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Abstract—We consider a topological derivative based imaging
technique for non-iterative imaging of small and extended perfectly
conducting cracks with Dirichlet boundary condition. For this purpose,
we introduce topological derivative imaging function based on the
asymptotic formula in the existence of narrow crack. We then
mathematically analyze its structure in order to investigate why it
yields the shape of crack(s). Analyzed structure gives us an optimal
condition to get a better image of them. Various numerical experiments
support our analysis.

1. INTRODUCTION

Achieving a reliable imaging of inhomogeneities completely hidden in
a material is a difficult problem due to the unavoidable ill-posedness
and inherent nonlinearity of the inverse problems. Nevertheless, it is
still an interesting one that arises in a number of fields such as physics,
medical science, and material engineering, highly related to the human
life. Corresponding researches can be found in [2, 4, 7, 9, 11, 12, 14–
17, 20–22, 27, 28] and references therein.

Recently, an inverse scattering problem for time-harmonic
acoustic, electromagnetic waves from a perfectly conducting crack
in two-dimensions R2 with Dirichlet boundary condition has been
considered rigorously in [19]. In this literature, Newton-type iteration
method has been suggested for imaging shape of crack. In order to
guarantee a successful imaging, one must evaluate complex calculation
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of the Fréchet derivative, apply optimized regularization terms highly
depend on the problem and perform with a good initial guess close
enough to the unknown crack. Without it, one might suffer from
large computational costs with the risk of non convergence issue.
Nevertheless, most of algorithm is restricted for imaging of single
crack and hard to extend it for the multiple cracks. Therefore, the
investigation of both imaging algorithm and mathematical theory for
generating a reliable initial guesses must be performed beforehand.

For this purpose, alternative non-iterative imaging algorithms
have been developed in order to overcome difficulties of iteration
one. Among them, topological derivative based imaging algorithm
has been successfully adapted in the imaging of anomalies (such as
cracks) and in shape optimization problem, refer to [5–8, 10, 18, 23, 26].
However, in many researches, it has been used heuristically without
analysis. Recently, mathematical analysis of topological derivative
based imaging algorithm is considered. But it is restricted to the
imaging of small electromagnetic inclusions so that an extension of
analysis is highly required.

The main purpose of this paper is to analyze topological derivative
based imaging function and to explain why it yields the shape of
small and extended perfectly conducting cracks. For this purpose, we
will apply rigorously derived asymptotic expansion formula due to the
existence of small crack.

This paper constructed as follows. In Section 2, the two-
dimensional direct scattering problem and topological derivative
based imaging function are introduced. A mathematical analysis of
topological derivative imaging function is carefully treated in Section 3.
In Section 4, numerical simulations for imaging small cracks are
illustrated in order to show the effectiveness and applied to the
extended arbitrary shaped one. We end this paper with a short
conclusion in Section 5.

2. DIRECT SCATTERING PROBLEM AND
TOPOLOGICAL DERIVATIVE

Assume that a perfectly conducting crack is completely embedded in
a homogeneous domain Ω ⊂ R2. In order to represent this crack, we
denote Γ as an oriented piecewise smooth nonintersecting arc without
cusp that can be represented as

Γ = {ψ(s) : s ∈ [−1, 1]} (1)

where ψ : [−1, 1] −→ R2 is a smooth injective function. Assume that
the crack does not touch the boundary ∂Ω so that it must be located
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at some distance from ∂Ω, i.e., there is a nonzero positive constant s
such that

dist(Γ, ∂Ω) = s > 0,

where dist(A, B) denotes the distance between A and B.
Throughout this paper, we consider the so-called Transverse

Magnetic polarization case. Let {θ1, θ2, . . . , θM} be M equi-
distributed directions on the unit circle S1, g(m) (x), m = 1, 2, . . . , M,

be given boundary condition on ∂Ω, and u(m) (x) be the (single-
component) electric field that satisfies following boundary value
problem





∆u(m)(x) + ω2u(m)(x) = 0 in Ω\Γ
u(m)(x) = 0 on Γ

∂u(m)

∂ν
(x) = g(m)(x) on ∂Ω

(2)

for a fixed frequency ω. Here, ν (x) is the unit normal to ∂Ω at x.
Throughout this paper, we suppose ω2 is not an eigenvalue of (2).
Similarly, let U (m) (x) be the solution of Equation (2) without Γ. Then
the problem we consider here is the computation of the topological
derivative of the energy function depending on the solution u(m) (x):

J(Ω) :=
1
2

M∑

m=1

∫

∂Ω

∣∣∣u(m)(x)− U (m)(x)
∣∣∣
2
dS(x), (3)

where |f(x)|2 = f(x) ¯f(x) and ¯f(x) is complex conjugate of f (x).
In order to compute the topological derivative, let us create a

linear crack Σ of small length 2h at the point z ∈ Ω; we denote Ω|Σ
as that domain. Then due to the change of the topology of Ω, we
can consider the topological derivative dT J (z) based on the J (Ω) with
respect to the point z as follows:

dT J(z) = lim
h→0+

J(Ω|Σ)− J(Ω)
φ(h)

, (4)

where φ(h) −→ 0 as h −→ 0+. From the relationship (4), we have the
asymptotic expansion:

J(Ω|Σ) = J(Ω) + φ(h)dT J(z) + o(φ(h)).

Then topological derivatives dT J(z) with M different incident waves
at given frequency ω are follows. Derivation of following theorem is
similar to the method introduced in [23]. For reader’s sake, the proof
is written in the appendix.
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Theorem 2.1 Topological derivative The topological deriva-
tives corresponding to the (3) is given by

dT J(z) = Re

(
M∑

m=1

V (m)(z)U (m)(z)

)
, (5)

where Re (F ) denotes the real part of F and V (m) (x) satisfies adjoint
problem: 




∆V (m)(x) + ω2V (m)(x) = 0 in Ω
∂V (m)

∂ν
(x) = U (m)(x)− u(m)(x) on ∂Ω.

(6)

3. ANALYSIS OF TOPOLOGICAL DERIVATIVE BASED
IMAGING FUNCTION

At this moment, we analyze the topological derivative based imaging
function in (5) when the crack Γ is a line segment of small length
2h whose center is located at y. Since V (m) (x) satisfies adjoint
problem (6), it can be represented as

V (m)(z) =
∫

∂Ω

∂V (m)

∂ν
(x)N (z, x)dS(x)

=
∫

∂Ω

(
U (m)(x)− u(m)(x)

)
N (z, x)dS(x)

for x ∈ ∂Ω and z ∈ Ω. Here N (x, z) is Neumann function for Ω, the
solution to




4N (x, z) + ω2N (x, z) = −δ(x, z) in Ω

∂N (x, z)
∂ν(x)

= 0 on ∂Ω.

Due to the existence of small crack, u(m) (x) satisfies following
asymptotic expansion formula (see [5]): for x ∈ ∂Ω and y ∈ Γ,

u(m)(x)− U (m)(x) =
2π

ln(h/2)
U (m)(y)N (y, x) + O

(
1

| lnh|2
)

.

Since h is small enough, the residue term O(| ln h|−2) can be negligible.
So by removing residue term and applying this formula to (5) gives

dT J(z)=− 2π

ln(h/2)
Re

{
U (m)(y)

(∫

∂Ω
N (y, x)N (z,x)dS(x)

)
U (m)(z)

}
. (7)
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Now, let us decompose N (x, z) into singular and regular terms
as follows:

N (x, z) = Φ(x, z) +RΦ(x, z).

Here Φ (x, z) is a two-dimensional two-dimensional time harmonic
Green function (or fundamental solution)

Φ(x, z) = − j

4
H1

0 (ω|x− z|),

where H1
0 denotes the Hankel function of the first kind of order 0 and

RΦ(x, z) satisfies




4RΦ(x, z) + ω2RΦ(x, z) = 0 in Ω

∂RΦ(x, z)
∂ν(x)

= −∂Φ(x, z)
∂ν(x)

on ∂Ω.

With this, let us consider the following term:∫

∂Ω
N (y, x)N (z, x)dS(x)

=
∫

∂Ω
Φ(y, x)Φ(z, x)dS(x)

︸ ︷︷ ︸
:=I1

+
∫

∂Ω
Φ(y, x)RΦ(x, z)dS(x)

︸ ︷︷ ︸
:=I2

+
∫

∂Ω
RΦ(y, x)Φ(z, x)dS(x)

︸ ︷︷ ︸
:=I3

+
∫

∂Ω
RΦ(y, x)RΦ(x, z)dS(x)

︸ ︷︷ ︸
:=I4

.

Since, RΦ is regular, there is no blow up of I4. Moreover, since
x ∈ ∂Ω and y ∈ Γ, Φ (y, x) have no singularity so that there is no blow
up of I2 also. Since x ∈ ∂Ω and z ∈ Ω, N (x, z) has a singularity at
x = z. So, in order to evaluate I3, we must insulate this singularity. For
this purpose, we recall that in two-dimensional space, for ω|x− z| → 0

Φ(x, z) =
1
2π

ln |x− z| −
(

j

4
− 1

2π
ln

ω

2
− C

2π︸ ︷︷ ︸
:=Cω

)

+O(ω2|x− z|2 ln(ω|x− z|)),
where, C denotes the Euler constant C = 0.57721566 . . . (see [13]).
Now, let us fix r > 0 and denote B (x, r) as a ball of center x and radius
r. Then since ∂Ω can be partitioned into ∂Ω1 := ∂Ω\(Ω ∩ ∂B(x, r))
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Figure 1. ∂Ω1 (green dashed line) and ∂Ω2 (red solid line).

and ∂Ω2 := Ω∩∂B (x, r) (see Figure 1), by applying Hölder’s inequality

|I3| ≤
∫

∂Ω
|RΦ(y, x)Φ(z, x)|dS(x)

≤ 1
2π

∫

∂Ω
|RΦ(y, x)| ln |x− z|dS(x)+Cω

∫

∂Ω
|RΦ(y, x)|dS(x)

≤ 1
2π

max |RΦ(y, x)|
∫

∂Ω
ln |x− z|dS(x) + C1

= C2 lim
r→0+

(∫

∂Ω1

ln |x− z|dS(x)+
∫

∂Ω2

ln |x− z|dS(x)
)

+ C1

≤ C2 lim
r→0+

(
(diam(Ω)− r) ln |diam(Ω)|+ C2r ln |r|

)
+ C1

= C2diam(Ω) ln |diam(Ω)|+ C1 < +∞, (8)
where diam(Ω) denotes the diameter of Ω.

For I1, we begin with the following approximation
∂Φ(y, x)
∂ν(x)

≈ jωΦ(y, x).

Then applying integration by parts yields

I1 =
∫

∂Ω
Φ(y, x)Φ(z, x)dS(x) =

1
jω

∫

∂Ω

∂Φ(y, x)
∂ν(x)

Φ(z, x)dS(x)

=
1
jω

∫

Ω

(4+ω2
)
Φ(y, x)Φ(z, x)dx+

1
jω

∫

∂Ω
Φ(y, x)

∂Φ(z, x)
∂ν(x)

dS(x).

Then by the definition of Φ (y, x) and similar argument of (8), I1 can
be estimated as follows

I1 =
j

ω
Φ(y, z) + C3 =

1
4ω

H1
0 (ω|y − z|) + C3.

Therefore, by combining the results of Il, l = 1, 2, 3, 4,∫

∂Ω
N (y, x)N (z, x)dS(x) ≈ j

ω
Φ(y, z) + Ĉ.
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Now, let us consider the case of plane-wave illumination, i.e., we
set the boundary condition g(m) (x), m = 1, 2, . . . , M as

g(m)(x) =
∂ exp(jωθm · x)

∂ν(x)
=

(
jωθm · ν(x)

)
exp(jωθm · x).

Then since U (m)(y) = exp(jωθm · y), (7) becomes

dT J(z) ≈ −Re

{
j

ω

M∑

m=1

exp
(

jωθm · (y − z)
)

Φ(y, z)

}
. (9)

Notice that if the value of M is large enough, following approximation
holds

1
M

M∑

m=1

exp
(
jωθm · (y − z)

) ≈ J0(ω|y − z|), (10)

where J0 is the Bessel function of order zero and of the first kind.
Therefore, dT J (z) becomes

dT J(z) ' −J0(ω|y − z|)2, (11)

where A ' B means that there exist a constant C satisfying A = BC.
With this, we end up this section with the following remark.

Remark 3.1 From the structure (9), we can observe following:
• J0 (x) has its maximum value at x = 0 so that dT J (z) reaches its

minimum value at z = y ∈ Γ due to the minus sign in (11).
• Based on (10), when the number M is getting larger, we can find

more exact location and shape of cracks by looking at the points of
minimal values in the map of dT J (z).

• Due to the assumption of dist(Γ, ∂Ω) ≥ s, map of dT J (z) plots
the crack far away from boundary ∂Ω, i.e., when the location of
crack is close to the boundary it cannot be imaged in theory.

4. NUMERICAL SIMULATIONS

Some numerical examples are performed for showing the effectiveness
of imaging algorithm. Throughout this section, the domain Ω is chosen
as the two-dimensional unit disk centered at the origin. We adopt the
applied frequency as ω = 2π/λ at wavelength λ and choose M equi-
distributed incident directions

θm :=
(

cos
2mπ

M
, sin

2mπ

M

)
for m = 1, 2, . . . ,M.

Let us emphasize that every simulations are performed by the
measurements using the Finite Element Method (FEM) in order to
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solve the problems (2) and (6). Then, a white Gaussian noise with
20 dB signal-to-noise ratio (SNR) is added to the unperturbed data.

Now, we consider the imaging of two small cracks are completely
embedded in Ω. Their locations are selected as z1 = (−0.5, −0.2)
and z2 = (0.5, 0.2) and lengths are set to 0.02. Figure 2 shows the
map of dT J (z) when λ = 0.5. Although, dT J (z) plots its minimum
at z1 and z2, a number of weak replicas are also plotted when M = 4
(see Figure 2(a)). In order to eliminate them, based on second part
of Remark 3.1, one must apply a large number of M . In this case,
M = 8 is a good choice, refer to Figure 2(b). Figure 2(c) shows the
imaging result when the length of cracks are extremely small (such as
point-like scatterers) h = 10−9. Although, this algorithm works for
point-like scatterers in theory, it is hard to recognize the location of
them due to the points of small magnitudes.

Based on the recent research [3], considering the Rayleigh
resolution limit, proposed algorithm can be applied to the imaging
of arbitrary shaped, curve-like perfectly conducting cracks. In order to
perform numerical simulation, four curves are chosen for illustration of
crack:

Γ1 =
{(

s− 0.2,−0.5s2 + 0.6
)

: s ∈ [−0.5, 0.5]
}

Γ2 =
{(

s + 0.2, s3 + s2 − 0.6
)

: s ∈ [−0.5, 0.5]
}

Γ3 =
{(

0.6s, 0.5 cos
sπ

2
+ 0.5 sin

πs

2
− 0.1 cos

3πs

2

)
: s ∈ [−1, 1]

}
.

Γ4 =
{(

1.5 sin
(3s + 4)π

9
− 1, 0.8 sin

(3s + 4)π
4

)
: s ∈ [−1, 1]

}
.

Let us consider the imaging result of Γ1 with operating wavelength
λ = 0.5. Corresponding result is exhibited in Figure 3. Similar to the
small cracks case, we can easily notice that when the value of M is
small, it is hard to recognize the true shape of Γ1, refer to Figure 3(a).
However, if we adopt a large number of M = 16, 24 or 32, dT J (z)
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Figure 2. Map of dT J(z) for two small cracks when λ = 0.5. (a) For
M = 4. (b) For M = 8. (c) For M = 8 and h = 10−9.
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Figure 3. Map of dT J (z) for Γ1 when λ = 0.5. (a) For M = 4.
(b) For M = 8. (c) For M = 16. (d) For M = 24. (e) For M = 32.
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Figure 4. Map of dT J (z) for Γ2 when λ = 0.5. (a) For M = 4.
(b) For M = 32. (c) True shape.

reaches its minimum values in the neighborhood of Γ1. Similarly, an
image with good resolution has appeared when the crack is Γ2 by
regarding Figure 4.

At this stage, let us compare the imaging performance.
Figures 5(b) and (c) show the imaging results of proposed algorithm
and MUSIC-type one (see [5, 24]), respectively. Notice that in
Figure 5(b), some parts of Γ3 cannot be imaged, i.e., proposed
algorithm offers better result than MUSIC-type one in this experiment.

Let us apply proposed algorithm for imaging of multiple, non-
overlapping extended cracks Γ1 ∪ Γ2. Similar to the imaging of single
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crack, one cannot recognize the shape of cracks for small number of
M . In order to obtain a good result, we must apply M = 32 (or more)
number of different incident directions, refer to Figure 6.

Now, let us consider the imaging of crack which has a lower radius
of curvature. Figure 7 shows the imaging result of Γ4. Note that the
location of Γ4 is more closer than Γk, k = 1, 2, 3. Although, we applied
M = 32 different directions, an image with poor resolution is appeared.
This experiment shows the limitation of proposed algorithm.
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Figure 8. Map of dT J (z) for Γ1 ∪ Γ2 when λ = 0.4. (a) For M = 4.
(b) For M = 32. (c) True shape.

At the final stage, let us consider when the measured boundary
data is significantly affected by the random noise. The imaged cracks
are selected by the moved one of Γ1 and Γ2, as previously introduced.
Figure 8 shows the map of dT J (z) with operating wavelength λ = 0.4
when a white Gaussian noise with 10 dB signal-to-noise ratio (SNR) is
added to the unperturbed boundary data. In this case, although M is
large enough, it is very hard to obtain a good result. This result shows
the limitation of proposed algorithm.

5. CONCLUSION

In this paper, a topological derivative based non-iterative algorithm has
been considered for imaging small and extended perfectly conducting
cracks completely hidden in the two-dimensional homogeneous domain
Ω. Based on the asymptotic expansion formula, the structure of such
derivative has been analyzed and tells us the number of different
incident direction must be large enough for obtaining a reliable image
of crack(s). Various numerical examples show that proposed algorithm
is fast and stable for imaging of cracks so that obtained results could
provide good initial guesses for the traditional Newton-type iterative
algorithms or a level-set methods [1, 17, 19, 25].

We have considered in the case of perfectly conducting crack with
Dirichlet boundary condition, extension to the crack with Neumann
boundary condition case is also an interesting subject. In practice, it
is very hard to increase the number of incident direction M so that
development of an improved imaging algorithm with a small number
of M will be a forthcoming work. Finally, we believe that proposed
algorithm can be applied in the practical applications for example,
semiconductor industry to detect the cracks in silicon wafer. We will
try to apply it to the real world applications.



322 Ma, Kim, and Park

ACKNOWLEDGMENT

W.-K. Park would like to thank Habib Ammari for many valuable
advices. The authors gratefully acknowledge to the anonymous
reviewers for their valuable comments. Y.-K. Ma was supported by
the National Research Foundation of Korea (NRF) grant funded by
the Korea government (MEST) (No. 2011-0030810). P.-S. Kim was
supported by the research program 2012 of Kookmin University in
Korea. W.-K. Park was supported by the research program 2012 of
Kookmin University in Korea and the WCU (World Class University)
program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology R31-
10049.

APPENDIX A. APPENDIX: PROOF OF THEOREM 2.1

Let Σ be a small crack of length 2h and W (m) (x) satisfies the following
boundary value problem:




4W (m)(x) + ω2W (m)(x) = 0 in Ω\Σ
W (m)(x) = 0 on Σ
∂W (m)

∂ν
(x) = g(m)(x) on ∂Ω.

(A1)

Then, by virtue of [5], W (m) (x) can be written as follows: for x ∈ ∂Ω,

W (m)(x)− U (m)(x) =
2π

ln(h/2)
U (m)(z)N (x, z) + O

(
1

| ln h|2
)

. (A2)

Let us examine the relationship between J (Ω|Σ) and J (Ω) as
follows:

J(Ω|Σ) =
1
2

M∑

m=1

∫

∂Ω

∣∣∣W (m)(x)− u(m)(x)
∣∣∣
2
dS(x)

=
1
2

M∑

m=1

∫

∂Ω

∣∣∣W (m)(x)− U (m)(x) + U (m)(x)− u(m)(x)
∣∣∣
2
dS(x)

=
1
2

M∑

m=1

∫

∂Ω

(∣∣∣U (m)(x)−u(m)(x)
∣∣∣
2
+

∣∣∣W (m)(x)−U (m)(x)
∣∣∣
2
)

dS(x)

+
M∑

m=1

∫

∂Ω

(
U (m)(x)−u(m)(x)

)(
W (m)(x)−U (m)(x)

)
dS(x)

= J(Ω) +
M∑

m=1

F(z) + O

(
1

| lnh|2
)

,
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where

F(z) =
∫

∂Ω

(
U (m)(x)− u(m)(x)

)(
W (m)(x)− U (m)(x)

)
dS(x).

Applying asymptotic formula (13) and boundary condition in (6), F (z)
can be written

F(z) =
∫

∂Ω

∂V (m)

∂ν
(x)

(
2π

ln(h/2)
U (m)(z)N (x, z)

)
dS(x).

Through the integration by parts process, we can calculate following
equalities

∫

∂Ω

∂V (m)

∂ν
(x)

(
U (m)(z)N (x, z)

)
dS(x)

=
∫

Ω

(
4V (m)(x)U (m)(z)N (x, z)+∇V (m)(x)·U (m)(z)∇N (x, z)

)
dx

=
∫

Ω

(
4V (m)(x)U (m)(z)N (x, z) + ω2V (m)(x)U (m)(z)N (x, z)

)
dx

−
∫

Ω

(
V (m)(x)U (m)(z)4N (x, z)+ω2V (m)(x)U (m)(z)N (x, z)

)
dx

=
∫

Ω

(
(4+ ω2)V (m)(x)

)
U (m)(z)N (x, z)dx

−
∫

Ω
V (m)(x)U (m)(z)

(
(4+ ω2)N (x, z)

)
dx = V (m)(z)U (m)(z).

Therefore,

J(Ω|Σ) = J(Ω) +
2π

ln(h/2)

M∑

m=1

V (m)(z)U (m)(z) + O

(
1

| ln h|2
)

.

By taking real part of above identity, theorem 2.1 can be derived. This
ends the proof.
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1. Álvarez, D., O. Dorn, N. Irishina, and M. Moscoso, “Crack
reconstruction using a level-set strategy,” J. Comput. Phys.,
Vol. 228, 5710–5721, 2009.

2. Ammari, H., An Introduction to Mathematics of Emerging
Biomedical Imaging, Mathematics and Applications Series,
Vol. 62, Springer-Verlag, Berlin, 2008.



324 Ma, Kim, and Park

3. Ammari, H., E. Bonnetier, and Y. Capdeboscq, “Enhanced
resolution in structured media,” SIAM J. Appl. Math., Vol. 70,
1428–1452, 2009.

4. Ammari, H. and H. Kang, Reconstruction of Small Inhomo-
geneities from Boundary Measurements, Lecture Notes in Mathe-
matics, Vol. 1846, Springer-Verlag, Berlin, 2004.

5. Ammari, H., H. Kang, H. Lee, and W.-K. Park, “Asymptotic
imaging of perfectly conducting cracks,” SIAM J. Sci. Comput.,
Vol. 32, 894–922, 2010.

6. Amstutz, S., I. Horchani, and M. Masmoudi, “Crack detection
by the topological gradient method,” Control and Cybernetics,
Vol. 34, 81–101, 2005.

7. Auroux, D. and M. Masmoudi, “Image processing by topological
asymptotic analysis,” ESAIM: Proc., Vol. 26, 24–44, 2009.

8. Bonnet, M., “Fast identification of cracks using higher-order
topological sensitivity for 2-D potential problems,” Eng. Anal.
Bound. Elem., Vol. 35, 223–235, 2011.

9. Byrne, D., M. O’Halloran, M. Glavin, and E. Jones, “Data
independent radar beamforming algorithms for breast cancer
detection,” Progress In Electromagnetic Research, Vol. 107, 331–
348, 2010.

10. Carpio, A. and M.-L. Rapun, “Solving inhomogeneous inverse
problems by topological derivative methods,” Inverse Problems,
Vol. 24, 045014, 2008.

11. Chen, G. P. and Z. Q. Zhao, “Ultrasound tomograohy-guide TRM
technique for breast tumor detecting in MITAT system,” Journal
of Electromagnetic Waves and Applications, Vol. 24, Nos. 11–12,
1459–1471, 2010.

12. Chen, X., “Subspace-based optimization method in electric
impedance tomography,” Journal of Electromagnetic Waves and
Applications, Vol. 23, Nos. 11–12, 1397–1406, 2009.

13. Colton, K. and R. Kress, Inverse Acoustic and Electromagnetic
Scattering Theory, Applied Mathematical Sciences, Vol. 93,
Springer, Berlin, 1998.

14. Conceição, R. C., M. O’Halloran, M. Glavin, and E. Jones, “Nu-
merical modelling for ultra wideband radar breast cancer detec-
tion and classification,” Progress In Electromagnetic Research B,
Vol. 34, 145–171, 2011.

15. Donelli, M., “A rescue radar system for the detection of victims
trapped under rubble based on the independent component
analysis algorithm,” Progress In Electromagnetic Research M ,
Vol. 19, 173–181, 2011.



Progress In Electromagnetics Research, Vol. 122, 2012 325

16. Donelli, M., I. J. Craddock, D. Gibbins, and M. Sarafianou,
“A three-dimensional time domain microwave imaging method
for breast cancer detection based on an evolutionary algorithm,”
Progress In Electromagnetic Research M , Vol. 18, 179–195, 2011.

17. Dorn, O. and D. Lesselier, “Level set methods for inverse
scattering,” Inverse Problems, Vol. 22, R67–R131, 2006.

18. Eschenauer, H. A., V. V. Kobelev, and A. Schumacher, “Bubble
method for topology and shape optimization of structures,”
Struct. Optim., Vol. 8, 42–51, 1994.

19. Kress, R., “Inverse scattering from an open arc,” Math. Methods
Appl. Sci., Vol. 18, 267–293, 1995.

20. Kuo, W.-C., C.-Y. Chuang, M.-Y. Chou, W.-H. Huang, and S.-
T. Cheng, “Phase detection with sub-nanometer sensitivity using
polarization quadrature encoding method in optical coherence
tomography,” Progress In Electromagnetic Research, Vol. 104,
297–311, 2010.

21. Lesselier, D. and B. Duchene, “Buried, 2-D penetrable objects
illuminated by line sources: FFT-based iterative computations
of the anomalous field,” Progress In Electromagnetic Research,
Vol. 5, 351–389, 1991.

22. O’Halloran, M., M. Glavin, and E. Jones, “Rotating antenna
microwave imaging system for breast cancer detection,” Progress
In Electromagnetic Research, Vol. 107, 203–217, 2010.

23. Park, W.-K., “On the imaging of thin dielectric inclusions
via topological derivative concept,” Progress In Electromagnetic
Research, Vol. 110, 237–252, 2010.

24. Park, W.-K. and D. Lesselier, “Electromagnetic MUSIC-type
imaging of perfectly conducting, arc-like cracks at single
frequency,” J. Comput. Phys., Vol. 228, 8093–8111, 2009.

25. Park, W.-K. and D. Lesselier, “Reconstruction of thin electromag-
netic inclusions by a level set method,” Inverse Problems, Vol. 25,
085010, 2009.

26. SokoÃlowski, J. and A. Zochowski, “On the topological derivative
in shape optimization,” SIAM J. Control Optim., Vol. 37, No. 4,
1251–1272, 1999.

27. Zhou, Y., “Microwave imaging based on wideband range profiles,”
Progress In Electromagnetics Research Letters, Vol. 19, 57–65,
2010.

28. Zhu, G. K. and M. Popovic, “Comparison of radar and
thermoacoustic technique in microwave breast imaging,” Progress
In Electromagnetics Research B , Vol. 35, 1–14, 2011.


