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Abstract—Ultra-wideband (UWB) microwave radar imaging tech-
niques provide a non-invasive means to extract information related to
an object’s internal structure. For these applications, a short-duration
electromagnetic wave is transmitted into an object of interest and the
backscattered fields that arise due to dielectric contrasts at interfaces
are measured. In this paper, we present a method that may be used
to estimate the time-of-arrival (TOA) parameter associated with each
reflection that arises due to a dielectric property discontinuity (or di-
electric interface). A second method uses this information to identify
the locations of points on these interfaces. When data are collected
at a number of sensor locations surrounding the object, the collection
of points may be used to estimate the shape of contours that segre-
gate and enclose dissimilar regions within the object. The algorithm is
tested with data generated when a cylindrical wave is applied to a num-
ber of numerical 2D models of increasing complexity. Moreover, the
algorithm’s feasibility is evaluated using data generated from breast
models constructed from magnetic resonance (MR) breast scans. Re-
sults show that this is a promising approach to identifying regions and
the internal structure within the breast.

1. INTRODUCTION

Exploration of alternative methods for breast imaging has included
several methods based on electromagnetic properties of the tissues [1].
At microwave frequencies, breast imaging relies on differences in
dielectric properties of various tissues within the breast [2]. Recent
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studies of excised tissues have demonstrated a wide range of breast
tissue properties, with increasing permittivity and conductivity
noted with a decrease in the proportion of adipose tissue [3].
Microwave-frequency approaches to imaging the complex distribution
of electromagnetic properties in the breast include tomography and
radar-based imaging. On one hand, microwave tomography uses
measured microwave scattering data to produce quantitative images
of the breast’s dielectric property profile. Methods reported in [4, 5]
are targeted at early stage breast cancer screening, while in [6]
a clinical system has been developed for breast cancer treatment
monitoring. On the other hand, radar-based imaging illuminates the
breast with an ultrawideband (UWB) pulse of electromagnetic energy
from sensors positioned at multiple locations around the breast. Signal
processing algorithms are applied to the pre-conditioned reflected
signals to produce a backscatter energy map related to locations where
differences in tissue properties occur. Initial pre-clinical testing of this
technique has been recently reported in [7, 8].

Both radar-based and microwave tomography imaging face
significant challenges. For example, radar-based imaging techniques
typically make an a priori assumption about the average relative
permittivity value for the entire breast volume when creating the
backscatter energy images. However, the breast has a complicated
structure, leading to significant variability in the propagation speed
of the electromagnetic energy travelling through tissue. Microwave
tomography reconstructs the dielectric properties of an object by
using an objective function to measure the discrepancy between the
measurements and fields generated by a numerical simulation of the
system (i.e., a forward solver) [9–11]. The complex nature of the
internal breast structure, the lack of a priori information about the
internal structure, and limitations in the quality and quantity of
the measurement data lead to an inverse scattering problem that
is nonlinear, non-convex, and severely ill-posed. Both tomography
and radar-based imaging would benefit from estimates of the skin
thickness, as well as the locations of regions dominated by adipose
and fibroglandular tissues.

A class of microwave tomographic approaches to estimating
the location of interfaces between regions has been reported at
microwave frequencies. These approaches may be categorized as shape-
optimization techniques. For example, an approach that integrates a
multi-scaling procedure and the level-set-based optimization technique
is presented in [12, 13] and is used for the shape reconstruction of
multiple and disconnected homogeneous scatterers. The feasibility
of the technique to detect unknown anomalies (e.g., cracks) in
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dielectric materials is evaluated in [14]. The application of shape-
optimization techniques to numerical and experimental data for
microwave imaging of perfect electric conductor objects is presented
in [15, 16], respectively. A similar approach is also proposed for
microwave breast imaging (see [4] or [17] for examples). Like
other microwave tomographic techniques, these shape-optimization
approaches face significant computational and mathematical challenges
since the objective functional is nonlinear (i.e., it has multiple
solutions), the problem is severely ill-posed, and the contour
information is extracted from the transmission data using only a few
frequencies.

In this paper, we present a technique that may be applied to
backscattered microwave data collected from an object to extract
spatial features associated with interfaces enclosing regions of
dissimilar properties. The distinguishing feature of the technique that
we are presenting is that efficient evaluation of the skin thickness and
contour samples may be achieved directly from UWB reflection data.
In [18], we presented a technique adapted for near field applications
which we refer to as the reflection data decomposition (RDD)
algorithm. This algorithm estimates the TOA and scaling factor of the
reflections (relative to a reference function) that arise from dielectric
property changes within an object, and has been tested on planar
structures. In this paper, we adapt the RDD algorithm to incorporate
a priori information about the geometric and/or dielectric properties
of a region, as well as information collected at different frequency
bands. The TOA information is also transformed to an estimate of the
thickness of regions and locations of points on contours that segregate
regions of dissimilar dielectric properties. Section 2 describes both
of these methods in more detail. The algorithms are applied to 2D
numerical models of increasing complexity in Section 3, demonstrating
accuracy with differences between the models used to generate the
reference function and the test data, as well as robustness to variations
in layer thicknesses and shapes. Finally, the algorithms are applied to
breast models based on MR scans in Section 4, suggesting the feasibility
of delineating regions dominated by fat and glandular tissues.

2. METHODS

We begin with a general description of the problem. Consider an
inhomogeneous dielectric object S shown in Fig. 1 covered by a thin
layer which we denote as region 1 (Σ1). The interior consists of two
regions, labeled Σ2 and Σ3, having dissimilar dielectric properties. We
position the object within a bounded 2D homogenous measurement
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Figure 1. A region Ω with known dielectric properties is bounded by
N sources/sensors (dots) co-located on its boundary ∂Ω. Contained
within the measurement region is a dielectric object S covered by a
thin layer (Σ1) with εr1, σ1. The interior of the object has two regions
(Σ2, Σ3) with dissimilar properties εr2, σ2 and εr3, σ3, respectively.
The problem considered here is to evaluate points PΓ12(i) and PΓ23(i)
on contours Γ12 and Γ23, respectively.

region, Ω. The interfaces between regions are denoted as Γ01, Γ12 and
Γ23, respectively. We note that for the breast imaging application,
region 1 represents skin, while regions 2 and 3 represent regions
dominated by adipose and glandular tissues, respectively. These
interior regions are not restricted to be homogeneous, but rather
represent regions that are dominated by a particular tissue type.

A source element illuminates Ω with an UWB electromagnetic
pulse, while the sensor at the same location as the source records
the backscattered signals. A full set of data collection using this
configuration consists of moving the source and sensor pair to N
equally spaced locations on the boundary of the measurement region.
The locations of the sensors and contour Γ01, as well as the dielectric
properties of region Ω are known a priori. Furthermore, we assume
that the relative permittivity of regions 1 and 2 are estimated using a
technique such as the layer stripping approach presented in [19] or [20].

For each sensor, the reflected field information is used to estimate
the points PΓ12(i) and PΓ23(i) on contours Γ12 and Γ23, respectively.
Repeating this procedure for N sensors leads to a sequence of points
which we refer to as contour samples that may be used to estimate
contours Γ12 and Γ23. The methodology we have developed to
identify the reflection that arises from each interface is described in
Subsection 2.1. Each reflection is characterized by its scaling factor
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and TOA. The TOA is used to estimate the location on the contour
from which the reflection originated, as described in Subsection 2.2.

2.1. Estimating Amplitude and TOA of Each Reflection

The object in Fig. 1 is illuminated by an UWB pulse and a single
sensor receives the reflected signal. The data received by the sensor
are conditioned so that the transmitted signal is removed from the
reflection data. The pre-conditioned data, y(t), are modeled as a
superposition of scaled and delayed replicas of a reference signal r(t)
plus noise:

y(t) =
M∑

m=1

αmr(t− τm) + e(t), 0 ≤ t ≤ T (1)

where M is the number of replicas of r(t); αm and τm are the scaling
factor and TOA of the mth replica, respectively; T is the duration of
the signal; and e(t) is noise modeled as a zero-mean Gaussian random
process. Each of the scaled and time-delayed versions of the reference
signal represent a reflection from an interface separating the object’s
different dielectric regions, so the TOA information may be used to
imply the location of these interfaces and the extent of each region.

The approach to extracting the scaling factors and TOAs from a
given backscattered signal is detailed in [18]. If a priori information
is available about the geometric properties of a region (e.g., the
skin layer thickness and/or properties), then this information may
be incorporated into the reference signal used in (1) to improve the
model of the reflection and the accuracy of parameter estimates. For
example, simulations of a model or measurements of a test object may
be used to generate reference reflections. The model may be updated to
include a priori information, resulting in multiple reference functions
that correspond to e.g., reflections from the exterior and interior of the
skin layer. To accommodate a priori information, we adapt the RDD
algorithm to use multiple reference functions to estimate reflections
contained in the recorded data using the three step procedure shown
in Fig. 2.

The multiple reference function approach may also be used to
accommodate reference functions with different frequency contents.
For example, when imaging the breast at microwave frequencies,
the spectral content of the illuminating signal is an important
consideration. On the one hand, an illuminating signal with higher
frequency components (≈ 12.5GHz) is required to resolve the skin
thickness. However, higher losses at these frequencies lead to poor
depth of penetration, so the use of this signal is restricted to extracting
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information related to thin structures close to the surface (e.g, the
skin). On the other hand, identifying interfaces deeper within the
breast requires an illuminating signal with lower frequency components
in order to improve the depth of penetration. Unfortunately, the
improvement in depth of penetration of the signal comes at the expense
of loss of resolution. Therefore, we propose a sequential estimation
procedure that preserves resolution while enhancing penetration. The
object is first illuminated with a signal having higher frequency
components, xfh(t). Reference functions are also generated for this
signal and are used to decompose the reflections contained in the
backscattered data. The TOA estimates for the first two reflections are
used to evaluate the skin thickness. Next, an illuminating signal, xfl(t),
with frequency components lower than the first illuminating signal is
used. The decomposition procedure is reapplied to the backscattered
data using reference signals generated for this second excitation. The
TOA for the second and third reflections are used to estimate the
distance from contour Γ12 to Γ23.

RDD step 1

Estimation of first reflection

RDD step 2

Estimation of second reflection

RDD step 3

Estimation of residual components
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Figure 2. Flow-chart of the three-step procedure used to estimate the
scaling factor α and TOA parameter τ for each reflection contained in
the backscattered data y(t) recorded by a sensor. At each step, a
priori information about a region (e.g., geometrical and/or dielectric
properties) may be incorporated into the reference signal ri(t) used by
the reflection data decomposition algorithm.
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2.2. Estimating Amplitude and TOA of Each Reflection

Once the recorded reflection signal is decomposed into M components,
estimates of the TOAs and scaling factors of the reflections that arise
from each interface are available. This information is first used to
estimate the extent of each region near each antenna. The estimates
from all sensors are then used to identify points on contours separating
the regions.

The TOA is used to estimate the thickness or extent of each region
with the assumption that the average permittivity of each region is
known. For sensor i, the extent of region j is estimated using the
difference in TOA between successive reflections:

∆τj(i) = τj+1(i)− τj(i). (2)

Specifically, the thickness of layer j near antenna i, ŵj(i), is estimated
as:

ŵj(i) =
∆τj(i)c0103

2
√

ε̂rj

(mm) (3)

where c0 = 2.9979 × 108 m/s is the speed of light in free space and
ε̂rj is the estimated average relative permittivity of the jth region of
interest.

Next, an iterative procedure uses the layer thicknesses in
conjunction with a line-of-sight ray connecting the sensor to the center
of the region of interest (ROI). The center of the ROI is identified as
point P0. The location of sensor i is known and described as point PA(i)
with PA,z(i) and PA,y(i) denoting the z and y-coordinates, respectively.
The distance from the ith antenna to the outer surface of the object,
w0(i), is also assumed to be known a priori.

Consider the contour separating regions 1 and 2 (Γ12). The
distance from antenna i to a point on this contour is given by:

ŵΓ12(i) = w0(i) + ŵ1(i). (mm) (4)

This distance is used to estimate the coordinates of the point PΓ12(i)
on the contour. As shown in Fig. 1, a line-of-sight ray connects the
ith sensor at point PA(i) with the center of the ROI at point P0. A
direction vector ~v along the ray points to the center and is incorporated
into the vector parametric equation of the ray:

~PΓ12(i) = ~PΓA
(i)− t~v (5)

where ~PΓ12(i) is the position vector of the point PΓ12(i) on the contour,
~PA(i) is the position vector of the location of the ith antenna, and
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t ∈ [0, 1]. When t = 0, PΓ12(i) = PΓA
(i); when t = 1, PΓ12(i) = P0.

The expression given by (5) is constrained by

ŵΓ12(i) =
√

(PA,z(i)− PΓ12,z(i))2 + (PA,y(i)− PΓ12,y(i))2 (6)

where PΓ12,z(i), PΓ12,y(i) are the z and y-coordinates of PΓ12(i),
respectively. The coordinates of PΓ12(i) are determined iteratively
using (5) and (6) with the following procedure. Scalar t is incrementally
increased to move the position vector point ~PΓ12(i) along the line-of-
sight ray given by (5) until the distance traveled by the point satisfies
the distance given by (6). This process is repeated for all N sensors in
order to form a sequence of points PΓ12(1), . . . , PΓ12(N) which estimate
N locations along the contour Γ12.

We repeat this process to determine the coordinates of the point
PΓ23(i) on the estimated location of contour Γ23. In this case, the
distance from antenna i to a point on the contour Γ23 is estimated
with

ŵΓ23(i) = ŵΓ12(i) + ŵ2(i). (mm) (7)

We refer to this entire procedure as the contour sample evaluation
algorithm. The sequence of 2N points may be used to infer the
basic shapes of contours Γ12 and Γ23 (i.e., geometrical properties)
and of the object’s interior regions. Hence, this information may
be used to approximate the object’s internal structure. Although we
restrict this technique to the identification of just three regions for this
investigation, it can be easily extended to extract contour information
related to more than three regions.

3. INITIAL PERFORMANCE EVALUATION

The ability of the algorithm to extract an object’s internal geometrical
properties is evaluated with a 2D object having progressively more
complex regional shapes. Furthermore, the results are compared as
more a priori information about the regional properties is incorporated
into the reference signals. The approach used to generate the numerical
data and the metrics used to evaluate the performance of the algorithm
are described in Subsections 3.1 and 3.2, respectively. The results and
performance of the algorithm are described in Subsection 3.3.

3.1. Generation of Numerical Data

Numerical simulations using the finite difference time domain (FDTD)
method are used to generate test data. In these examples, the FDTD
problem space is bounded by a five-cell thick perfectly matched layer
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(PML) boundary (4th order, R(0) = 10−7) with spatial grid resolution
of 0.5mm. Similar to the illustration in Fig. 1, a model having three
distinct homogeneous regions is placed within the problem space and
the sensor and source are co-located 10 mm from the surface of the
outer layer. Both the model and source/sensor are located in free
space. An impressed current source is used in these TMx simulations.
The model is illuminated with an UWB differentiated Gaussian pulse.
The maximum frequency fmax of the pulse is defined as the frequency
at which the magnitude of the spectrum is 10% of the maximum. The
number of samples is N = 4000, and the sample time is TS = 1.06 ps.

When generating the numerical data, reflections are recorded as
the sensor is scanned to 20 equally spaced locations around the model.
The transmitted signal is acquired by carrying out a simulation without
the model. Data received by the sensor are conditioned such that the
transmitted signal is removed from each reflection. The data are then
normalized to the reflected signal’s maximum positive value and are
contaminated with 20 dB of white Gaussian noise.

3.2. Assessing the Performance of the Algorithm

To assess the performance of the contour sample evaluation algorithm,
the actual reflections from each of the three interfaces (Fig. 1) are
isolated in order to extract actual values of the scaling factors and
TOAs. First, a simulation is carried out with a homogeneous model
(i.e., entire model has the same properties as the outer layer) to provide
an isolated version of the reflection from the first interface, y1(t). The
reflection is normalized by the positive maximum of the reflection,
then characterized by the scaling factor, α1 = 1.0, and TOA τ1 which
is the time that the positive maximum occurs. Next, a simulation is
carried out with the third region replaced with a dielectric material
having the same properties as the second region and this signal is
used to isolate the reflection from the second interface, y2(t). After
normalizing to the first reflection, the scaling factor α2 and TOA τ2

are determined. Finally, a third simulation is carried out with the
three region model. The first two reflections are subtracted from
the resulting data, isolating the reflection from the third interface,
y3(t). After normalizing to the first reflection, the resulting signal is
characterized by the scaling factor α3 and TOA τ3.

The error in TOA is explored by comparing actual and estimated
differences in successive TOA estimates. Specifically, the error, ∆τe(i),
is calculated by subtracting the actual from the estimated ∆τ(i) of
the reflections. Rather than examining the error in TOA directly, the
spatial error, ∆wej(i), for the jth layer is of greater practical interest
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and is calculated using

∆wej(i) =
∆τe(i)c0103

2√εrj
(mm) for j = 1, 2 (8)

where εrj is the average relative permittivity of the jth layer. The
thickness error for the jth layer is then calculated relative to the actual
layer thickness. Likewise, the relative error for each of the reflection
amplitudes is computed using

αej(i) =
α̂j(i)− αj(i)

|αj(i)| for j = 1, 2 (9)

where α̂j(i) is the estimated value of the jth scaling factor.
The similarity between the estimate of a reflection, ŷj(i), and the

actual reflection is computed using:

ρj =
ŷT

j yj

‖ŷj‖‖yj‖ for j = 1, 2, 3. (10)

A value close to 1 indicates a close similarity between the estimate of
the reflection and the actual reflection.

Each performance measure is averaged over all N sensors.

3.3. Results

We first evaluate the performance of the algorithm for a base-line case
whereby the object has a simple cylindrical shape and limited a priori
information about the object is available. The same reference signal
is used for all three steps of the parameter estimation algorithm and
results are described in Subsubsection 3.3.1. The case where a priori
information about both the thickness and dielectric properties of the
outer layer (skin region) is used to refine the second reference signal
is described in Subsubsection 3.3.2. Finally, the performance of the
algorithm is evaluated when the skin region and the object’s interior
have more complicated geometrical properties in Subsubsections 3.3.3
and 3.3.4, respectively.

3.3.1. Case 1: Object with Simple Cylindrical Shape

A three layer cylinder is used to evaluate the effectiveness of the contour
sample evaluation algorithm for an object with a geometrically simple
internal structure. The model is shown in Fig. 3. Region 1 is a
simplified representation of skin and will be referred to as the skin layer.
The cylinder is illuminated with an UWB differentiated Gaussian
pulse having a −3 dB bandwidth of 4.62GHz (1.62–6.24 GHz). The
maximum frequency fmax of the pulse is 8.59 GHz.
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Figure 3. Relative permittivity profile of model 1. The skin layer is
2mm thick with εr1 = 36.0, σ1 = 4.0 S/m; the middle layer is 14 mm
thick with εr2 = 9.0, σ2 = 0.4 S/m; and the center layer is 24mm thick
with εr3 = 40.0, σ3 = 3.2 S/m.

Table 1. Effect that the reference signal has on the quality of the
parameter estimation for model 1. The performance measures are
averaged over all 20 antennas.

Ref. Slab prop. ∆we1

mm/(%)

∆we2

mm/(%)

αe1

(%)

αe2

(%)
ρ1 ρ2 ρ3

εr σ (S/m)

36 4 0.12 −0.01 0.8 −0.4 0.9996 0.9419 0.7078

(6%) (−0.1%)

43.2 4.8 0.11 −0.003 0.8 −4.2 0.9996 0.9415 0.7119

(6%) (−0.02%)

28.8 3.2 0.11 0.007 0.8 −3.6 0.9996 0.9417 0.7048

(6%) (0.05%)

To test algorithm’s robustness to variations between the reference
signal and model, several scenarios are investigated. First, the
reference signal is acquired by simulating a homogeneous planar layer
(slab) having dielectric properties of εr = 36.0, σ = 4.0 S/m. Next,
reference signals are constructed using reflections from dielectric slabs
with properties of εr = 28.8, σ = 3.2 S/m (i.e., the dielectric properties
of the slab are −20% of the actual properties), and εr = 43.2,
σ = 4.8 S/m (i.e., the dielectric properties of the slab are +20% of
the actual properties). For these cases, the reflection from the slab is
normalized and used for all three reference signals shown in Fig. 2.
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Table 1 summarizes the results obtained for each of the three
reference signals. First, we examine the average error of the skin
layer thickness, ∆we1, and the average error in the skin-to-region 3
distance, ∆we2. These errors are very small for all cases, suggesting
that the algorithm is able to accurately estimate the TOA for the
first three reflections and that this estimation is robust to differences
in dielectric properties between the slab used to obtain the reference
signal and the object under test. These results are consistent with the
findings presented in [18]. Furthermore, we note that the reference
signal is constructed using the reflection from a dielectric slab; but the
actual reflections arise from cylindrical objects. This means that the
estimation procedure is also robust to geometrical differences between
the object used to generate the reference signal and the actual contours
of the object from which the reflections arise.

The results shown in Table 1 also suggest accurate estimation of
the scaling factor for the first two reflections. This estimation is also
robust to a discrepancy between the dielectric properties of the slab
used to obtain the reference signal and the actual dielectric properties
of the model. We note that accurate estimation of the scaling factor of
the first two reflections is of practical importance since these estimates
may be used by a layer stripping method (e.g., as suggested by [19])
to estimate the relative permittivity of the skin and region 2.

For the reference signals tested, the average similarity measure
between the estimate of the first reflection and the actual reflection,
ρ1, suggests that the first reflection is modeled accurately. The average
value of the similarity measure given by ρ2 implies a deterioration of
the model for the second reflection. This, in turn, leads to unwanted
artifacts in the residue after the skin response is removed from the
signal, resulting in the deterioration of the estimation of the third
reflection and decline in the average similarity measure ρ3. However,
the deterioration in the accuracy of the estimation of these two
reflections does not appear to affect the accuracy of the estimation
of the TOA parameters.

The contour samples are evaluated for Γ23 when the algorithm
uses a single reference signal constructed from the reflection off of a
dielectric slab with εr = 43.2, σ = 4.8 S/m. The results are shown
in Fig. 4 and demonstrate that for this simple shape, the geometric
properties of region 3 are accurately extracted and support the results
in Table 1.

3.3.2. Case 2: Incorporating Additional a Priori Information

Model 1 is used to investigate if there is an improvement in the quality
of the estimates if additional a priori information about the skin layer
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Figure 4. Contour samples (dots) evaluated for contour Γ23 when the
algorithm uses a single reference signal constructed from the reflection
off of a dielectric slab with εr = 43.2, σ = 4.8 S/m. The ith contour
sample PΓ23(i) is evaluated from the reflection data y(t) recorded by the
ith sensor (rectangle) with the procedure described in Subsection 2.2
which uses the line-of-sight rays shown connecting each sensor with the
center of the model.

is incorporated into the estimation procedure. In particular, we assume
that information about both the skin layer’s thickness and dielectric
properties is available and used to construct a signal for the second
reference.

To acquire the second reference signal, r2(t), a simulation is carried
out with a 2 layer slab. A thin outer layer covers a second layer with
dielectric properties of εr = 9.0, σ = 0.4 S/m. Several versions of
these reference signals are obtained by using thin layers with dielectric
properties of εr = 28.8 σ = 3.2 S/m, εr = 36.0 σ = 4.0 S/m, εr = 43.8
σ = 4.8 S/m. For a set of dielectric properties, three thicknesses of
1mm, 2mm, or 3 mm are simulated. Therefore, a total of 9 sets of
reference signals are developed. A slab with the same properties as
the thin layer is used to generate the reflection from the first interface,
r1(t). This reflection is subtracted from the reflection from the thin
slab in order to isolate the reflection from the second interface. The
subtracted signal is then normalized to the first reference signal and
used as the second reference signal, r2(t). Finally, we use the first
reference signal for r3(t).

Table 2 summarizes the performance of the algorithm with the
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Table 2. Effect that the reference signal has on the quality of the
parameter estimation for model 1. The performance measures are
averaged over all 20 antennas.

Ref. slab prop. ∆we1 ∆we2

thickness εr σ mm/ mm/ ρ1 ρ2 ρ3

(mm) (S/m) (%) (%)

1 36.0 4.0
0.03 0.00

0.9996 0.9966 0.8635
(1.5%) (0.0%)

1 43.2 4.8
0.05 −0.07

0.9996 0.9969 0.8807
(2.15%) (−0.5%)

1 28.8 3.2
0.04 0.02

0.9996 0.9958 0.8690
(2.0%) (0.14%)

2 36.0 4.0
0.04 −0.02

0.9996 0.9882 0.8036
(2.0%) (−0.14%)

2 43.2 4.8
0.02 0.08

0.9996 0.9883 0.7800
(1.0%) (0.57%)

2 28.8 3.2
0.09 −0.06

0.9996 0.9961 0.7782
(4.5%) (−0.43%)

3 36.0 4.0
0.09 −0.16

0.9996 0.9915 0.8858
(4.5%) (−1.14%)

3 43.2 4.8
0.08 −0.09

0.9996 0.9870 0.8601
(4.0%) (−0.64%)

3 28.8 3.2
0.10 −0.26

0.9996 0.9946 0.9224
(5.0%) (−1.86%)

9 reference signals. The results indicate that the skin thickness
is estimated more accurately compared to Table 1 (single reference
signal), although the difference in the error is not significant. However,
the results also suggest that there is no noticeable improvement in the
accuracy of the estimation of the skin-to-region 3 distances when the
two different reference signals are used. The results do not significantly
change with variations to the thickness and properties of the slab used
to generate the second reference signal. Finally, we note that the scale
factor for reflection 1 is estimated with 0.8% error in all cases, while
the magnitude of the error in the scale factor for reflection 2 is less
than 6% for all cases.

The similarity measure between the estimate of the second reflec-
tion and the actual second reflection indicates a significant improve-
ment compared to the single reference signal in Subsubsection 3.3.1.
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The first two reflections collectively represent the skin response. The
average values of both similarity measures (ρ1 and ρ2) indicate that
the skin response is accurately estimated when using a second refer-
ence signal. These results are maintained when various thicknesses and
dielectric properties of the slab are used to construct the two reference
signals. This is of practical importance since an accurate estimation
of the skin response may be used to reduce the skin reflection [21].
Moreover, accurate estimation of the skin response is important for
the reduction of artifacts in the residual signal. The reduction of these
artifacts is suggested by the improvement in the similarity between
the estimation of and the actual third reflection compared to Table 1
where only a single reference signal is used.

3.3.3. Case 3: Irregularly-shaped Regions

Two models are used to explore cases where the regions do not have
uniform thicknesses or regular shape. Model 2, shown in Fig. 5, has a
non-uniform skin layer with asymmetrical shape. It is used to evaluate
the effect that the shape and variable thickness of the skin layer have
on the estimation procedure. The average thickness of the skin layer is
2.12mm and its dielectric properties are homogeneous with εr1 = 36.0,
σ1 = 4.0 S/m. Model 3 is used to examine the effect of the shape
of region 3. This model has the same skin layer as model 2 and the
properties of the three layers are also the same, however region 3 has
4 lobes (see Fig. 6). For both models, a single reference signal is
constructed using the procedure described in Subsubsection 3.3.1 from
the reflection off of a dielectric slab with εr1 = 37.4, σ1 = 4.2 S/m.
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Figure 5. Relative permittivity profile for model 2.
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Figure 6. Contour samples (dots) evaluated for contour Γ23 of model 3
when the algorithm uses a single reference signal constructed from the
reflection off of a dielectric slab with εr = 37.4, σ = 4.2 S/m.

For model 2, the skin layer thickness and the skin-to-region 3
distances are evaluated using (2). The average error for the estimated
skin layer thickness is 0.08mm (relative error is 3.8%) and the average
error for the estimated skin-to-region 3 distance is −0.012mm. The
results indicate that the estimation technique accurately estimates
these distances and is robust to variations in the shape and thickness
of the skin layer. Next, the contour samples PΓ23(i) for i = 1 to 20
are evaluated using (2)–(6). Although a plot of the contour samples
for model 2 is not shown, we note that precise sampling of the contour
is achieved and that the results have accuracy very similar to what
is shown in Fig. 4. This is supported by the fact that the average
difference in distance the model 2 contour samples are from the actual
interface is less than 0.02mm.

For model 2, the results obtained using a single reference signal are
compared to those obtained when the two reference signals are acquired
using a 3mm slab with εr = 37.4, σ = 4.2 S/m. The average error for
the estimated skin layer thickness is −0.11mm (or a relative error of
4.9%) and the average error for the estimated skin-to-region 3 distance
is −0.132mm. This implies that there is not a significant difference in
the distance estimates, even if more a priori information is used for
the skin. This result supports the findings in Subsubsection 3.3.1.

For model 3, the average error for the estimated skin layer
thickness is 0.09mm (relative error is 4.24%) and the average error
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for the estimated skin-to-region 3 distance is −0.68mm. Next, the
contour samples PΓ23(i) for i = 1 to 20 are evaluated using (2)–(6) and
are superimposed onto the model in Fig. 6. From Fig. 6, we observe
that the accuracy of the skin-to-region 3 distance estimation varies
depending on the sensor location. The line-of-sight ray for sensors 1
and 2 shown in Fig. 6 intersect region 3 at a location where the
contour has a convex shape. The line-of-sight ray for sensors 4 and
9 intersect region 3 at a location where the shape is concave. For
the later scenario, we hypothesize that multiple reflections arise from
the expanding transmitting signal as it interacts with the contour at
multiple locations. This leads to an underestimation of the contour
sample and demonstrates a shortcoming of the line-of-sight approach.
In general, the method is unable to accurately extract detailed spatial
features related to concave regions.

4. APPLICATION OF ALGORITHM TO 2D
NUMERICAL BREAST MODELS

The ability of the algorithm to accurately sample the outline of a
contour separating regions having dissimilar dielectric properties was
demonstrated in Section 3. We now apply this tool to a more practical
but challenging problem in which the goal is to use the reflection data
recorded by the sensors to evaluate the location of various interior
contours in order to infer the internal structure of a breast. For this
investigation, we assume that the breast consists of an outer skin layer
and an interior consisting of two regions: a fat region dominated by
adipose tissue and a glandular region dominated by fibroglandular
tissue. Referring to Fig. 1, the fat region corresponds to region 2
and the glandular region corresponds to region 3. For application
to a realistic breast model, regions 2 and 3 are not assumed to be
homogeneous.

The accuracy and performance of the algorithm in this practical
scenario is investigated using numerical breast models constructed from
coronal MR scans acquired from two different patients as part of a
patient study described in [22]. The MR scan is collected prior to
injection of a contrast agent used routinely in MR and construction of
the numerical models follows a three step procedure described in [23].
First, the breast location is defined and a non-uniform skin layer is
added. Next, the breast interior is segmented into 5 tissues. Mapping
of MR pixel intensity to breast tissue electrical properties employs a
piecewise linear mapping by assigning ranges of pixel intensities to
each of the tissue groups defined in [3]. Model 5 contains a tumor
extracted from images acquired after a contrast agent is administered
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Figure 7. Relative permittivity profiles for models 4 (a) and 5 (b)
each constructed from an MR coronal slice.

to the patient and inserted into the numerical breast model at the
appropriate location. To further model anatomical heterogeneity of
the biological tissue, we introduce random perturbations of +/− 10%
around the dielectric property values for the tissue types. The relative
permittivity profiles of models 4 and 5 are shown in Fig. 7 and illustrate
the anatomically realistic variations of the dielectric properties which
have been derived from the MR scans of two different patients. For
model 4, the actual skin thickness varies from 1.71 to 3.00mm and
the mean thickness is 2.12mm; the spatial average of the dielectric
properties over the skin region are εr1 = 36.2 σ1 = 3.99 S/m; and the
spatial average of the dielectric properties over the adipose region are
εr2 = 9.61, σ2 = 0.33 S/m. For model 5, the actual skin thickness varies
from 1.91 to 2.54mm and the mean thickness is 2.23mm; the spatial
average of the dielectric properties over the skin region are εr1 = 36.05
σ1 = 4.01 S/m; and the spatial average of the dielectric properties over
the adipose region are εr2 = 10.11, σ2 = 0.46 S/m.

Simulations with the FDTD method are used to generate test
data. In these examples, the FDTD problem space is bounded by a
five-cell thick perfectly matched layer (PML) (4th order, R(0) = 10−7),
and consists of 160× 168 cells with spatial grid resolution of 1mm. A
source and sensor are co-located 10 mm from the outer skin surface of
the model. Both the breast and source/sensor are immersed in free
space. The source and sensor are sequentially positioned to 40 equally
spaced locations around the breast and simulations are performed at
each location. An impressed current source is used in these TMZ

simulations. The number of samples is N = 4000, and the sample time
is TS = 2.12 ps.
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The multi-frequency strategy is used to estimate the locations
of the fat and glandular regions in breast model 4. Therefore, two
sets of data are collected. First, the breast is illuminated with an
UWB differentiated Gaussian pulse having a −3 dB bandwidth (BW)
of 4.62GHz (1.62–6.24 GHz). The maximum frequency fmax of the
pulse is 8.6GHz. A second set of data are collected when the breast
is illuminated with a differentiated Gaussian pulse with a −3 dB
bandwidth of 2.57GHz (0.92–3.49 GHz) and fmax is 4.8 GHz. Data
recorded by the sensors are conditioned so that the transmitted signal
is removed from each reflection. The data are then normalized to the
reflected signal’s maximum positive value. Similar to the first part of
this study, the data are contaminated with 20 dB of white Gaussian
noise.

For this example, two reference signals are acquired using a 3 mm
slab with εr1 = 37.8, σ1 = 4.2 S/m. We justify using two different
reference signals since the breast skin thickness is typically between
0.7 and 2.3mm [24]. One set of reference signals is acquired when
a 3 mm homogeneous dielectric slab is illuminated with the 4.62 GHz
BW signal. The second set of reference signals are acquired when the
slab is illuminated with the 2.57GHz BW signal.

The skin thickness is evaluated using the data and reference signals
with higher frequency components and the skin-to-region 3 distances
are evaluated using the data and reference signals with lower frequency
components. Using this approach, the thickness of the skin layer has an
average error of 0.07 mm (or an average relative error of 3.3%), which
is in agreement with the skin thickness estimation results presented in
Subsubsection 3.3.3. That is, the algorithm is able to estimate the skin
thickness accurately independent of the shape and internal structure
of the breast.

The contour samples for Γ23 estimated from the skin thickness
and skin-to-region 3 distance are superimposed on model 4 in Fig. 8.
We observe that the method estimates locations that typically lie on
or near the boundary between fatty and glandular tissues. Therefore,
it appears that the method is able to extract general spatial features
of the contour. However, the algorithm is unable to extract detailed
features associated with small spatial oscillations of the contour
(e.g., concave regions). Nevertheless, the result is of practical
importance since the points may be used to form parametric models of
the contour that segregate regions of the breast dominated by adipose
and fibroglandular tissue.

For comparison, the Γ23 contour samples are evaluated without the
multi-frequency approach for model 5. That is, similar to Section 3, the
estimation procedure is carried out using only a single set of reference
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signals and data generated when using the 4.62 GHz BW excitation
signal. Furthermore, we use the inverse tomographic method outlined
in [25] to estimate the spatial average dielectric properties used in (2)
over the skin and adipose regions. Specifically, the average relative
permittivity evaluated over the skin and adipose regions are 36.90 and
8.63, respectively. The thickness of the skin layer has an average
error of −0.05mm (or an average relative error of −2.24%). The
plot of the contour samples for this case is shown in Fig. 9. We
observe that the results obtained using the single excitation approach
are comparable to those obtained using multi-frequency strategy, i.e.,
the method is able to extract general spatial features of the contour.
Regardless of the highly heterogeneous nature and complex shape of
the fibroglandular region and the presence of isolated fibroglandular
scatterers within the adipose region, the results support the feasibility
of using the reflection data to extract information about the breast’s
internal structure. Furthermore, the results imply that the algorithm is
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Figure 8. Contour samples (dots) evaluated for contour Γ23 of model
4 when the algorithm uses a two different reference signals constructed
from the reflections off of a dielectric 3 mm slab with εr = 37.8,
σ = 4.2 S/m. Two sets of reference signals are acquired to implement
the multi-frequency approach. One set of reference signals is acquired
when a 3 mm homogeneous dielectric slab is illuminated with the
4.62GHz BWsignal and a second set of reference signals are acquired
when the slab is illuminated with the 2.57 GHz BW signal.
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robust to uncertainty in knowledge of the average relative permittivity
of the skin and adipose regions. The contour samples indicate that
general regional features are extracted from the EM reflection data to
allow the identification of the skin, adipose, and fibroglandular regions
that dominate the object’s underlying structure.

We anticipate that the advantages of using the multi-frequency
approach may be fully realized when penetrating through tissues that
have a greater conductivity than adipose tissue. For example, if there
is a requirement to extract further contour shape information within
higher loss region 3 (e.g., evaluate samples on a contour that enclose
a tumor), then the use of the lower frequency excitation signals may
assist to accomplish this. Likewise, the multi-frequency approach may
also provide superior results over the single excitation signal approach
if an excitation with a higher frequency content than used for this
example is required. Finally, a possible third scenario in which the
multi-frequency approach may be used is if the region of interest is
small and a great distance from many of the sensors.

As indicated in the introduction, microwave tomography
approaches (e.g., [9–11]) including the shape-optimization techniques
(e.g., [12–17]) attempt to solve an inverse scattering problem that
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Figure 9. Contour samples (dots) evaluated for contour Γ23 of model 5
when the algorithm uses a two different reference signals constructed
from the reflections off of a dielectric 3 mm slab with εr = 37.5,
σ = 4.2 S/m. Only one set of reference signals is acquired when a
3mm homogeneous dielectric slab is illuminated with the 4.62 GHz
BW.
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is severely ill-posed and non-linear. The technique presented in this
paper provides a direct, fast and efficient means to exploit information
contained in the backscattered field data to help remedy these
mathematical challenges. For example, the tomography techniques
may be initialized with estimates of the locations and shapes of the
contours evaluated from the reflection data, such as the information
presented in Figs. 4, 6, 8 or 9. This a priori information may be used
to improve the convergence behavior of these iterative reconstruction
techniques (e.g., reduce the number of steps required to converge). The
quality of the shape and dielectric property reconstructions may also
be improved since this information may limit the risk of being trapped
in false solutions which arise when solving the optimization problem.
In a general setting, practical implementation of this integration (i.e.,
collecting the UWB reflection measurements to extract the contour
samples and collecting the transmission measurements for tomography)
may be achieved using an UWB measurement system described in [16],
or [26, 27]. The UWB sensor and measurement system used for a
patient study described in [22, 28], respectively, offer a practical means
to integrate the radar and tomographic approaches for breast imaging.
Furthermore, for the multi-scaling procedures indicated in [12–14], the
contours estimated by this algorithm may be used identify a region of
interest where unknown scatterers are found to be located. With this
region of interest identified, the spatial resolution may be enhanced
within this region.

5. CONCLUSION

We presented an adapted reflection decomposition algorithm that
incorporates a priori information about an object, as well as data
collected over different frequency bands. This algorithm was shown to
estimate the location of interfaces with mismatches between the models
used to generate data and reference signals, as well as in models with
complex shapes.

For microwave breast imaging applications, a priori information
was shown to improve the estimation of the skin response. This
information may be used by radar approaches to subtract the
skin response from the early-time scattered fields. Furthermore,
information related to the adipose/fibroglandular interface may be
used to reduce clutter contained in the reflection data.

We have also presented an estimation technique that provides a
direct and quick means to evaluate a sequence of points on a contour
separating regions of dissimilar dielectric properties. The points may
be collectively used to extract spatial features of the contour in order
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to infer an object’s internal structure. It is observed that the algorithm
is unable to extract features associated with small oscillations of the
contour. Instead, more general information about the contour’s shape
is provided. As microwave imaging is a low resolution technique, this
general information is practically useful.

The sequence of contour points may be used to construct a
parametric model of the contour which may be incorporated into a
radar-based or microwave tomography algorithm to provide a priori
information about an object’s internal structure. We note that for this
investigation we assume a priori knowledge of the spatial average of
the breast and adipose regions. This assumption may be relaxed when
the algorithm is incorporated into a microwave tomography algorithm
to generalize the method.
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