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Abstract—This work presents a straightforward way to obtain the
coupling matrix of a bandstop filtering response from the original
bandpass coupling matrix. The generated bandstop coupling matrix
implements a response where the bandwidth is defined at the equiripple
return loss of the lower and the upper passbands.

1. INTRODUCTION

The operation of some communication technologies such as WiFi,
Bluetooth and WiMAX, which operate in adjacent frequency bands,
may cause inter-system radio inferferences due to their frequency
proximity. Interferences lead to a deterioration in terms of service
provision for the users. Bandstop filters have been widely used
in RF devices in several applications and technologies to prevent
interferences with other applications and users since decades ago to
nowadays [1–4]. Bandstop filters can meet the increasingly drastic
required specifications in terms of rejection.

The coupling matrix representation of microwave filter circuits
is particularly useful because matrix operations can be applied
simplifying the synthesis, reconfiguration of the topology and
performance simulation of filtering networks [5]. A suitable application
of the coupling matrix technique to bandstop filters expands the use
of matrix operations beyond passband responses. Starting from a
Chebyshev type bandpass response which exhibits equi-ripple return
loss inside the passband, a bandstop response can be generated. In [6],
the bandstop response is generated in such a way that the bandwidth is
defined at a level of equi-ripple rejection inside the stopband. However,
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in some cases, it may be useful to define the bandwidth of the bandstop
response at a level of equi-ripple return loss of the upper and the lower
passbands.

This letter presents an approach to design bandstop filters by
means of the coupling matrix. The particularity of the proposed
approach is that the resulting coupling matrix uses any original
bandpass matrix and produces a frequency inversion on the original
response, converting the bandpass response into a bandstop response.
Therefore, the bandwidth of the bandstop filter is defined at the return-
loss level. The resulting configuration is a bandpass-like topology with
bandstop filter characteristics.

2. COUPLING MATRIX SYNTHESIS OF BANDSTOP
RESPONSES BY POLYNOMIAL EXCHANGING ON
THE BANDPASS RESPONSE

The transfer and the reflection parameters for a two-port network and
for a general bandpass Chebyshev filtering function, S21 and S11, may
be expressed as the ratio of two finite-degree polynomials [5]:

S21 (s) =
P (s)
εE (s)

S11 (s) =
F (s)

εRE (s)
(1)

where s is the complex frequency variable and it is related to the real
frequency variable ω by s = jω. E (s) and F (s) are polynomials
of degree N which coincides with the degree of the filtering functions.
P (s) is a polynomial of degree nfz which contains the nfz finite-position
prescribed transmission zeros (TZs). The polynomials are normalized
to their respective highest degree coefficients and constants ε and εR

depend on the return loss (RL) and the polynomial coefficients.
In [6], it is proposed a technique to obtain a bandstop response

from (1) exchanging the reflection and transfer functions as follows:

S21 (s) =
F (s)

εRE (s)
S11 (s) =

P (s)
εE (s)

(2)

Note that for a Chebyshev response, the original prescribed
equiripple return loss characteristic becomes the transfer response,
with a minimum reject level equal to the original prescribed return
loss level. Therefore, the bandwidth that is originally defined at the
return loss of the passband becomes the bandwidth of the stopband
defined at a level of rejection and not at the return loss of the upper
and the lower band.

The generation of the coupling matrix for this bandstop response
is similar to the generation of a bandpass response matrix as described
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in [7] but it will need to incorporate a direct source-load coupling
MSL [6].

Figure 1(a) shows a bandpass coupling matrix for a response with
RL = 32 dB, N = 4 and transmission zeros at ±2.5 rad/s. Fig. 1(b)
shows the corresponding filtering response.

Figure 2(a) shows the coupling matrix in folded canonical form
for a bandstop filter with equiripple rejection inside the stopband of
32 dB, N = 4 and reflection zeros at ±2.5 rad/s. Fig. 2(b) shows the
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Figure 1. (a) Example of coupling matrix in folded canonical form
for a bandpass filter generated using the technique proposed in [7] and
(b) the corresponding bandpass filtering response. The bandwidth is
defined at the RL level.
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Figure 2. (a) Example of coupling matrix in folded canonical form
for a bandstop filter generated using the technique proposed in [6] and
(b) the corresponding bandstop filtering response. The bandwidth is
defined at the rejection level.
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corresponding filtering response. The frequency range inside the cut-
off frequencies of ±1 rad/s contains the equiripple rejection and not an
equiripple return loss in the lower and the upper passbands.

The bandpass and the bandstop responses are complementary
due to the polynomial exchanging of the transfer and the reflection
parameters.

3. COUPLING MATRIX SYNTHESIS OF BANDSTOP
RESPONSES BY FREQUENCY INVERSION ON THE
BANDPASS RESPONSE

The purpose of this section is to obtain a coupling matrix that
implements a stopband response with equiripple RL in the lower and
the upper passbands, below −1 rad/s and above 1 rad/s respectively.

This work proposes a way to obtain this kind of stopband response
by means of a frequency inversion of the response given by the transfer
and the reflection parameters in (1). A quick and straightforward way
to generate the bandstop coupling matrix from an original bandpass
one producing the frequency inversion is by means of the inversion of
the bandpass coupling matrix as follows:

Mbandstop = M−1
bandpass (3)

where Mbandpass is the bandpass coupling matrix and Mbandstop is the
corresponding bandstop coupling matrix that produces the frequency
inversion.

The transmission S21 (ω) and reflection S11 (ω) parameters depend
on the admittance elements [y]N+2,1 (ω) and [y]1,1 (ω) as follows:

S21 (ω) = 2
√

RSRL[y]N+2,1 (ω) (4)

S11 (ω) = 1− 2RS [y]1,1 (ω) (5)

[y]N+2,1 (ω) and [y]1,1 (ω) are the elements of the admittance matrix
y (ω) in positions (N + 2, 1) and (1, 1). RS and RL are the resistive
terminations. The admittance matrix y (ω) can be calculated from the
inversion of the impedance matrix z (ω):

y (ω) = z−1 (ω) (6)

And the impedance matrix is calculated from:

z (ω) = j (M + ωU + R) (7)

where M is the coupling matrix, U a identity matrix with [U ]1,1 =
0 and [U ]N+2,N+2 = 0 and R is zero except [R]11 = RS and
[R]N+2,N+2 = RL.
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The absolute value of the parameters S21 and S11 calculated from
the matrix y (1/ω), where a frequency inversion has been produced,
have the same absolute values that those ones calculated from the
matrix y′ (ω) that is obtained from the inverted coupling matrix:

y′(ω) =
(
j
(
M−1 + ωU + R

))−1 (8)

So that, an inversion on the original coupling matrix provides a
frequency inversion straightforwardly.

Figure 3(a) shows the result of the inversion of the bandpass
coupling matrix of Fig. 1(a). The inverted coupling matrix offers a
bandstop response. Fig. 3(a) shows the bandstop coupling matrix
reconfigured to the folded canonical form. The filtering response of
the bandstop matrixes is shown in Fig. 3(c).

The generated bandstop matrixes offer a frequency inversion
of the response regarding the original bandpass matrix. In terms
of the reflection coefficient, the reflection zeros in the passband of
the bandpass response become reflection zeros split in the lower
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Figure 3. (a) Bandstop coupling matrix obtained by inversion
of the bandpass matrix, (b) bandstop coupling matrix after the
reconfiguration to the folded canonical form and (c) bandstop
filtering response of the coupling matrix generated using the proposed
technique. The bandwidth is defined at the return loss.
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and the upper passbands of the bandstop response following the
frequency inversion of the response at ω = ±1/0.928 rad/s and ω =
±1/0.397 rad/s. A Chebyshev bandpass filter of order N exhibits N
reflection zeros, so that after the frequency inversion, the number of
reflection zeros is N as well. The original RL equiripple level keeps
equiripple RL in the new side passbands.

In terms of the transmission coefficient, the original transmission
zeros will lie inside the stopband of the new bandstop response at the
positions ω = ±1/2.5 rad/s and ω = 0 rad/s. If a bandpass response
exhibits a number of finite transmission zeros nfz , after the frequency
inversion, the bandstop response will have nfz transmission zeros, and
additional transmission zeros at frequency 0 rad/s that come from the
transmission zeros at infinity in the original bandpass response. The
position of the transmission zeros and the level of rejection inside
the stopband is controlled by means of the frequency position of the
transmission zeros in the stopbands of the original bandpass response.
In the example, the maximum level of the rejection lobes is 28.4 dB
which coincides with the level of the side rejection lobes in Fig. 1(b).

Note that the proposed technique to obtain the bandstop coupling
matrix defines the bandwidth at the return loss and not at the rejection
level. The return losses at the passbands are perfectly defined while
the level of rejection and the bandstop bandwidth must be adjusted by
means of the transmission zeros. Meanwhile, in the technique explained
in the previous section, the equi-ripple level of rejection is defined inside
a given bandwidth but the return losses are controlled adjusting the
reflection zeros. Therefore, the proposed technique is specially useful
to control the return loss in the passbands that sandwich a rejection
frequency range.

4. CONCLUSION

The coupling matrix associated to a bandstop filtering response can
be obtained straightforwardly from an original bandpass coupling
matrix. An inversion of the bandpass coupling matrix leads to a
bandstop coupling matrix that implements a filtering response where
a frequency inversion is produced regarding the original bandpass
response. Therefore, an equiripple return loss is obtained along the
passbands that sandwich the stopband and the bandwidth is defined
at the return loss and not at the level of rejection.
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