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Abstract—Magnetic induction tomography (MIT) attempts to image
the passive electromagnetic properties (PEP) of an object by
measuring the mutual inductances between pairs of coils placed
around its periphery. In recent years, there has been an increase in
applications of non-contact magnetic induction tomography. When
finite element-based reconstruction methods are used, that rely on
the inversion of a derivative operator, the large size of the Jacobian
matrix poses a challenge since the explicit formulation and storage of
the Jacobian matrix could be in general not feasible. This problem
is aggravated further in applications for example when the number of
coils is increased and in three-dimension. Krylov subspace methods
such as conjugate gradient (CG) methods are suitable for such large
scale inverse problems. However, these methods require use of the
Jacobian matrix, which can be large scale. This paper presents a
matrix-free reconstruction method, that addresses the problems of
large scale inversion and reduces the computational cost and memory
requirements for the reconstruction. The idea behind the matrix-
free method is that information about the Jacobian matrix could be
available through matrix times vector products so that the creation and
storage of big matrices can be avoided. Furthermore the matrix vector
multiplications were performed in multiple core fashion so that the
computational time can decrease even further. The method was tested
for the simulated and experimental data from lab experiments, and
substantial benefits in computational times and memory requirements
have been observed.
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1. INTRODUCTION

Magnetic induction tomography (MIT) is a new modality for medical,
industrial and geophysical imaging [1–3], in which the impedance
distribution within a medium is computed based on measurements
of the mutual inductances between pairs of coils placed around the
medium. One key advantage is its contact-less nature, which makes the
technique of interest for non-invasive and non-intrusive applications.

Measurements are acquired by passing an alternating current
through excitation coils, producing a primary magnetic field. This
magnetic field interacts with conductive and permeable objects in
the medium to produce eddy currents, which, in turn, produce a
secondary magnetic field, which is measured by sensing coils. As
the secondary field depends on the materials present, the measured
induced voltage is a non-linear function of the electrical and magnetic
properties of the medium, i.e., conductivity. MIT is a difficult problem
for several reasons: 1) the secondary fields are very small compared
to the primary for weakly conducting objects (such as geophysical and
biological tissue); 2) measured data are very sensitive to artifacts due to
sensor movement, and nearby conductive objects; 3) the mathematical
problem is highly ill-posed and non-linear [1, 4].

Most of the MIT systems at this stage are still in two-dimensional
scale [5, 6], which do not consume much of computational memory.
Future trend of MIT imaging shows that in the near future many
applications of MIT will move to 3D and large scale inverse problems.
So, the authors believe that large inversion scaled MIT will soon
be widely implemented into many industrial applications, as it is
the case in geophysical applications, where many transmitters and
receivers are involved. In addition, multi-frequency and rotational MIT
are being developed for various applications with different bandwidth
sensitivity. Simultaneous reconstruction of all passive electromagnetic
properties is feasible as shown in [7] and that would mean the size
of the inverse problem will increase by a factor of two or three. The
same will be true for anisotropic MIT or 4D image reconstruction,
including the time domain will massively increase the size of the inverse
problems [8]. In all these cases the amount of memory requirement
for inversion calculation will increase significantly, therefore iterative
methods become more suitable techniques for large scale computation.
The same problem may occur in a number of other inverse problems [9–
15].

In this paper, results are presented in 3D imaging of electrical
conductivity imaging using both simulated and experimental data.
However, the results of the paper will be valid for all of the above
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large scale inversions in MIT imaging. Three dimensional MIT enables
volumetric image reconstruction from magnetic induction data. The
conjugate gradients (CG) algorithm and its variants can be used to
solve linear systems of equations Kf = b and linear least squares
problems minf ‖b−Kf‖2, especially when the matrix K is very large
scale. In 3D MIT reconstruction, the main computational challenge
is that the matrix K usually is very large, and storing it in full
requires an amount of memory well beyond the reach of commercial
computers. In this paper, to overcome this difficulty, the matrix
K is partitioned and stored blockwise, and blockwise matrix-vector
multiplication are implemented within conjugate gradients least square
(CGLS). It is worth noticing that there are several Krylov subspace
methods that can be used for large scale MIT image reconstruction,
such as generalized minimum residual (GMRES), quasi minimal
residual (QMR) and biconjugate gradient stabilized (BiCGSTAB). The
blockwise algorithms developed for CGLS can be adapted into these
methods. This implementation allows the full access of the Jacobian
matrix K for MIT reconstruction without further enhancing computer
memory requirement.

2. FORWARD PROBLEM

The forward problem is a general eddy current problem where edge
finite element method is used for discretisation. Edge FEM in terms
of magnetic vector potential (A) is used to simulate the forward eddy
current problem [16, 17]. Validation of the forward model has been
done in a previous study. Given E = −iωA and B = ∇×A we have

∇× (ν∇×A) + iωσA = Js (1)

where ν = 1/µ, σ is electrical conductivity and ω is angular frequency.
Edge FEM has some promising advantages compared with the more
conventional nodal FEM for vector field computations. In edge FEM
a vector field is represented using a basis of vector valued functions.
Nodal FEM was used for the vector fields in electromagnetic. Although
nodal FEM is easy and straightforward and its outcome accurate,
several serious problems have been identified when the ordinary nodal-
based finite elements were employed to compute vector electric or
magnetic fields.

Galerkin’s approximation using edge element basis functions yields

∫

Ω

(∇×Nν∇×A)dx3 +
∫

Ωe

(iωσNA)dx3 =
∫

Ωc

(NJs)dx3 (2)
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where N is any linear combination of edge basis functions, Ω is the
entire region, Ωe the eddy current region, and Ωc the current source
region.

In [17], the coil geometry needs to be considered when modeling
the mesh, which makes the eddy current modeling more difficult and
less flexible. In this paper, we define the current source by electric
vector potential Js = ∇ × Ts. By doing this, the coil geometry
modeling in the finite element mesh can then be eliminated by defining
Ts = Hs, where Hs is the field of the coils in free space. The magnetic
field Hs can be calculated using the Biot-Savart law. Let us denote by
Li the nodal scalar basis function. In edge FEM on a tetrahedral
mesh a vector field is represented using a basis of vector valued
functions, where Nij associated with the edge between nodes i and
j is Nij = Li∇Lj −Lj∇Li. The induced voltage in excitation coil can
be calculated by

Vm = − iω

I0

∫

Ωc

A · J0dx3 (3)

where J0 is a virtual current density with total current of I0 passing
through the coil, and A is the sum of the freespace magnetic vector
potential and the magnetic potential calculated from Equation (2).

2.1. Sensitivity Analysis

Using the shape function and edge elements Ne, the potential A inside
each element can be expressed as A = NeAe, where Ae are defined
along edges [18].

With that the sensitivity term for each element as follows

∂Vij

∂σk
= − ω2

IiIj
Ai

e




∫

Ωek

Ne ·NT
e dx3


 (Aj

e)
T (4)

Equation (4) gives us sensitivity of the induced voltage pairs of
coils of i, j with respect to an element, Ωek is the volume of element
number k, Ii and Ij are excitation currents for the coils. Each row of
the Jacobian matrix will be sensitivity of a given measured voltage over
the changes in conductivity. Figure 1 shows the sensitivity map result
of a double layer, 16 channel MIT system. All the coils are located
around a 16 cm diameter cylindrical imaging area, where eight coils
are situated at the top layer (z = +5) and the other eight coils are at
the bottom layer (z = −5). The sensitivity map will be used for image
reconstruction in Section 5.1.
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(a) (b)

Figure 1. Sensitivity map coupling between (a) coil 1 (bottom layer)
and coil 5 (bottom layer) and (b) coil 1 (bottom layer) and coil 13 (top
layer). All the x, y and z directions are in cm.

3. INVERSE PROBLEM

A regularized Gauss-Newton is the most commonly used method to
solve the inverse MIT problem. Let Vm be the voltage measurement
data, and F is a forward operator, which takes the vector of degree
of freedom in the conductivity σ and calculates the corresponding
voltages. The inverse solver is an optimization algorithm that finds a
σ to minimize a suitable error functional. Reformulation of the inverse
problem to include prior information is known as regularization and it
can be expressed as minimization of the function

‖ Vm − F (σ) ‖2 +G(σ) (5)

where G(σ) is a penalty term that can be implemented in discrete
form using a regularizati on matrix. The Jacobian matrix K is a
discretisation of F

′
(σ). In the non-linear steps, the Jacobian matrix

will be updated throughout the iterations. In this paper, we focus on
the linearised inverse problem Kf = b, where K is the Jacobian matrix,
f is the conductivity distribution and b is the voltage measurement.
Since K is ill-posed, Tikhonov regularisation term is required to solve
the linearised problem

δσ =
(
KTK + α2RTR

)−1(
KTb

)
(6)

where α is the regularisation parameter, R is the regularisation matrix
and our b is the normalised measurement Vm−V0

V0
(V0 is the background
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voltage). In this case of Tikhonov regularisation, RTR = I, identity
matrix.

The main challenges with this type of inverse technique, especially
in a large scaled problem, is that a tremendous amount of memory is
required to solve the KTK calculation and to store the matrix result.
Some alternative inverse methods are required to resolve the limited
memory issue [19, 20]. In [21], the CG method has been proposed
for the large scale inversion of the electrical impedance tomography
(EIT), however the Jacobian matrix needs to be loaded into computer
memory.

3.1. Conjugate Gradient Least Squares

The main problem in large scale MIT algebraic reconstruction is that
the matrix K is too big to solve by finding its inverse. The inverse
techniques such as SVD or QR will require heavy memory resources
and computational cost. However, iterative methods (Landweber or
CG) can be used to avoid calculating K>K.

The CGLS method is one of the gradient based iterative
algorithms for the numerical solution of particular systems of linear
equations, whose matrix is symmetric and positive-definite. It can be
applied to sparse systems that are too large to be handled by direct
methods. Such systems often arise when numerically solving partial
differential equations. CGLS is a variant of the CG method which
can be used to solve the least square problem. In this paper, we are
investigating the uses of this method for 3D MIT image reconstruction.

A MATLAB implementation of CGLS, the conjugate gradient
method for unsymmetrical linear equations and least squares problems:

Kf = b (7)

and minimise
min

f
||Kf − b|| (8)

Since K>K is positive-definite for any matrix K, the conjugate
gradient algorithm can be applied to the normal equations

K>Kf = K>b (9)

where the m × n matrix K is the Jacobian matrix obtained by the
forward projection, f is the scanned image and b is the measurement
data. This is known as conjugate gradient least squares. The standard
CGLS algorithm recipe is shown as follows:

Let r0 = b − Kf0 and p0 = M−1r0, where M−1 is the
preconditional matrix
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loop start

ak+1 =

∥∥K>rk

∥∥2

∥∥Kpk

∥∥2 (10)

fk+1 = fk + akpk (11)
rk+1 = rk − akKpk (12)

if (rk+1 < threshold)
break;

else

βn =

∥∥K>rk+1

∥∥2

∥∥K>rk

∥∥2 (13)

pk+1 = K>rk+1 + βnpk (14)

loop end
where rk is the residual at the kth step and pk is an auxiliary vector of
length n. With CGLS, the number of iterations provides the effect of
regularisation to the final reconstructed image. However, it is unclear
how many iterations should be performed in order to provide the
optimal regularisation. The additional Tikhonov regularisation has
been applied by adding an extra term in matrix K.

[ K

αI

]
f =

[ b

0

]
, (15)

where α is the regularisation parameter and I is the sparse matrix

with a size of n× n. The new
[

K
αI

]
matrix now has a dimension of

(m + n)× n.

3.2. Blockwise Matrix Vector Multiplication

As mentioned previously, due to the large memory required for storing
a 3D matrix K, only a fraction of the matrix could be used under
the constraint of the current computer memory capacity. However,
gradient based methods such as CGLS do not require access to the
full matrix K. All that is required is one matrix-vector multiplication
with each of K and K> per iteration. Therefore, blockwise matrix-
vector multiplication within CGLS provides a solution to our memory
capacity constraints (even given a extremely large 3D matrix K). The
algorithm has the ability to handle the problem with a limited amount
of memory, as it does not require the matrix K to be loaded all at once.



36 Wei and Soleimani

In addition, the matrix multiplications can be implemented to run
in parallel, which could potentially increase the reconstruction speed
dramatically.

In the CGLS algorithm, vector multiplications are required in
Equations (12) and (14), which are Kp and K>r respectively. In
order to realise the blockwise CGLS method, the sensitivity matrix
needs to be divided into blocks according to current computer memory
capacity. Recall that the matrix K resulting from a 3D full data set,
the matrix K can be divided into l segments,

K =




K1

K2
...

Kl

Kl+1




,

where the index j in K refers to the position of each block within
the matrix K. Each block Kj contains a set of precalculated
sensitivity elements δVij

δσ , and itself has a dimension of m/l by n, except
for Kl+1, which is the n × n regularised identity matrix described
in Equation (15) used for Tikhonov regularisation. Matrix-vector
multiplications can then easily be implemented blockwise. In the case
of Kp multiplication, p is a vector with size of n× 1,

Kp =




K1p
K2p

...
Klp

Kl+1p




,

where each Kjp involves a matrix-vector multiplication with the block
Kj . Similarly, in the K>r multiplication, if r has a vector dimension
of 1× (m + n), it can be partitioned into blocks as well:

r =




r1

r2
...
rl

rl+1




,

where each rj is a vector of length (m + n)/l, and the K>r vector
multiplication result becomes:

K>r =
l+1∑

j=1

K>
j rj
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Each blockwised sensitivity matrix Kj can be loaded during the
matrix-vector multiplication. Furthermore, these vectors can be
multiplied in parallel since each K>

j rj blockwised calculation is
independent to each other, therefore the computation speed can be
further enhanced if the computer has multiple cored CPU to handle
the multiplication task simultaneously. Once the Kp and K>r
multiplications are complete, the equations in Section 3.2 makes it
possible to run CGLS using the blockwised matrix Kj .

4. EXPERIMENTAL SETUP

In general, electrical tomography such as MIT has a smaller amount
of measurements compared to other types of tomography such as CT
or fluorescence tomography [19]. In MIT, with a nc channels system,
(nc × (nc − 1))/2 measurements will be collected to reconstruct one
image. The scale of inverse problem only becomes significant when
the problem becomes three-dimensional. In the following experiments,
3-D problems are solved using blockwised CGLS methods to validate
its performance. The work station used for all computation works has
a UNIX platform, eight cores CPU (3.16 GHz) with 15GB RAM.

4.1. Simulation Setup

A two layers, 16 channels MIT system was simulated in this
experiment. The imaging region has a diameter of 16 cm. All the sensor
coils have a radius of 3 cm and are spread evenly around the cylindrical
imaging area at different layers. Eight coil sensors are assigned into
two layers, top and bottom. The distance between the top and the
bottom sensor layers is 10 cm.

Using equations described in Section 2.1, the magnetic field
coupling between different coils are shown in Figure 1. In order to
demonstrate the performance of the CGLS method, a 3D sensitivity
map is necessary and a large grid number was chosen: 81 × 81 × 81.
The storage size of this matrix dataset is 464MB.

4.2. MIT System Setup

The MIT system Bath-Mk I was used to gather the real life data in
this study. Bath MIT Mk-I is an eight channel MIT system which
is mainly comprised of a sensor array, a CMOS multiplexer and a
National Instrument based data acquisition card. The air cored coil
was manually wounded around a cylindrical plastic template with
copper wire of 50 turns and has a radius of 21 mm. The coil may act
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Figure 2. Block diagram of Bath MIT Mk I.

either a transmitter or a receiver, as determined by the PC controlled
multiplexer. The sensors are placed equally at the periphery of a
circular wooden base; thus creating an interaction angle of 45 degrees
between adjacent coils for our eight channel system. The circular region
for our MIT system is a circular space enclosed by coil arrays, with a
diameter of 110mm.

ADG406 multiplexers (Analog Devices, Inc.) are employed in our
system to accomplish the channel switching processes. ADG406 is a
16-to-1, monolithic CMOS analogue multiplexer which has features
of low ‘ON’ resistance and high input signal range. For the system
presented in this paper, only 8 multiplexer channels are connected
to coils. However, the full capacity of the multiplexers can be used
if needed in order to expand the Bath MIT Mk-I to a two layer,
three dimensional system. The 1.5V p-p, 5 kHz sinusoidal signals
are generated from a TOPWARD 8112 signal generator. The built-
in LabView functions are used to measure the amplitude change of the
detecting signal. Figure 2 shows the MIT system and its simplified
block diagram.

5. RESULTS

5.1. Simulated Data

The reconstructed images of the simulated conductivity distribution
are shown in Figures 4 and 5. The sensitivity map described in
Section 4.1 was used in both cases for the matrix free CGLS inversion.
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With a (81× 81× 81) sensitivity matrix K, the K>K computation is
very difficult for an ordinary computer, therefore in this section, only
the CGLS method is used for image reconstruction. The simulated
voltage data is generated from another set of mesh grid (51× 51× 51)
to avoid so called ‘inverse crime’. A 1% noise of the measurement
values were also introduced to the measurements.

For time comparison, the same CGLS algorithm was executed with
25 iterations using parallel computing and serial streaming computing
respectively. The regularisation factor was chosen empirically and the
optimal number of iterations were decided from the projection error
graph (Figure 3). The projection error is the norm of the residual
throughout the entire iteration process. As shown in the figure, once
the number of iterations exceed a certain value, the image error will
saturate towards a fixed value. Further increasing the number of
iterations will not benefit the image accuracy.

The figures show that the location of the simulated targets in
both cases were recovered successfully. However, the reconstructed
images show a much ‘smoother’ surface than the true distribution.
This is due to the regularisation effect mainly from the CGLS iterations
and the penalty term RTR, which provides a smoothing effect to the
reconstructed images. It is also noticed that the regularisation effect to
the reconstructed image is mainly dominated by the CGLS iteration,
the Tikhonov regularisation factor has a minor effect to the inverse
result. Furthermore, in Figure 4, the middle part of the reconstructed
shape is observed to be irregular compared to the true image. This
is because of the weaker sensitivity coupling in the middle area of the
imaging space. As shown in Figure 1, the sensitivity coupling between
two coils tends to be weaker at the centre area.

Figure 3. The convergence plot against the number of iterations.
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(a) (b)

Figure 4. Simulated data (a metallic rod lying diagonally across the
imaging area) reconstruction using CGLS method. (a) The simulated
image and (b) the reconstructed image. The computational time
required for traditional se- rial computing was 192.44 seconds while
for the reconstruction using parallel computing was 41.48 seconds.

(a) (b)

Figure 5. Simulated data (two metallic cubes sitting on different levels
of the imaging area) reconstruction using CGLS method. (a) The
simulated image. (b) The reconstructed image. The computational
time required for traditional serial computing was 192.51 seconds while
for the reconstruction using parallel computing was 42.22 seconds.

5.2. Experimental Data

In this section, the measuring data were collected from a real eight
channel MIT system. The images were also reconstructed by the
blockwised CGLS method with the same size of the sensitivity map
(81× 81× 81). Again, only the CGLS method is implemented because
with this amount of dataset (28 measurements ×813 image elements),
it is still very difficult to perform the Tikhonov linear inversion and in
particular K>K calculation for a standard computer.
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(a) (b)

Figure 6. (a) A single metal piece (4 cm height) at the centre of the
imaging area, and (b) the reconstructed image from the data collected
by Bath MIT Mk-I.

(a) (b)

Figure 7. (a) Two metal pieces with different height sitting within the
imaging area, and (b) its reconstructed image from the data collected
by Bath MIT Mk-I.

Figures 6 and 7 show the reconstruction result with different sizes
of metal pieces in the imaging area. The heights of the metal pieces
are 4 cm and 1 cm respectively. The number of CGLS iterations used
to reconstruct the images was 25. The computational time for the
parallel and serial execution was also calculate d for comparison.

The figures again show satisfied image results, the number and
the size difference of the imaging objects are both correctly shown in
the reconstructed figures.

5.3. Computational Time

By dividing the sensitivity matrix K into several segments, the
computation memory requirement can be minimised. Furthermore,
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the blockwised matrices allow us to utilise the parallel programming
scheme in MATLAB to further enhance the calculation speed (if the
computer is equipped with multiple-cores CPU). In this section, two
experiments are performed to demonstrate the advantage of using
parallel CGLS computing for image reconstruction. A single layer,
8 coils MIT system was used to gather the voltage reading on the coil,
with high conductive objects presented within the region of interest.

Equation (4) is used to determine the sensitivity map K. The
sensitivity map at this stage is constructed by tetrahedral mesh, which
contains a huge amount of edge values. For the simplicity of the
visualisation, the tetrahedral mesh needs to be converted into cubic
mesh by using the ‘tsearchn’ function in MATLAB. The size of the
cubic mesh can be varied by changing the input parameters. Here,
the sensitivity map is divided into seven segments, and the cubic mesh
sizes are set to (21 × 21 × 21), (51 × 51 × 51), (81 × 81 × 81) and
(101×101×101) for comparison. The results shown in Table 1 indicate
the time required to complete 25 CGLS iteration for one reconstructed
image.

Now we divide the sensitivity matrix K into two segments only,
then measure the computational time for a single reconstructed image
(25 CGLS iterations) again. The result is shown in Table 2.

From both tables, it can be clearly seen that the computational
speed of blockwised CGLS method can be improved substantially
by using the parallel execution. However, this improvement only

Table 1. Time performance comparison with different three
dimensional mesh size (seven segments).

parallel execution serial execution

(21× 21× 21) 3.04 s 2.05 s

(51× 51× 51) 6.38 s 12.90 s

(81× 81× 81) 26.92 s 44.20 s

(101× 101× 101) 33.82 s 80.69 s

Table 2. Time performance comparison with different three
dimensional mesh size (two segments).

parallel execution serial execution

(21× 21× 21) 2.43 s 2.05 s

(51× 51× 51) 8.24 s 12.53 s

(81× 81× 81) 30.83 s 50.03 s

(101× 101× 101) 49.65 s 81.03 s



Progress In Electromagnetics Research, Vol. 122, 2012 43

starts becoming significant when we expand the scale of the inverse
problem. The larger the inverse problem size, the more benefit can
be obtained from this blockwise algorithm. In particular in our 16
channel simulation example (120 measurements ×813 image elements)
in Section 5.1, the execution time becomes almost five times shorter
than the ordinary CGLS method. The computational speed is also
dependent of the amount of matrix segmentation. The number of
segments needs to be equal or more than the number of CPU cores in
order to achieve the optimum speed performance.

6. DISCUSSION AND CONCLUSION

Iterative methods are well studied in inverse problems such as MIT
reconstruction. However, CG-type iterative methods are rarely
investigated in this context. The main challenge in 3D MIT
reconstruction is that the matrix K can usually be extremely large
scale. Hence, the application of CGLS in MIT reconstruction was
studied. In our numerical tests in Section 5, it can be clearly seen
that CGLS was effective in solving the resulting large sparse least
square problems, as the objects within the measuring space can
all be identified correctly. The Tikhonov regularisation described
in this paper contributes very smooth reconstruction results, which
makes the edges of the true shape not very detectable. Some other
regularisation techniques such as the Total Variation (TV) algorithm
can be implemented in order to obtain a sharper reconstruction result,
however, this is not within the scope of this paper.

In 3D image reconstruction, memory requirement is too large for
commercial computer standards. Therefore, CGLS with blockwise
matrix-vector multiplications was implemented. The Jacobian matrix
K has been divided into blocks, allowing each block to be loaded
blockwise sequentially or in parallel when needed at every iteration.
This makes it possible to use the full matrix K for 3D MIT
reconstruction without implementing the full matrix. Since each
matrix-vector multiplication is independent to each other, partition
ing the matrix K into blocks allows us to access several blocks of K
simultaneously for the blockwise multiplication in CGLS. As a result,
a faster reconstruction speed can be achieved. As shown Section 5.3,
parallel computing execution can provide a faster reconstruction rate
than using CGLS directly on a single block of K (serial execution). In
the result section, the execution time of the parallel computing was
found to be five times shorter for a double layer, 16 channels MIT
system. By using this proposed algorithm, it allows the immediate use
of the 3D MIT reconstruction in high performance computing. Also,
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the advantage of dividing Jacobian matrix K according to computer
memory capacity will enable the use of 3D MIT reconstruct ion for
personal computer standards. It provides a good balance between the
computational time and memory usage.
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