vector product
in the form of FFTs, at the expense of a larger set of variables
and a dependence on the geometrical approximation of the scattering
structure. This is especially the case if I and J are larger than one,
since each of the inverses increases the number of auxiliary variables,
thereby increasing the size of the total matrix-vector product and
thereby increased the total computational complexity. In Appendix A,
a (non-unique) way of avoiding an unlimited number of inverses is
discussed, thereby restricting the number of unknowns to at most
three times the number of unknowns present in the electric field. The
case for a single rectangular pilar or hole (I = J = 1), for which
there is no increase in the computational complexity, is discussed and
demonstrated in [11].

Another approach to reduce the complexity of the inverses
appearing in Equations (7) and (8) is to exploit the structure of the
inverse of a Toeplitz matrix in the form of the Gohberg-Semencul and
Gohberg-Heinig formulas, see, e.g., [12]. The disadvantage of such
an approach is that additional preprocessing is needed and that the
computational complexity of the matrix-vector product for the inverse
Toeplitz matrix is at least three times larger than that for a single
Toeplitz matrix.

2.2. Normal-vector Field Formulation

The discussion of the Cartesian rules above shows that field-material
interactions of low computational complexity, via FFTs, depend on
the type of geometry of the contrast function, since a complicated
geometry leads to an increase in the total number of unknowns, even
when the ideas of Appendix A are taken into account. Therefore, it
is preferable to operate in a framework in which FFTs remain the
dominant operation of the field-material interaction equations and in
which the number of unknowns is kept to a minimum. The framework
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first proposed in [4] offers exactly this. The key idea put forward there,
is the construction of an auxiliary vector field F that is continuous
everywhere, with the possible exception of isolated points or lines that
correspond to edges and corners in the geometry of the permittivity
function. The continuous vector field F is formed by the sum of
electric-field components that are tangential to material boundaries
and electric-flux-density components normal to material boundaries,
with the help of a normal-vector field generated in a preprocessing
step, see, e.g., [5, 13].

The most commonly employed field-material interaction formula
used in the context of RCWA and the Differential Method is given
by [4, Equation (15)]

D = QεE, (11)
which was also the starting point in [10] for an integral equation
formulation for two-dimensional scattering. However, it is more
interesting to go back to the relations between auxiliary field F and
the electric field and flux density [4, Equations (12) and (13)]

E = CεF, (12)
D = εCεF. (13)

From these relations, the contrast-current density can be written as
J = jω

[
εCε · C−1

ε − εb

]
E. (14)

Again we observe the presence of the inverse rule in the form of C−1
ε ,

whereas the operators Cε and εCε themselves have a representation in
the spectral domain in the form of the (two-dimensional) Laurent rule,
which we denote as cε and εcε, respectively. However, as opposed to the
Cartesian rules discussed above, there is only a single inverse present
now and the idea of avoiding the inverse operations by introducing an
auxiliary set of variables boils down to the formulation of the volume
integral equation in terms of the auxiliary vector field F directly, i.e.,
ei(m1,m2, z) = (cεf)(m1,m2, z)

−
∫

z′∈R
G(m1,m2, z, z′)[(εcε−εb · cε)f ](m1,m2, z

′)dz′,(15)

where f is the spectral-domain counterpart of F. By solving the linear
system for the auxiliary variable F, we maintain an efficient matrix-
vector product for the above equation in the form of two-dimensional
FFTs in the transverse plane, while taking into account the rationale
of the Fourier factorization rules and without sacrificing additional
memory for auxiliary variables. Further, the quantities that are usually
derived from the electric field such as reflection and transmission
coefficients, can now also be obtained from F, owing to the operator
Cε that relates F to E and this requires no inverses to be computed.
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3. NORMAL-VECTOR FIELD COEFFICIENTS FOR A
BINARY GRATING

For a binary grating, i.e., a grating that has a uniform permittivity
profile over its entire height, the volume-integral method requires
the solution of the field f as given in Equation (15). For such a
binary grating, the normal-vector field does not need to depend on
the coordinate z and therefore also the coefficients of cε and εcε can
be independent of z. This saves both memory and computation time,
since the preprocessing step of generating the normal-vector field and
the coefficients of cε and εcε are only needed for a single cross-section.

We consider a rectangular unit cell x ∈ [−a/2, a/2], y ∈ [−b/2, b/2]
with isotropic materials, where the permittivity function of the binary
grating is given by ε(x, y). Further nx(x, y) and ny(x, y) are the x and
y components of the generated normal-vector field. For this case, we
have the following expressions for the coefficients of cε

(
ex

ey

ez

)
= cεf =

(
cxn cxt 0
cyn cyt 0
0 0 I

)(
fn

ft

fz

)
, (16)

where I represents the identity operator and the subscripts n and t

denote the normal and tangential components, with respect to material
boundaries. The coefficients of the convolution operators c·· are given
by

cxn(m1,m2) =
1
ab

a/2∫

−a/2

b/2∫

−b/2

nx(x, y)
ε(x, y)

exp [j (km
T · rT )] dydx, (17)

cyn(m1,m2) =
1
ab

a/2∫

−a/2

b/2∫

−b/2

ny(x, y)
ε(x, y)

exp [j (km
T · rT )] dydx, (18)

cxt(m1,m2) =
1
ab

a/2∫

−a/2

b/2∫

−b/2

−ny(x, y) exp [j (km
T · rT )] dydx, (19)

cyt(m1,m2) =
1
ab

a/2∫

−a/2

b/2∫

−b/2

nx(x, y) exp [j (km
T · rT )] dydx, (20)

where km
T are the reciprocal lattice vectors, depending on m1 and m2

and rT = xux + yuy. The expressions for εcε are similar but now all
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integrands are multiplied by ε(x, y) and the remaining part of εcε that
represents the mapping from fz to ez is given by

εcε,zz =
1
ab

a/2∫

−a/2

b/2∫

−b/2

ε(x, y) exp [j (km
T · rT )] dydx. (21)

Note that in the above expressions, ez and fz are identical and the
coupling between the z component and the transverse components of
e and f is zero. This amounts to a significant saving in multiplications
between Fourier coefficients and it saves one two-dimensional FFT,
compared to the case of a general grating.

For the discretization of f in the z-direction, we employ a piece-
wise linear approximation along the interval spanning the height of
the grating, in combination with a collocation scheme. The semi-
separability [14] of the Green’s function kernels allows for a matrix-
vector product, regarding the Green’s functions only, with linear
complexity, as further detailed in [15, Section 2D] and [10].

The computational advantages for a binary grating can be
transferred to more general gratings by following the approach taken
in RCWA, in which a grating is approximated by a stack of binary
gratings. This means that we choose a sequence of disjoint intervals
in the z direction and for each of these intervals we approximate the
permittivity function by a permittivity function that is independent of
the z direction. Then, by using a discretization in the z-direction
for f that is dedicated to each of the intervals, we arrive at a
sequence of binary gratings, for which we generate a two-dimensional
normal-vector field and compute the coefficients of the field-material
interaction operators.

4. NUMERICAL RESULTS

From the above discussion, it is clear that the most expedient
implementation of the spectral-domain volume integral equation
involves the normal-vector-field formulation, which is also the most
flexible one in terms of curved material boundaries. To compare our
results with results obtained with RCWA [5], an array of cavities
with square cross section of edge length 0.5λ in a metal layer with
relative permittivity 0.8125 − j · 5.25 and thickness 0.1λ, where λ is
the wavelength of the normally incident plane wave in free space. The
upper halfspace and the cavities have relative permittivity equal to
1, and the lower halfspace has a relative permittivity of 2.25. The
periods in the x- and y-directions are equal to 2λ and the incident
wave is polarized in the x direction. The volume integral equation
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Figure 2. (a) Zeroth-order diffraction efficiency in reflection versus
the truncation order in the Fourier modes for an array of cavities with
(b) square cross section, compared to the results by Schuster et al. [5].

is combined with the Cartesian rules as discussed in Section 2.1 and
with the normal-vector field with a piecewise-constant normal-vector
field. Further, 33 samples in the z direction were used and the
BiCGstab(2) [16] iterative solver without further preconditioning was
employed to solve the linear system. Figure 2 shows the diffraction
efficiency for the 0-th order reflection versus the truncation order, i.e.,
the upper index M of the Fourier modes in one periodic direction.
As a reference, we repeat the results in [5], computed with RCWA
for the piecewise-constant normal-vector field. We note that the
Cartesian rules for a single square cavity leads to a formalism with the
same number of unknowns as the normal-vector field formulation and
therefore the approaches are of comparable complexity [11]. Also note
that when the Fourier factorization rules are not taken into account,
the convergence of the diffraction efficiency is much poorer, which is
similar as for RCWA.

In Figure 3, the same setup is considered as before, but now for
an array of holes with circular cross section with diameter equal to
0.5λ and the incident wave is diagonally polarized, i.e., Ex = Ey.
Both the reference result and the result computed via the volume
integral equation with the normal-vector fields have been obtained via
a fully radial normal-vector field. For the volume integral equation,
33 linear expansion functions were used in the z-direction. Subsequent
refinement in the z-direction did not further improve the convergence.
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Figure 3. (a) Zeroth-order diffraction efficiency in reflection versus
the truncation order in the Fourier modes for an array of cavities with
(b) circular cross section, compared to the results by Schuster et al. [5].
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Figure 4. (a) Relative error versus the truncation order in the Fourier
modes for an array of cavities with circular cross section. (b) CPU time
per matrix-vector product versus total number of unknowns. The solid
line is given by αN · M log(M), with M the total number of modes
and N the number of samples in z. The solid line corresponds to the
asymptotic complexity estimate of the matrix-vector product.

Good agreement between the results can be observed from this figure.
To further investigate the convergence of the volume integral equation,
we have increased the number of Fourier modes per direction to ±50,
i.e., a total number of 10201 Fourier modes in the transverse plane,
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and the number of samples in the z-direction to 65. The result of
this computation is used as a reference result for an increasing number
of Fourier modes between ±4 and ±35 and 33 samples in z. The
behavior of the corresponding relative error is shown in Figure 4.
The corresponding cpu time per matrix-vector product is shown on
the right-hand side of Figure 4 together with the complexity estimate
of the matrix-vector product. The computations were performed on
a Pentium M single-core laptop operating at a clock frequency of
1.86GHz and with 1GB RAM. As can be seen, the computation data
exhibits several steps that correspond to steps in the FFT size.

Finally, to demonstrate the capabilities of the proposed approach
for other practical applications, a stack of periodic structures is
considered that exhibits a bandgap. The stack consists of layers with
alternatingly aerial holes and solid pillars with circular cross section in
air. The setup for one layer of holes and one layer of pillars is shown in
Figure 5. This type of structure was inspired by the structure studied
in [17], where a face-centered cubic lattice of partly overlapping holes
was considered. The dimensions of the structure are summarized in
Table 1. The material forming the pillars and the material surrounding
the holes has permittivity εr = 12.0. A stack consisting of three layers
with holes and three layers of pillars has been analyzed, where each
combination of holes and pillars is shifted over one third of the period in
the x direction. The zeroth order diffraction efficiency in transmission
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Figure 5. (a) Top and side view of a layer of pillars on top of a
layer with holes in an face-centered cubical lattice. (b) Zeroth order
diffraction coefficient in transmission for a configuration consisting of
three layers of the structure on the left, each one shifted over one-third
of a period in the x-direction.
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Table 1. Dimensions of parameters of the structure of holes and pillars
in Figure 5.

parameter dimension

period in x-direction
√

3a

period in y-direction a

radius of the holes 0.414a

radius of the pillars 0.162a

height of the holes 0.4a

height of the pillars 0.4a

versus the normalized frequency fa/c0, where f = ω/2π, is shown in
Figure 5. The bandgap behavior of this structure is clearly observed.
The computations were performed using 15 Fourier modes in x and
in y and eight sample points in the z-direction per layer of holes or
pillars, i.e., a total of 48 sample points in the z-direction.

5. CONCLUSIONS

We have discussed a reformulation of the volume integral method
for permittivity gratings in combination with the frameworks of the
Fourier factorizations rules by Li and by Popov and Nevière, to deal
with field-material interaction matrices that operate on a spectral
basis. We have demonstrated how the asymptotic computational
complexity of the inverse rule in the Fourier factorization rules can
be effectively reduced to O(NM log M), where M is the number of
Fourier modes and N the number of sample points in z. The proposed
solution is to solve for a different but equivalent set of fundamental
unknowns. The approach has been demonstrated by several numerical
examples and has been validated against the results published in the
literature.

APPENDIX A. REDUCING THE NUMBER OF
INVERSE OPERATORS IN THE CARTESIAN RULES

The apparent observation in Section 2.1 is that each projection
operator Πβ

α introduces a new auxiliary vector field, which makes this
procedure rather inefficient for geometries that require more than a
few projection operators. Therefore, we present a way to restrict
this number to two auxiliary fields per direction. First, we observe
that the inverse operators in Equations (7) and (8) only involve one
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direction x or y, whereas the inverse rule in the normal-vector-field
formulation is inherently two-dimensional. To make the inverses for
the Cartesian rules two-dimensional, we note that the discontinuities
in the projection operators are the ones giving rise to the inverse rule.
If we can reduce the number of projection operators, we also reduce the
number of inverse operators and thereby the number of auxiliary fields.
At the same time, this means that the factors χi,j in Equation (4) need
to become continuous functions of x and y, since otherwise jumps in
these functions still need to be treated by the inverse rules. To separate
the continuous from the discontinuous parts, we group the projection
operators in alternating sequences, i.e., we introduce the even and odd
projection operators

Πx
o(x) =

I∑

k=1

Πx
2k−1(x), (A1)

Πx
e (x) =

I∑

k=1

Πx
2k(x), (A2)

assuming that the unit cell is spanned by an even number of intervals
I along the x direction. We introduce analogous projection operators
along the y direction. The even and odd projection operators are
mutually orthogonal, owing to their support. Since each rectangular
area on the tensor grid is now part of the support of a unique product
of the even and odd projection operators and each of the four possible
products is takes the form of a sequence of non-connected areas with
amplitude one, embedded in an area with amplitude zero, we can
rewrite the inverse permittivity function as

ε−1 = ε−1
b [1 + foo(x, y)Πx

o(x)Πy
o(y) + foe(x, y)Πx

o(x)Πy
e(y)

+feo(x, y)Πx
e (x)Πy

o(y) + fee(x, y)Πx
e (x)Πy

e(y)] , (A3)
where each of the functions fab, a, b ∈ {e, o}, can be constructed
as continuous functions owing to the isolation of the areas. The
continuity of the functions can for instance be reached by using a
linear interpolation between the supporting areas of the pertaining
projection operator. Hence only four two-dimensional projection
operators involved.

Following the method outlined in Section 2.1, we arrive at the
following Fourier factorization rule

Dx = εb {1− [foo(x, y)Πy
o(y) + foe(x, y)Πy

e(y)] Πx
o(x)

× [I + foo(x, y)Πy
o(y) + foe(x, y)Πy

e(y)]−1

− [feo(x, y)Πy
o(y) + fee(x, y)Πy

e(y)] Πx
e (x)

× [I + feo(x, y)Πy
o(y) + fee(x, y)Πy

e(y)]−1
}

Ex, (A4)
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and a similar expression for the relation between Dy and Ey.
To finalize the procedure, we introduce two auxiliary fields Fe and

Fo, with x components satisfying

Ex(x, y) = [1 + foo(x, y)Πy
o(y) + foe(x, y)Πy

e(y)]F o
x (x, y), (A5)

Ex(x, y) = [1 + feo(x, y)Πy
o(y) + fee(x, y)Πy

e(y)]F e
x(x, y), (A6)

and similar relations for the y components. With these conditions, we
finally obtain

Jx = εb {− [foo(x, y)Πy
o(y) + foe(x, y)Πy

e(y)] Πx
o(x)F o

x

− [feo(x, y)Πy
o(y) + fee(x, y)Πy

e(y)] Πx
e (x)F e

x} , (A7)

and a similar relation for the y components. The operators linking Fo,e

and E have a two-dimensional character, as opposed to the operators
in Section 2.1. Nevertheless, all operators are now multiplication
operators that have an efficient matrix-vector product implementation
via two-dimensional FFTs.
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