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Abstract—Efficiency often constitutes the main goal in the design
of a power system because the minimization of power losses in the
magnetic components implies better and safer working conditions. The
primary source of losses in a magnetic power component is usually
associated with the current driven by the wire, which ranges from
low to medium frequencies. New power system tendencies involve
increasing working frequencies in order to reduce the size of devices,
thus reducing costs. However, optimal design procedures involve
increasingly complex solutions for improving system performance. For
instance, using litz-type multi-stranded wires which have an internal
structure to uniformly share the current between electrically equivalent
strands, reducing the total power losses in the windings. The power
losses in multi-stranded wires are generally classified into conduction
losses and proximity losses due to currents induced by a magnetic field
external to the strand. Both sources of loss have usually been analyzed
independently, assuming certain conditions in order to simplify the
derivation of expressions for calculating the correct values. In this
paper, a unified analysis is performed given that both power losses
are originated by the electromagnetic fields arising from external
sources where the wire is immersed applying the decomposition into
transversal magnetic (TM) and transversal electric (TE) components.
The classical power losses, the so called conduction and proximity
losses, can be calculated considering the TM modes under certain
conditions. In addition, a new proximity loss contribution emerges
from the TE modes under similar conditions.
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1. INTRODUCTION

Many models have been developed over the years to calculate power
losses produced in windings in order to optimize magnetic power
components, such as transformers and inductors. Early results were
obtained from analytical models assuming certain conditions in order
to simplify the problem. Power loss expressions considering straight
cylindrical wires are provided in [1] for different excitations associated
with different kinds of power losses. For instance, conduction power
losses are associated with an axial electric field whereas proximity
losses are related with an external transversal magnetic field. This
book provides analytical solutions for simplified systems based on
Bessel functions arising from their rotational symmetry. Reviews of
several techniques employed in the estimation of power losses in the
wires of transformers and inductors are provided in [2–4] with concise
evaluations being made by comparison. The method described in [5] is
widely used in the design of foil transformers because the power losses
are derived from a simplified 1-D modeling of the electromagnetic field,
considerably reducing the geometrical complexity and consequently
simplifying the numerical calculation. This paper constitutes the basis
of a large number of subsequent works [6, 7], but assuming restrictive
approximations.

In more recent years, preferred solutions have involved the
calculation of the electromagnetic fields of systems by means of
analytical or numerical calculations with the power losses being
subsequently derived in a straightforward manner from the analytical
expressions. The basic structure of typical wires used in high frequency
power applications are packed bundles of many small circular cross-
section strands made of a good conductor, for instance, copper or
aluminum. Multi-stranded wires can be classified depending on the
braid of the construction as twisted multi-stranded wires, with the
strands occupying a constant distance to the wire axis [8], and litz-type
wire, with strands exhibiting radial and azimuthal transposition [9].

The losses in each strand can be analytically calculated by means
of two-dimensional equations obtained for a simplified geometry of
a straight homogeneous cylinder immersed in a uniform field. This
approach has been followed by many authors arriving at expressions
based on Bessel functions which are applied to calculate the losses
in litz-wires, as may be seen in [10–16]. It should be noted that the
solution can be achieved either by considering physical external field
excitations [17, 18], or from a Helmholtz potential point of view [19, 20].
Alternatively, simpler expressions can be obtained neglecting the
influence of the strand induced currents over the external fields, in
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other words, the electromagnetic field is not distorted by the presence
of the strand. Equivalently, in the latter case, a low-frequency approach
is assumed with respect to the previous methodology, as followed
in [21–23].

The expressions given in the preceding papers include the
electromagnetic fields obtained either by means of analytical
techniques [24, 25], or by using numerical methods, in particular
methods based on finite elements [23–31].

Litz-wires generally consist of a large number of small size
strands, thus the effect of an individual strand in the electromagnetic
behavior of the system can be neglected because the fields are slightly
distorted. However, their effects are included by addition of the
power loss contribution in the equivalent resistance of the device.
Moreover, the electromagnetic field where the strand is immersed can
be considered external to the strand due to the sources being outside
its cylindrical volume. As a consequence, the well-know decomposition
into TM and TE components with respect to an arbitrary axis can be
applied, as is given in [32–37], to split the external field along the
longitudinal axis of the strand. Each component of the decomposition
individually contributes to the total power losses induced in the
cylindrical conductor, as appears for the TM modes in [38] and for
the TE modes in [39]. In this paper, the classical contributions to
power losses, namely proximity and conduction losses, are associated
with the zeroth and first order TM modes, whereas the zeroth order
TE mode concerns the proximity effect due to an external longitudinal
magnetic field.

2. LOSS MODELING IN CYLINDRICAL STRANDS

The internal structure of a multi-stranded wire consists of n0

cylindrical strands of circular cross-section made of a material with
high electrical conductivity, usually copper or aluminum. Magnetic
materials are not suitable for building wires due to the increase in
power losses. Generally, the strands are braided in a litz-wire structure
in order to minimize the total power losses. This is because such
structure, shown in Figure 1, produces greater equivalence between
strands and therefore the strands tend to carry the same current.

The analysis of power losses is performed assuming the following
conditions. In the first place, a single strand model is developed
in order to simplify the treatment. The strand to be analyzed is a
straight cylinder of infinite length immersed in the external field. The
effect of the strand curvature is therefore neglected. The analysis can
be extended to multi-stranded systems by applying the equivalence
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Figure 1. Structure of the litz-wire showing the trajectory of a strand
with a characteristic length λc.

between strands. Second, the power losses arise from the external
electromagnetic field which model the effect of the remainder of the
system where the strand is placed. The strand is therefore assumed to
be inside a volume with no field sources, thus the effects of the fields
are decoupled from their sources. The decomposition into TM and TE
components of the fields is assumed to obtain the complete description
of the external field. The longitudinal direction of the strand ẑ is chosen
to perform this decomposition. Moreover, the magneto-quasistatic
approach is assumed to simplify the analysis because the radiation
contribution is slight with respect to the diffusion effects of the field
inside the conductor [40], or, equivalently, the displacement current Jd

in the system is negligible compared to the induced currents Jc in the
strand at the working frequencies of the power devices ranging from dc
to several MHz. Finally, the power losses are associated with induced
current in the strands because the hysteresis effects can be neglected
in the media with permeability values close to vacuum permeability
µ0, as occurs for copper or aluminum.

The TM-TE decomposition of the electromagnetic field in the free
space where the strand is immersed is performed by means of the
longitudinal components E0

z (r) and H0
z (r), respectively, which can be

expanded in a Taylor series with respect to the reference position ri,
as is shown as follows:

E0
z (r) =

∞∑

n=0

1
n!

(
r′ · ∇)n

E0
z (ri) (TM modes), (1)

H0
z (r) =

∞∑

i=0

1
n!

(
r′ · ∇)n

H0
z (ri) (TE modes), (2)

where r′ is defined as r− ri.
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The terms of the expansion applied to the longitudinal electric
field E0

z (r), in (1) are:

E0
z (r) = E0

z (ri) +
(
r′ · ∇)

E0
z (ri) + . . . , (3)

where the operator ∇ may be divided into transversal ∇t and
longitudinal ẑ∂z components [42], where the transversal component ∇t

can be expressed in the appropriate coordinate framework, for instance,
a rectangular or polar coordinate system. Furthermore, the spatial
vector r′ is decomposed into the transversal t′ and the longitudinal z′
vectors. Consequently, we obtain that (3) can be rewritten as:

E0
z (r) = E0

z (ri) +
(
t′ · ∇t

)
E0

z (ri) + z′ · ∂zE
0
z (ri) + . . . (4)

The first term in (4) is a uniform longitudinal electric field E0
z (ri)ẑ

constituting the main source of the conduction losses in the strands
because the conduction current density Jc equal to σE0

z (ri)ẑ dissipates
energy. The surface integral of Jc in the cross-section area is the current
I0 carried by the strand.

The second term in (4) is an anti-symmetric electric field with
respect to the plane at the position ri with normal directed along the
transversal gradient of the electric field. This contribution is associated
with a uniform transversal magnetic field H0

t (r), which is therefore the
source of the classical proximity losses. The relationship between the
term (t′ ·∇t)E0

z (ri)ẑ and H0
t (r) can be carried out applying Maxwell’s

equation:
∇×E(r, t) = −∂tB(r, t). (5)

In the preceding expression, the electric field E(r) and the
magnetic induction field B(r) are equal to (t′ ·∇t)E0

z (ri)ẑ and µ0H0
t (r),

respectively. Moreover, the operator ∂t is replaced by the operator jω
because the harmonic approach will be implicitly applied, assuming
ejωt time dependence. As a result, we obtain the following relationship:

∇× (
ẑ

(
t′ · ∇t

)
Ez(ri)

)
= −jωµ0H0

t (r). (6)

Rearranging the preceding expression, we have:

−ẑ×∇t

((
t′ · ∇t

)
Ez(ri)

)
= −jωµ0H0

t (r). (7)

Performing the vector product by the unitary vector ẑ and
afterwards applying the scalar product by the vector t̂ in both sides of
the equation, the following equivalence is obtained:(

t′ · ∇t

)
Ez(ri) = −jωµ0

(
ẑ×H0

t (r)
) · t′. (8)

Consequently, the second term in (4) can be evaluated in a
straightforward manner including the uniform transversal magnetic
field H0

t (r) in (8).
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The last term shown in (4) concerns the longitudinal first order
variation of the longitudinal electric field related with the electric
charge density in the strand, modifying the current density along the
wire, but without associated current densities constituting new power
loss sources. A further analysis can be performed considering higher
order terms, but the results would be beyond the scope of this paper.
In conclusion, the zeroth and first order TM modes originated the
classical behavior for the conduction resistance and proximity losses
due to the uniform longitudinal electric field E0

z (ri)ẑ and transversal
magnetic field H0

t (r), respectively.
The complete decomposition of the external electromagnetic field

is given by the TM-TE decomposition. The power losses in the strands
are typically accounted for considering TM modes only, but TE modes
are included in order to achieve a complete description of the power
losses. The zeroth term in (2) is a uniform longitudinal magnetic
field H0

z (ri)ẑ. Higher order terms can be neglected because their
contribution to the losses is slight. Note that the zeroth order TE
mode constitutes a new proximity loss source.

3. ANALYTICAL EXPRESSIONS OF POWER LOSSES

The power loss expressions can be obtained starting with the governing
equation applied to the corresponding transversal representation of
the external field. The cylindrical coordinate system formulation is
employed to work out the solution due to the geometrical symmetry
of the single strand system.

TM mode fields obey the following scalar equation [38]:

∇2Ez(r)− jωµσEz(r) = 0, (9)

being µ and σ, the magnetic permeability and electric conductivity
of the different media, respectively. Moreover, the magneto-
quasistatic approach [40] has been applied because the radiation can
be neglected with respect to the induced current effects, obtaining an
electromagnetic diffusion equation [41]. The solution should be worked
out applying the boundary condition for the electric and magnetic field
at the surface of the strand and, additionally, the far away fields must
converge to the considered external field term. The general solution is
based on Bessel and trigonometric functions [42].

Considering the zeroth order term of (4), by solving (9), we
obtain [1]:

Ez(r) =
J0 ((j − 1)ρ/δ)
J0 ((j − 1)r0/δ)

E0
z (ri) ρ ≤ r0, (10)
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and
Ez(r) = E0

z (ri) ρ > r0, (11)

where δ is the strand penetration depth defined as
√

2/(ωµσ), and ρ is
the radial distance with respect to the position ri located at the center
of the strand. Note that the external uniform field is constant in the
medium surrounding the strand, but its amplitude diminishes when it
penetrates inside the conductive media.

The first order TM term associated with the second term in (4)
obeys the following solution [19]:

Ez (r) = 2
1− j

σδ

J1 ((j − 1) ρ/δ)
J0 ((j − 1) ρ/δ)

sin (ϕ− ϕ0) H0
t ρ ≤ r0, (12)

and

Ez(r)=
[
2
1−j

σδ

J1((j−1)ρ/δ)
J0((j − 1)ρ/δ)

r0

ρ
+jωµ0

(
ρ− r2

0

ρ

)]
sin(ϕ− ϕ0)H0

t

ρ > r0, (13)
where H0

t is the magnitude of the transversal magnetic field H0
t (ri) and

ϕ0 is the azimuthal coordinate ϕ of the vector ẑ×H0
t (ri) expressed in

the cylindrical reference system. The magnetic field is influenced by
the induced currents in the vicinity of the strand.

Both power loss contributions can be associated with resistive loss
terms arising from the current densities due to the internal electric
field Ez(r) in (10) and (12) for the conduction and proximity losses,
respectively. These resistive contributions are analyzed as follows. It
should be noted that the reference coordinate ri has been chosen in
such a way as to avoid the contribution of the second term in (4) to the
total current carried by the strand. Thus, the conduction resistance
can be calculated from the ratio between the voltage per unit of length
equal to E0

z (ri) and the current I0 carried by the strand. Integrating
the current density σE0

z (ri)ẑ flowing through the cross-section area,
we obtain the current I0 driven by the cylinder [19]:

I0 =
2πr0δσJ1 ((j − 1)r0/δ)
(j − 1)J0 ((j − 1)r0/δ)

E0
z (ri). (14)

The conduction resistance per unit length Rcond, u.l. is defined as
the real part of the ratio between the voltage per unit length, given by
the amplitude of E0

z (ri), and the current I0, hence:

Rcond, u.l. =
1

πr2
0σ

Φcond(r0/δ), (15)

where the factor Φcond(r0/δ) is defined as:

Φcond(r0/δ) = <e

(
(j − 1)

r0

δ

J0 ((j − 1)r0/δ)
J1 ((j − 1)r0/δ)

)
, (16)
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Figure 2. Representation of conduction and proximity factor
depending on the ratio r0/δ between the radius of the strand and the
penetration depth. (a) Φcond(r0/δ). (b) Φlow

prox(r0/δ).

Note that (15), which is depicted in Figure 2(a), includes the skin
effect accounted by the factor Φcond(r0/δ) depending on the ratio r0/δ.

The second term in (4) originates the classical proximity power
losses in the strand which may be evaluated by integrating the density
factor 1

2E · J∗, where E is provided in (12), obtaining the losses per
unit length of the strand due to a transversal magnetic field [19]:

Pprox t, u.l. =
2π

δ
Φprox(r0/δ)

∣∣H0
t

∣∣2 , (17)

where |H0
t | is the amplitude of the external magnetic field H0

t (ri). The
factor Φprox(r0/δ), shown in Figure 2(b), is provided by many authors
in a form depending on Kelvin functions, as it appears in [1, 43], but
the mathematical equivalent expression given in [27, 29] is preferred
because it is more compact, as can be seen as follows:

Φprox(r0/δ) = <e

(
j
(r0

δ

)2 J2 ((j − 1)r0/δ)
J0 ((j − 1)r0/δ)

)
, (18)

In many cases, the external magnetic field arises from a certain
well defined current amplitude I, for instance, in magnetic devices for
power applications immersed in the self-magnetic field. Consequently,
we are able to define the proximity resistance per unit length by means
of the relationship Pprox t, u.l. = 1

2Rprox t, u.l.I
2:

Rprox t, u.l. =
4π

δ
Φprox(r0/δ)H̄2

t , (19)

where H̄t is the normalized amplitude of the external transversal
magnetic field |H0

t | divided by the total current I carried by the n0

strands of the system.
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The zeroth order TE mode in (2) is associated with a uniform
longitudinal magnetic field H0

z . TE modes are governed by the
corresponding scalar equation with the structure of (9) substituting
Ez by Hz. In this case, the first TE term solution has the following
form [39]:

Hz(r) =
1
σ

J0 ((j − 1)ρ/δ)
J0 ((j − 1)r0/δ)

H0
z (ri) ρ ≤ r0, (20)

and
Hz(r) = H0

z (ri) ρ > r0. (21)

The longitudinal magnetic field of the preceding equation can be
associated with a transversal electric field inside the conductor by
means of the identity E(r) = 1

σ ẑ×∇Hz(r) derived from the Maxwell’s
equations under the magneto-quasistatic approach ∇ ×H(r) = J(r),
where the current density is σE(r). Thus, we have:

E(r) =
j − 1
σδ

J1 ((j − 1)ρ/δ)
J0 ((j − 1)r0/δ)

H0
z (ri)ϕ̂ ρ ≤ r0, (22)

The additional TE mode contribution Pprox z, u.l. to the proximity
power losses due to a uniform longitudinal external magnetic field
H0

z (ri) can also be obtained integrating the factor E· 12J∗ in the volume
of the unit length of the strand. Afterwards, the proximity resistance
due to a longitudinal magnetic field Rprox z, u.l. is obtained:

Rprox z, u.l. =
2π

σ
Φprox(r0/δ)H̄2

z , (23)

where H̄z is the normalized amplitude of the external longitudinal
magnetic field |H0

z (ri)| divided by the total current I carried by the
system.

According to (19) and (23), proximity power losses due to
transversal or longitudinal magnetic fields are characterized by the
following aspects. The frequency dependence of the proximity
resistance is accounted for by the ratio r0/δ. The dependence functions
are the same Φprox(r0/δ) for either transversal or longitudinal magnetic
fields. The proximity power losses for a transversal magnetic field
doubles the proximity power losses for a longitudinal magnetic field
of equal amplitude and frequency acting in a given strand, thus,
2Rprox z, u.l. = Rprox t, u.l. because the induced current densities in both
cases are related by a 2 sin(ϕ − ϕ0) factor. Moreover, owing to the
orthogonality between the sources, the total proximity resistance can
be calculated by the addition of the two contributions.
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4. LOW- AND HIGH-FREQUENCY ANALYSIS

In many cases, it is worth obtaining simplified expressions that
approach the exact function to evaluate the power losses based on
extreme behavior of the system. The losses in the strand can be
approached taking into account the dependence with respect to the
frequency of the excitation, being possible to distinguish between the
low frequency and the high frequency limit as is pointed out in [46] for
different strand geometries.

In the low frequency limit, the power losses are due to the
external electromagnetic field disregarding the distortion introduced
by the induced currents in the conductive medium. Note that the low
frequency range is equivalent to small values of the ratio r0/δ because
the penetration depth of the strand δ has large values.

The conduction losses can be obtained considering a uniform
longitudinal electric field E0

z ẑ equal to (−V/l)ẑ. In this case, the
current density carried by the strand is σE0

z ẑ uniformly distributed in
the cross-section area, consequently the total current I0 equals πr2

0σE0.
Finally, the conduction resistance per unit length is obtained dividing
the electromotive force into the total current, obtaining the well known
dc conduction resistance per unit length Rlow

cond u.l. expressed as follows:

Rlow
cond u.l. =

1
πr2

0σ
. (24)

The previous result is equivalent to including the low frequency
conduction factor Φlow

cond(r0/δ) equal to one in (16).
The non-distorted electric field associated with an external

transversal magnetic field H0
t (ri) can be derived from (22) as:

EH0
t
(r) = jωµ0ρ sin(ϕ− ϕ0)H0

t ẑ. (25)

Therefore, the proximity losses arising from the preceding electric
field can be calculated by integrating the power loss, thus:

P low
prox, u.l. = πω2µ2

0σr4
0H̄

2
t . (26)

Rearranging the expression and applying the equivalence to the
equivalent resistance, we obtain:

Rlow
prox t, u.l. =

4π

σ
Φlow

prox(r0/δ)H̄2
t , (27)

where we have:
Φlow

prox(r0/δ) =
1
4

(r0

δ

)4
, (28)

The values of Φlow
cond(r0/δ) and Φlow

prox(r0/δ) can also be obtained
applying the small argument values to the complete functions shown
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in (16) and (18), respectively, assuming the identity Jn(z) ∼=
1
n!(

z
2)n [47].
On the other hand, the high frequency limit power losses concern

surface currents because electromagnetic fields exponentially decay
inside the conductor for low values of δ with respect to the radius
r0, as is shown in [44, 45] for a flat half-space surface. Therefore, for a
strand immersed in a uniform electric field E0

z (ri)ẑ, we have:

E(r) = E0
z (ri)e−

1+j
δ

∆ẑ, (29)

where ∆ is the distance to the strand surface equal to R0 − ρ. The
current density Jc can be approached by a surface current density Kc

provided by the following expression:

Kc
∼=

∫ ∞

0
σE0

z (ri)e−
1+j

δ
∆d∆ẑ, (30)

hence:
Kc

∼= σδ

1 + j
E0

z (ri)ẑ. (31)

As a result, the current I0 carried by the strand is equal to:

I0
∼= 2πr0

σδ

1 + j
E0

z (ri). (32)

Considering that E0
z (ri) is −V/l, and applying the identity R =

<e(V/I), we have:

Rhigh
cond, u.l.

∼= 1
2πr0σδ

. (33)

In conclusion, we obtain the expression:

Φhigh
cond, u.l.(r0/δ) =

1
2

r0

δ
. (34)

The factor Φhigh
prox, u.l. can be easily obtained starting with the

configuration of the strand immersed in a uniform longitudinal
magnetic field H0

z (ri) because the field is not distorted by the induced
currents in the conductor. Additionally, considering the azimuthal
electric field inside the strand with a dependence shown in (22)
associated with a surface current similar to (31), together with the fact
that the magnetic field vanishes inside the conductor, it is possible to
define the so called impedance boundary condition [48–50] establishing
the relationship between the tangential magnetic and electric field in
the surface of the strand. In this case, it should be noted that both the
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longitudinal electric field and the azimuthal electric field are tangential
to the surface, thus:

Z0 =
Eϕ(r0)
H0

z (ri)
=

1 + j

σδ
. (35)

The electric field inside the strand also decays exponentially, as
shown in (19). Consequently, the high frequency approach of the
proximity power losses per surface unit P high

prox z, u.s. can be calculated by
integrating the dissipated power density 1

2E · J∗ where the azimuthal
electric field at the surface of the strand Eϕ(r0) is 1+j

σδ H0
z (ri). Thus,

we have:

P high
prox z, u.s. =

1
2

∫ ∞

0

∣∣H0
z (ri)

∣∣2
σδ2

e−
2∆
δ d∆. (36)

Integrating the above expression and multiplying by 2πr0 to
calculate the power losses per unit length, we have:

P high
prox z, u.l. =

2π

σ

r0

δ

∣∣H0
z (ri)

∣∣2. (37)

As a result, the proximity factor at high frequencies is given by:

Φhigh
prox(r0/δ) =

r0

δ
. (38)

It should be noted that the expression for Φhigh
cond(r0/δ) and

Φhigh
prox(r0/δ) can be derived from (16) and (18), respectively, considering

the approximation for large argument values of the Bessel functions
Jn(z) ∼=

√
2/(πz) cos(z − 1

2nz − 1
4π) [47].

Figures 3(a) and 3(b) show the low- and high-frequency
approaches compared with the complete expressions, respectively. The
low frequency approach is accurate for the ratio up to one unit, whereas
the high frequency approach can be used for ratios above several units.

5. EXPERIMENTAL VERIFICATION

The usefulness of the preceding expressions will be proven by being
applied in a practical example consisting of the resistance calculation
of a coil made with multi-stranded litz-wire. Two configurations
are considered: first, an isolated coil placed in air and, second, a
coil located above a magnetic flux concentrator which modifies the
electromagnetic field, resulting in different resistance values. The total
resistance is calculated by the addition of the different sources of power
losses. Note that the ferrite layer acts as a current mirror increasing
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Figure 3. Comparison between complete expressions of conduction
and proximity factors with respect to the low and high frequency
approaches. (a) Φcond(r0/δ). (b) Φprox(r0/δ).
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Figure 4. Geometrical structure of the two coil configurations
experimentally measured. (a) Coil in air. (b) Coil above magnetic
medium.

the magnetic field where the coil is immersed. As a consequence, the
proximity losses increase.

The measurements have been performed for a ring-type coil of n
turns of wire composed of n0 strands with a radius r0 evenly distributed
in the cross-section area of the coil.

The geometrical characteristics of the circular coil are defined by
the internal radius rint, the external radius rext, and the height h, as
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shown in Figure 4(a). The coil is modeled as a uniform current density
distribution due to the strand radius r0 and the distance between the
strands being smaller than the coil dimension. As a consequence,
an ideal coil placed in air can be electrically characterized by its
own frequency-independent inductance L. The total resistance of this
type of device is taken into account by the addition of the equivalent
resistances associated with the conduction Rcond and proximity power
losses Rprox in the winding.

Moreover, the second configuration is built adding a magnetic half-
space placed below the coil at a distance df , as depicted in Figure 4(b).

The conduction losses are associated with a conduction resistance
value Rcond calculated considering that the strands in the bundle are
connected in parallel. Consequently, the expression for Rcond is the wire
length nπ(rext− rint) multiplied by the conduction resistance Rcond u.l.

per unit length of the strands and divided by the number of strands
n0, as is expressed as follows [19]:

Rcond =
1

r2
0σ

n

n0
Φcond(r0/δ)(rext − rint). (39)

On the other hand, the proximity resistance Rprox is calculated by
the addition of the losses arising from the external magnetic field acting
over each strand. Note that the proximity losses are only originated by
the transversal magnetic field because the longitudinal magnetic field
is null due to the geometrical symmetry of the system. Consequently,
the expression for the proximity resistivity is given by [19]:

Rprox =
8π2

σ
nn0Φprox(r0/δ)

〈
r · H̄2

0

〉
, (40)

where ρ is the radial coordinate with respect to the coil axis and 〈ρ·H̄2
0 〉

is the coil cross-section mean value of the product between ρ and H̄2
0 .

Note that the proximity losses depend on the square of the transversal
magnetic field along the strands.

The configuration measured in Figure 4(a) is a toroidal coil with
internal radius rint of 21.5 mm, external radius rext of 29mm and
height h of 4mm. The coil is made winding 24 turns of litz-wire
composed of 35 strands of radius r0 equal to 75µm of copper with
electric conductivity σ at room temperature of 5.8 · 107 S/m. On the
other hand, in Figure 4(b), the configuration consists of the preceding
coil placed above a magnetic half-space at a distance df of 1 mm which
is made of a high-magnetic ferrite with relative magnetic permeability
µr of 2000.

The measurements have been performed by means of a precision
LCR-meter Agilent E4940A at frequencies ranging from 1 kHz to
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Figure 5. Experimental measurements and numerical results for a 24
turn coil in air and placed above a ferrite layer. Conduction resistances
are also represented and the additional resistance is associated with
proximity losses. (a) Coil in air. (b) Coil above ferrite layer.

1MHz. Note that each frequency is associated with a penetration
depth δ value of the strand. The output data is the equivalent
impedance provided in equivalent resistance and inductance terms.
Basically, the inductance depends on the system geometry having a
weak relation with the internal structure of the wire. The inductance
is almost constant in the overall frequency range in both cases, but is
higher for the second configuration due to the presence of the magnetic
layer. On the other hand, the resistance is due to the power losses in
the winding because the dissipation in the remaining components of
the system is negligible. Thus, the total resistance equals the sum of
the conduction resistance Rcond and the proximity resistance Rprox.

Figures 5(a) and 5(b) show a good agreement between the
experimental results and the numerical based values calculated with
the addition of the conduction resistance obtained applying (39)
and the proximity resistance from (40). In both cases, at the low
frequency range, the conduction losses dominate. As a result, the
value of the total resistance is essentially constant and no influence
of the flux concentrator is observed because the conduction losses are
independent of the magnetic field. On the other hand, at the high
frequency range, the measured resistance is almost totally originated
by the proximity losses. Thus, the total resistance greatly depends
on the frequency and, additionally, the resistance is modified by the
flux concentrator. Considering the previous analysis, the conduction
resistance Rcond is almost constant in the whole frequency range,
whereas the proximity resistance Rprox becomes the most important
contribution above several tens of kHz.
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6. CONCLUSION

The power losses in the winding of magnetic devices used in power
systems made with multi-stranded litz-wire are analyzed in depth
in this paper. A unified approach is developed for the different
types of losses, either conduction or proximity losses. Moreover,
external electromagnetic fields are considered as the sources modeling
the effects of the complete system in the winding. The external
electromagnetic field is decomposed into transversal magnetic TM and
transversal electric TE components along the direction of the wire.
The traditional power losses in the winding, called conduction and
proximity losses, have been associated with a uniform longitudinal
electric field and a transversal magnetic field, respectively. In this
paper the relationship with the zeroth and first order TM modes
have been established in order to achieve a unified analysis of the
loss contributions. Additionally, the proximity losses due to the
longitudinal magnetic field have been included by the action of the
zeroth order TE mode. Both proximity loss contributions possess
similar analytical expressions except for a proportional factor doubling
the effect of the transversal magnetic field H0

t (ri) with respect to the
longitudinal magnetic field H0

z (ri)ẑ.
It is worth noting that the power losses in the winding are always

related with the electric field of the analyzed mode because the losses
are due to the electric currents in the strands. As a consequence,
the external field originating the power losses in the winding can be
substituted by an impressed current equivalent to the product between
the conductivity of the strand and the electric field of the considered
mode. As a result, the power losses can be easily evaluated. It should
be noted that the evaluation at high frequencies includes the effect of
the field distortion due to the conduction of the strand.

The analysis of power losses can be simplified taking into account
the behavior of the system depending on the excitation frequency,
which can be divided into a low- and high-frequency range depending
on the value of the ratio r0/δ. The low frequency ranges from dc to
frequencies where r0/δ is up to one unit, whereas at the high frequency
limit r0/δ is above several units. On the one hand, in the low frequency
approach the external field is not distorted by the strand. On the
other hand, in the high frequency approach the current densities in
the strand become surface currents and the surface electric field and
magnetic fields can be related by means of the so called impedance
boundary conditions. It should be noted that simple expressions of
power losses can be easily derived with an extended range of validity.
Moreover, these approaches allow further analysis of more complex
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cross-section strand geometries where it is impractical to obtain exact
analytical expressions.

Finally, the expressions obtained have been experimentally verified
for two simple coil systems. The cases considered exhibit a high
symmetric configuration, and therefore the power losses are only due to
the TM modes. However, the power losses in less symmetric systems,
for instance transformers or inductors used in commercial domestic
heaters, should be accounted for by considering the additional TE
contribution originated by the longitudinal magnetic field H0

z (ri)ẑ.
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