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Abstract—An evolutionary learning algorithm based on differential
evolution strategy (DES) and continuous ant colony optimization
(CACO) for wideband antenna design is proposed. The advantages
of this hybrid method are demonstrated with several mathematical
functions and a linear array pattern synthesis. This method is applied
to design an E-shaped wideband patch antenna, which achieves the
impedance bandwidth 4.8 ∼ 6.53GHz. We compare the hybrid method
with the traditional DES and CACO optimization algorithms, and the
advantage of this hybrid method over the DES and the CACO is also
demonstrated.

1. INTRODUCTION

In recent years, many evolutionary algorithms have been proposed for
solving electromagnetics problems such as genetic algorithm (GA) [1–
4], particle swarm optimization (PSO) [5–8] and bees algorithm [9, 10].
In [11], an UWB microstrip antenna is designed based on differential
evolution strategy (DES) [12].

Among existing global optimization algorithms, the DES
pioneered by Storn and Price [12] is a stochastic search procedure
and is able to memorize optimal individual. It optimizes problems
with real valued variables and has been applied to electromagnetic
inverse scattering problems [13] and design of microwave filter [14, 15]
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and antenna [15–19] as well as pattern synthesis [15, 20–23]. It
has been proven to have strong global convergency and robustness.
The ant colony optimization (ACO) algorithm proposed by Dorigo
and Stützle [24] is a population-based heuristic bionics evolutionary
algorithm. It has been extensively applied in solving combinatorial
optimization problems, such as the traveling salesman problem
(TSP) [25], and the job shop scheduling problem (JSP) [26]. This
method has also been used to synthesize thinned arrays with low
sidelobe level (SLL) [27]. However, the original ACO is invented
for solving discrete optimization problems. Recently, the continuous
ACO (CACO) [28, 29] has been proposed to solve some engineering
optimization problems. Hosseini and Atlasbaf [30] employed the
CACO to optimize the sum and difference patterns of linear monopulse
antennas.

In order to improve the optimization performance of ACO and
DES, some research on combining the discrete ACO and DES has
been presented in [31, 32]. These hybrid methods set the pheromone
on the path left by ants in ACO as the object of mutation, crossover
and selection in DES. In this paper, we propose a new hybrid method
based on DES and CACO, in which the possibility of premature can
be reduced and the convergence rate is improved.

This paper is organized as follows. Section 2 introduces the new
hybrid algorithm, as well as some modification in the DES and CACO.
In Section 3 some examples including trial functions and an antenna
array pattern synthesis are provide to demonstrate the advantages of
our algorithm. We employ this new algorithm to design a wideband
antenna. Conclusions are given in Section 4.

2. THE HYBRID ALGORITHM BASED ON DES AND
CACO

2.1. Differential Evolution Strategy

The DES has four operations: mutation, crossover, selection and re-
initialization [23], which are described as follows:

2.1.1. Mutation

A mutant vector is computed for each individual as:

vi,G+1 = xb,G + F (xr1,G − xr2,G), 1 ≤ r1 6= r2 6= i ≤ Np (1)

where Np is the population size. xb,G is the optimal vector of the parent
population in the Gth generation. F is a real number that controls the
amplification of differential variation.
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2.1.2. Crossover

Crossover operator is then applied to produce a child vector xj,c
i,G+1 in

the (G + 1)th generation, using the following scheme:

xj,c
i,G+1 =

{
vj
i,G+1 , rj

i,G+1 ≤ Cr

xj
i,G, otherwise

(2)

where rj
i,G+1 ∈ [0, 1] is a real random number, and Cr is the crossover

probability.

2.1.3. Selection

The selection scheme for minimization problems is defined by

xi,G+1 =

{
xc

i,G+1, f
(
xc

i,G+1

)
< f (xi,G)

xi,G, otherwise
(3)

2.1.4. Re-initialization

In [23], the refreshing distribution operation is used to maintain the
population diversity with a period of Nrefresh.

2.2. Continuous Ant Colony Optimization

The continuous ACO iterates over an ant population of k individuals
and k is the number of ants [29, 30].

We define a model for the global optimization problem:

minimize F = f(X)

subjectto l ≤ X ≤ u

where X = (X1, X2 . . . , Xn) is a variable vector for a ndimensional
problem, f(X) is the objective function, and l = (l1, l2, . . . , ln) and
u = (u1, u2, . . . , un) define the feasible solution space. The set of all
pheromone trail parameters is denoted by T = (T1, T2, . . . , Tn). The
length of each dimension is

Len(i) =
ui − li

k
, (i = 1, 2, . . . , n) (4)

The procedure of CACO can be described as follows [29]:
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Initialize Ant1, Ant2, . . . , Antk
for each ant
calculate fitness and pheromone function
end for
Antbest ← best ant
bestindex ← index number for the best ant
while termination conditions not met do
for i = 1 to k do
if i 6= bestindex then
Global search
end if
end for
Local search for Antbest,
if the new ant is betterthen replace the Antbest

for i = 1 to k do
if i 6= bestindex then
calculate fitness and pheromone function
end if
end for
update pheromone T

end while
Best ant found Antbest

In this procedure, the global search employs the transition
probability:

P (i) = exp(d)/ exp(T (bestindex)), i 6= bestindex, (i = 1, 2, . . . , k) (5)

with d = T (bestindex)−T (i). The new positions of ants are determined
as:

Xi =

{
Xi + λ(Xbestindex −Xi), P (i) < P0

Xi + rand(−1, 1)× Len, otherwise
(6)

where 0 < λ < 1, 0 < P0 < 1.
In the local search the position of the best ant is updated as

follows:

Xtemp =

{
Xbestindex + w × step, rand (0, 1) < 0.5

Xbestindex − w × step, otherwise
(7)
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where step is the initial step for the local search. w = wmax +
(wmax − wmin) × current/total, 1 < wmax < 1.4, 0.2 < wmin < 0.8.
current denotes the current iteration number and total is the total
iteration number. Then we calculate the fitness value of Xtemp. If the
fitness value is better, we replace Xbestindex with Xtemp.

2.3. The New Hybrid Method

The core of the hybrid algorithm is to integrate DES and CACO in
parallel. Here the dynamic DES (DDES) [13] is employed for the DES
method. The procedure of the hybrid algorithm can be described as
follows:

1. Initialize Np individuals and calculate the fitness values. Sort
the individuals according to their fitness values.

2. If NG = m ·Nrefresh (m = 1, 2, . . .), goto step 4, else goto step 3.
NG is the number of evolution generations carried out.

3. The excellent group which contains Np/2 individuals with the
fitness values lower than that of the other individuals is applied with
the global search of CACO. In order to increase the randomness and
diversity, Eq. (6) is modified as

Xi = Xi + rand(0, 1)× (Xbestindex −Xi). (8)

The fitness values are calculated.
The rest individuals not included in the excellent group are used to

produce child vectors by DDES (See Eq. (1) to Eq. (3)). In Eq. (1), the
two individuals xr1,G and xr2,G are selected from the whole population.

All individuals are then sorted according to their fitness values,
and the best individual Ibest is obtained.

4. The individuals in the excellent group are applied with the
mutation operator with

vi,G+1 =xi,G+F (xb,G−xi,G)+F (xr1,G−xr2,G), 1≤r1 6=r2 6= i≤Np, (9)

where the two individuals xr1,G and xr2,G are also selected from the
whole population. The crossover and selection operations are applied
to the excellent group.

The rest individuals are initialized and the fitness values are
calculated. All individuals are sorted according to their fitness values
and the best individual Ibest is obtained.

5. The Local search (see Eq. (7)) is applied for the best individual
Ibest.

6. If the termination conditions are met, stop, otherwise, goto step
2.

The global search capability can be enhanced by the combination
of two strategies Eqs. (1) and (9).
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3. NUMERICAL RESULTS

3.1. Verifications of the Hybrid Algorithm

3.1.1. Test Functions

To demonstrate the performance of the hybrid algorithm, we first
consider the N -dimensional Ackley function as one benchmark function

f(x̄)=−20 exp


−0.2

√√√√1
N

N∑

i=1

x2
i


−exp

(
1
N

N∑

i=1

cos 2πxi

)
+20+exp(1.0).(10)

where x̄ = (0, . . . , 0)N with N = 20, and this function has a global
minimum at 0.

We apply the hybrid algorithm to find the global minimum in
the range [−5.0, 5.0]. The population size is set as 100. The average
number of the evaluations for this function is 4747 in 20 test runs
for the same termination condition (the value of the function is less
than 1.0 × 10−8) as in [23] are satisfied. In contrast, the modified
differential evolution strategy (MDES) needs 6160 evaluations [23].
The convergence curve is shown in Fig. 1.

The second example we consider is the Rosenbrock function

f (x̄) =
N−1∑

i=1

[
100

(
xi+1 − x2

i

)2 + (1− xi)
2
]

(11)

which has a minimum 0 for xi = 1 with i = 1, 2, . . . , N . We
apply the hybrid algorithm to find this minimum. The optimization
(finding minimum) is performed for the case of N = 10 and the range
of [−2.048, 2.047]. The termination condition is set as when the value
of f(x̄) is less than 1.0 × 10−3. The convergence curve is shown in
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Figure 1. Convergence rate for
20-D Ackley function.
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Figure 2. Convergence rate for
10-D Rosenbrock function.
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Table 1. Best fitness values.

The hybrid algorithm IDE [21] Range
Griewangk 0 0.0238 [−200, 200]
Rastrigin 0 1.9324 [−20, 20]

Fig. 2. The hybrid algorithm requires the average number of 6540
evaluations in 20 test runs while the MDES need 10,000 evaluations to
obtain the minimum of 8.0× 10−3 [23].

To further demonstrate the advantages of the proposed algorithm,
we apply the hybrid algorithm to optimize another two 20-D test
functions: Griewangk function and Rastrigin function [12]. A
population size of 40 vectors is selected and the total number of
iterations is set to 400. Table 1 presents the best fitness values
obtained by the hybrid algorithm, as well as those got by the improved
differential evolution (IDE) strategy. It can be seen from the Table that
the average optimal values found by the proposed method in 20 test
runs are smaller than those obtained by the IDE [21].

3.1.2. Linear-array Pattern Synthesis

We consider 2N elements symmetrically placed on the x-axis, and the
array factor for uniform amplitude excitation can be written as [15]

AF (θ, x̄, ϕ̄) = 2
N∑

n=1

cos
[
2π

λ
xn sin θ + ϕn

]
, (12)

where λ is the wavelength, ϕn and xn denote the phase and location
of the array elements.

The design of a 32-element symmetric array for position-only
synthesis is carried out. The angle resolution of θ is 0.1◦. Our purpose
is to find the optimal positions of array elements that would afford a
pattern with a minimum side-lobe level (SLL). The population size is
set as 100 and the total number of iterations is set to 2000. We assume
that

dmin = 0.5λ ≤ xi − xi−1 ≤ dmax = 0.6λ, i = 2, . . . , 16 (13)

To investigate reliability, 10 independent runs of the hybrid
algorithm are repeated. In average, the maximum SLL of −15.82 dB
is obtained in 1608 iterations, in contrast to 2000 iterations by the
self-adaptive differential evolution (SADE) algorithm [15].

Figure 3 shows the optimal pattern. The element positions for the
pattern in Fig. 3 are shown in Table 2 for verification purpose. The
average convergence rate of the hybrid algorithm is shown in Fig. 4.
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Figure 3. Radiation pattern for
32-element symmetric array.
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Figure 4. Average convergence
rate for the 32 elements array.

Table 2. Element locations for a 32-element array.

i 1 2 3 4 5 6 7 8

xi/λ 0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.8499

i 9 10 11 12 13 14 15 16

xi/λ 4.44989 5.04989 5.64989 6.24989 6.84988 7.44988 8.04988 8.64988

Table 3. Design parameters for the antenna (unit: mm).

W L Ws Ls P Lm

Lower bounds 10 10 0 0.5 −15 0.5
Upper bounds 30 50 30 20 15 40

3.2. Antenna design

The DES has been applied in designing the E-shaped patch
antenna [15, 19]. The geometry of the E-shaped patch antenna is
shown in Fig. 5. The radiuses of the coaxial inner conductor and
outer conductor are 0.5mm and 1.15 mm. The design parameters of
the antenna are patch width W , patch length L, slot length Ws, slot
width Ls, feed position P and the separation of the two slots width
Lm. Their ranges are listed in Table 3, which are the same as in [19].
The relative dielectric constant of the substrate (air) is εr = 1.0. The
design problem is defined as the minimization of the objective function:

F (x̄) = 20 log {max |S11 (x̄, f)| , f ∈ [4.9GHz, 6.2GHz]} , (14)

where x̄ = (W, L, Ws, Ls, P, Lm). The E-shaped patch antenna is
simulated in CST MWS. A VBA macro language is used to combine
the hybrid algorithm and CST MWS. The population size is set to 20
and the total number of iterations is set to 30. It is worth noting
that the calculation time of the optimization is dominated by the
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Figure 5. Geometry of the E-shaped patch antenna.

numerical simulation of S11 by the electromagnetic solver, therefore
the performance of algorithm is indicated by iteration number.

The following additional restrictions apply to the design
parameters for maintaining the E-shape [8, 15],

Ws < W, (15)
Lm/2 + Ls < L/2, (16)

|P | < W/2. (17)

Table 4 compares the optimal parameters obtained by the hybrid
algorithm, the DES and the CACO in 10 independent runs. The
average convergence rates for these three optimization algorithm are
shown in Fig. 6. We can see that the hybrid algorithm converge faster
than the DES and the CACO, as well as the final objective-function
value is smaller than those obtained by the DES and the CACO. The
S11 based on the optimal parameters are given in Fig. 7. The antenna
found by the hybrid algorithm has an impedance bandwidth between
4.8 ∼ 6.53 GHz with S11 < −10 dB.

The radiation patterns for the hybrid algorithm, the CACO and
the DES designs are presented in Fig. 8. It can be seen that the
radiation patterns have same polarization at 5.1 and 5.9 GHz. The
gain of the three designs is compared in Fig. 9. We can see that the
gains among the three designs are comparable. In order to give readers
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some ideas about the computation cost for this antenna design, in our
simulations, the electromagnetic solver CST MWS is employed and
the average calculation time for our optimization is 37152 seconds (on
ASUS server with 4 cores, CPU: Xeon X3330 @ 2.66 GHz).
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the average convergence rates
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Figure 8. Comparisons of the simulated radiation patterns of the
three optimized antennas. (a) E-plane at 5.1GHz. (b) H-plane at
5.1GHz. (c) E-plane at 5.9GHz. (d) H-plane at 5.9 GHz.
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Table 4. Optimal Parameters for the E-shaped patch antenna (unit:
mm).

W L Ws Ls P Lm

The hybrid

algorithm
19.9134 37.7541 16.8262 5.92375 4.95039 5.15766

The CACO 21.592 42.3633 15.0841 8.57912 4.59907 4.56407

The DES 19.8588 37.5544 15.4478 5.74849 5.82192 7.51514
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Figure 9. Comparisons of the simulated gains by DES, CACO, and
the hybrid algorithm.

4. CONCLUSION

We propose a new hybrid algorithm based on the DES and the
CACO. Optimization results of several benchmark trail functions and a
linear-array pattern synthesis example show that the hybrid algorithm
performs better than the DES. The hybrid algorithm is also applied to
design a wideband E-shaped patch antenna combined with a numerical
solver CST MWS. Compared with the traditional DES and CACO, the
hybrid algorithm obtains better results of the convergence rate and the
final objective-function value. It is shown that the design methodology
is an effective way for antenna design.
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24. Dorigo, M. and T. Stützle, Ant Colony Optimization, The MIT
Press, 2003.

25. Luo, D. L., H. P. Chen, S. X. Wu, and Y. X. Shi, “Hybrid
ant colony multi-objective optimization for flexible job shop
scheduling problems,”Journal of Internet Technology, Vol. 11,
No. 3, 361–369, 2010.

26. Xing, L. N., Y. W. Chen, P. Wang, Q. S. Zhao, and J. Xiong,
“Knowledge-based ant colony optimization for flexible job shop
scheduling problems,” Applied Soft Computing, Vol. 10, No. 3,
888–896, 2010.

27. Quevedo-Teruel, Q. and E. Rajo-Iglesias, “Ant colony optimiza-
tion in thinned array synthesis with minimum sidelobe level,”
IEEE Antennas and Wireless Propag. Lett., Vol. 5, 349–352, 2006.

28. Bilchev, B. and I. C. Parmee, “The ant colony metaphor
for searching continuous design spaces,” Proceedings of the
AISB Workshop on Evolutionary Computation, Lecture Notes in
Computer Science, Vol. 993, 25–39, 1995.

29. Zhang, H. M., M. Z. Gao, and X. F. Zhang, “Continuous ant
colony optimization algorithm based on crossover and mutation,”
Journal of China University of Metrology, Vol. 20, No. 3, 259–262,
2009.

30. Hosseini, S. A. and Z. Atlasbaf, “Optimization of side lobe level
and fixing quasi-nulls in both of the sum and difference patterns
by using continuous ant colony optimization (ACO) method,”
Progress In Electromagnetics Research, Vol. 79, 321–337, 2008.

31. Coelho, L. D. and D. L. D. Bernert, “A modified ant colony
optimization algorithm based on differential evolution for chaotic
synchronization,” Expert Systems with Applications, Vol. 37,
No. 6, 4198–4203, 2010.

32. Khushaba, R. N., A. Al-Ani, A. AlSukker, and A. Al-Jumaily,
“A combined ant colony and differential evolution feature
selection algorithm,” ANTS, Proceedings of the 6th International
Conference on Ant Colony Optimization and Swarm Intelligence,
1–12, 2008.


