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Abstract—A full-wave analysis for determining the resonant
frequency, quality factor and far-zone radiation patterns of a circular
disk and annular ring microstrip patches, printed on a uniaxial
anisotropic substrate is presented. Green’s functions of the structure
are determined in Hankel transform domain (HTD) using Hertz
potential vectors. Galerkin’s method, together with parsval’s relation
in Hankel transform domain is then applied to compute the resonant
frequency and quality factor. The far-zone radiation patterns are
expressed in terms of Hankel transforms of the tangential fields on the
substrate. Wave equation is solved in cylindrical coordinates for the
structure to estimate the basis function. The numerical results show
that there are substantial deviations in calculated resonant frequency
and quality factor when substrate dielectric anisotropy is considered.
Furthermore, significant variations are seen in the radiation patterns of
the structures due to substrate anisotropy. The variations of resonant
frequency, quality factor and radiation patterns of the structure, with
respect to anisotropy ratio of the substrate, for several values of
substrate thickness and patch radius are presented.
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1. INTRODUCTION

Some substrate materials used for integrated microwave circuits or
printed antennas exhibit dielectric anisotropy. This phenomenon
occurs either naturally in the material or is introduced during
the manufacturing process. In addition, anisotropic substrates
have become popular in the design of microwave integrated circuit
components and microstrip antennas [1–8]. Uniaxial substrates have
drawn more attention due to their availability in materials such
as sapphire, boron nitride and E-10 ceramic-impregnated Teflon.
Previous studies of anisotropic materials used in microwave devices
indicate that the effects of anisotropy on the performance of such
structures particularly in high frequencies cannot be ignored [1, 5, 6].
Furthermore, it has been shown that the performance of directional
couplers can be improved by using the anisotropic substrates to
equalize the even and odd mode phase velocities [2]. Therefore, many
investigations are examining the effects of substrate anisotropy in
microwave components performance.

Circular microstrip patch resonators can be used either as
radiating antennas or as oscillators and filters in microwave
integrated circuits (MIC’s) [9]. In some applications such as arrays,
circular geometry of the patch offers certain advantages over other
configurations. The experimental results have shown that circular
microstrip elements could be easily modified to produce a range
of impedances, radiation patterns and frequencies of operation [10].
The studies on circular patch microstrip antennas with anisotropic
substrate are in limited number [11–14].

Annular ring microstrip antennas, because of their flexibility for
producing dual frequency treatment [16] and advantages for using in
medical applications [15] are interesting to many researchers. This
type of printed antenna can have a broader bandwidth than other
shape of patch antenna by a proper choice of dimensions and the mode
of operation. Because of these interests several studies are fasten to
annular ring patch antennas [15–18]. Furthermore, ring resonators
have found applications in circulators, hybrid junction filters and other
microwave devices [19]. Several articles on ring patches on uniaxial
substrates has been recently published [20–22].

In this study, HTD analysis is performed for the wave equation
using Hertz potential vectors. Galerkin’s method is then applied to
eigenvalue problem for determining resonant frequency and quality
factor in terms of structure dimensions and anisotropy ratio of the
substrate. Angular spectrum of the aperture field and saddle point
technique is used to find radiation patterns of each structure. The
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results indicate that proper selection of anisotropy ratio could lead
to wider band-width, smaller resonant frequency and greater antenna
directivity.

2. FORMULATIONS OF THE PROBLEM

The geometry of the studied structures are shown in Fig. 1. The
substrates are considered to be a uniaxial medium with permittivity
tensor:

[ε] =

[
εxx = ε2 0 0

0 εyy = ε2 0
0 0 εzz = ε1

]
(1)

Magnetic and electric Hertz potential vectors are defined by the
following equations respectively [23]

E = −jωµ0∇×Πh (2)
H = jωε0∇×Πe (3)

Since all field components can be represented in terms of axial
component of Hertz vectors, we choose

Πh = Πhâz (4)
Πe = Πeâz (5)

z = d
z  = 0

x
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r = a
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Figure 1. (a) Circular disk. (b) Annular ring microstrip antenna on
uniaxial substrate.
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Then all ordinary and extraordinary field components could be
derived from

H = −jωε0∇×Πe +∇×∇×Πh (6)

E = ω2µ0ε0Πe +
ε0

ε2
∇ (∇.Πe)− jωµ0∇×Πh. (7)

where Πe and Πh are the solutions of the propagation equations of
ordinary and extra ordinary waves

∇2Πh + ω2µ0ε2Πh = 0 (8)

∇2Πe + ω2µ0ε1Πe +
ε1 − ε2

ε2

∂2Πe

∂z2
= 0 (9)

Hankel transform pairs that are useful in a wide range of physical
problems with an axial symmetry are represented in cylindrical
coordinates as

f̃n(α) =
∫ ∞

0
f(ρ)Jn(αρ)ρdρ (10)

fn(ρ) =
∫ ∞

0
f̃(α)Jn(αρ)αdα (11)

Using this transform we have
(

∂2

∂ρ2
+

1
ρ

∂

∂ρ
− n2

ρ2

)
f(ρ)HT←→− α2f̃n(α) (12)

The propagation equations are now applied to the structures
shown in Fig. 1. Using separation of variables technique and
considering the periodicity of the structure with respect to angular
variations, the Hertz vectors can be expressed in the form of

Π(ρ, φ, z) = Π(ρ, z)ejnφ (13)

Then we will have

∇2
(
Π(ρ, z)ejnφ

)
= Π(ρ, z)ejnφ

=
[

∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂φ2
+

∂2

∂z2

]
Π(ρ, z)ejnφ

= ejnφ



(

∂2

∂ρ2
+

1
ρ

∂

∂ρ
−n2

ρ2

)

︸ ︷︷ ︸
equal to −α2in HTD

Π(ρ, z)+
∂2Π(ρ, z)

∂z2


 (14)
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Thus (5) and (6) in HTD have a simpler form of

∂2Π̃h(α, z)
∂z2

+ γ2
hΠ̃h(α, z) (15)

γ2
h = (ω2µ0ε2 − α2) (16)

and
∂2Π̃e(α, z)

∂z2
+ γ2

e Π̃e(α, z) (17)

γ2
e =

ε2

ε1
(ω2µ0ε1 − α2) (18)

where γh and γe are the propagation constants along z-direction in
HTD.

The solutions of (15) and (17) are:
In the uniaxial substrate region 0 < z < d

Π̃h1(α, z) = Ah1(α) sin γh1z (19)

Π̃e1(α, z) = Be1(α) cos γe1z (20)

where γ2
h1 =

(
ω2µ0ε2 − α2

)
and γ2

e1 = ε2
ε1

(
ω2µ0ε1 − α2

)
; and in the

substrate region d < z

Π̃h0(α, z) = Ah0(α)e−jγh0(z−d) (21)

Π̃e0(α, z) = Be0(α)e−jγe0(z−d) (22)

where γ2
h0 = γ2

e0 =
(
ω2µ0ε0 − α2

)
.

The total fields are obtained from (6) and (7) by taking inverse
Hankel transform of (19)–(22). As an example the electric field
components in the substrate region are

Eρ = ejnφ

∫ ∞

0
− 1

ε2
Be1γe1ε0 sin (γe1z)

[
∓αJn±1(αρ)± n

ρ
Jn(αρ)

]
αdα

+ejnφ

∫ ∞

0
ωµ0

n

ρ
Ah1 sin(γh1z)Jn(αρ)αdα (23)

Eφ = ejnφ

∫ ∞

0
− 1

ε2

jn

ρ
Be1γe1ε0 sin (γe1z) Jn(αρ)αdα

+ejnφ

∫ ∞

0
jωµ0Ah1 sin(γh1z)

[
∓αJn±1(αρ)± n

ρ
Jn(αρ)

]
αdα (24)

In these expressions, Bessel functions of different orders appear.
Transformations become much easier if only single orders Bessel
function are handled. Thus, tangential field components are arranged
in a linear combination form [24]

F(±) = Fρ ± jFφ (25)
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The resulting expressions in the uniaxial substrate medium and
in air are:

In the uniaxial substrate region:

E1(±) = ejnφ

∫ ∞

0
± 1

ε2
Be1γe1αε0 sin (γe1z)Jn±1(αρ)αdα

+ejnφ

∫ ∞

0
ωµ0Ah1α sin(γh1z)Jn±1(αρ)αdα (26)

H1(±) = ejnφ

∫ ∞

0
−Be1ωε0α cos (γe1z)Jn±1(αρ)αdα

∓ejnφ

∫ ∞

0
Ah1γh1α cos(γh1z)Jn±1(αρ)αdα (27)

In the free space region:

E0(±) = ejnφ

∫ ∞

0
±jBe0γe0αejγe0(z−d)Jn±1(αρ)αdα

+ejnφ

∫ ∞

0
ωµ0Ah0αe−jγh0(z−d)Jn±1(αρ)αdα (28)

H0(±) = ejnφ

∫ ∞

0
−Be0ωε0αejγe0(z−d)Jn±1(αρ)αdα

∓ejnφ

∫ ∞

0
jAh0γh0αejγh0(z−d)Jn±1(αρ)αdα (29)

The following boundary conditions at the interface of two regions
are applied to eliminate the constant coefficients:

Ẽ1(±) |z=d = Ẽ0(±) |z=d (30)

±j
(
H̃0(±) − H̃0(±)

)
|z=d = K̃(±) (31)

where K is the patch surface current density. Substituting the
integrands of (26)–(29) which indicate the Hankel transform of the
total field, into (30) and (31), yields the HTD relations between patch
current density and tangential electric field at z = d surface in matrix
form yields

[
K̃(+)(α)
K̃(−)(α)

]
=

[
Y++(α) Y+−(α)
Y−+(α) Y−−(α)

] [
Ẽ(+)(α)
Ẽ(−)(α)

]
(32)

where

Y++(α) = Y−−(α) = −ωε0
1

2γe0
− γh0

1
2ωµ0

+ jωε2
1

2γe1
cot(γe1d)

+jγh1
1

2ωµ0
cot(γh1d) (33)
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Y++(α) = Y−−(α) = ωε0
1

2γe0
− γh0

1
2ωµ0

− jωε2
1

2γe1
cot(γe1d)

+jγh1
1

2ωµ0
cot(γh1d) (34)

Inverting (32), the impedance matrix is obtained as follows:[
Ẽ(+)(α)
Ẽ(−)(α)

]
=

[
Z++(α) Z+−(α)
Z−+(α) Z−−(α)

] [
K̃(+)(α)
K̃(−)(α)

]
(35)

The impedance or admittance matrices given above are Green’s
function in the HTD of the structure.

3. GALERKIN’S METHOD AND CHARACTERISTIC
EQUATIONS FOR EIGENVALUES

Up to this point, a closed form analytical solution is formulated. We
now apply Galerkin’s method to find the eigenvalues of (35). The
unknown patch current density are expanded in linear combination of
known basis functions as

K(±)(ρ, φ) =
∞∑

n=−∞
ejnφ

M∑

m=1

Cm(±)(n)Ksm(±)(ρ) (36)

Equation (36) is written in HTD as

K̃(±)(α) =
M∑

m=1

Cm(±)K̃sm(±)(α) (37)

Parseval’s relation for HTD indicates that∫ ∞

0
f1(ρ)f2(ρ)ρdρ =

∫ ∞

0
f̃1(α′)f̃2(α′)α′dα′ (38)

Substituting (37) in (35) and taking the inner product of the
resulting equations with each of the basis functions and finally
employing Parseval’s relation in HTD together with mixed boundary
conditions, E(±)(ρ < a) = 0 and K(±)(ρ > a) = 0, at z = d surface, we
have: [

Z++
im Z+−

im
Z−+

im Z−im

] [
Cm(+)

Cm(−)

]
= 0 (39)

where

Z±±im (ω) =
∫ ∞

0
K̃si(±)(α)Z±±(α, ω)K̃sm(±)(α)αdα (40)

Z+−
im (ω) = Z−+

im (ω) =
∫ ∞

0
K̃si(+)(α)Z+−(α, ω)K̃sm(−)(α)αdα (41)
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Equation (39) has nontrivial solutions if the determinant of the
coefficients matrix vanishes:

det [Zim] = 0 (42)
This is the eigenvalue equation of the structure. In general, the roots
of (42) are complex numbers. Let ω = 2π (fr + jfi), then the real and
imaginary parts of the complex root is the resonant frequency and the
damping factor of the structure, respectively. The quality factor of
the structure which has an inverse proportion with its bandwidth is
attained as Q = fr/2fi [9].

4. RADIATION PATTERN

It is known [24, 25] that the Fourier transform of the aperture field
gives the far-zone pattern. This quantity is defined as

Fx,y(α, β) =
1
λ2

∫ ∞

−∞

∫ ∞

−∞
Ea(x, y)ejk(αx+βy)dxdy (43)

where α = sin θ cosφ, β = sin θ sinφ and γ = cos θ are directional
cosines.

For structure with circular symmetry, we can write (43) in polar
coordination as

Fx,y(α, β) =
1
λ2

∫ ∞

−∞

∫ 2π

0
Ea(ρ)ejnψejkρ sin θ cos(ψ−φ)ρdψdρ (44)

Using the Bessel function property of

Jn(x) =
j−n

2π

∫ 2π

0
ejx cos φejnφ (45)

we get

Fx,y(α, β) =
2πjn

λ2
ejnφẼa(k sin θ) (46)

The field components can be expressed in terms of E(+) and E(−)

in (26) evaluated at z = d:

Eax = Eaρ cosφ− Eaφ sinφ =
1
2

[
E(+)e

jφ + E(−)e
−jφ

]
(47)

Eay = Eaρ sinφ + Eaφ cosφ =
1
2j

[
E(+)e

jφ − E(−)e
−jφ

]
(48)

Applying a saddle point method and after some mathematical
manipulation, we have

Eθ
R→∞∼ −k0

e−jkR

kR
jnejnφ

[
Ẽ(+)(k0 sin θ)− Ẽ(−)(k0 sin θ)

]
(49)

Eφ
R→∞∼ k0

e−jkR

kR
jn+1ejnφ

[
Ẽ(+)(k0 sin θ)− Ẽ(−)(k0 sin θ)

]
(50)
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5. NUMERICAL RESULTS

In order to determine the resonant frequency and damping factor of the
structure, the Galerkin’s method is applied to (39). The basis functions
are chosen to comply with the patch current solution of the structure
using the wave equation on a cylindrical cavity [10] with magnetic wall
boundary conditions, which for circular disc is

∂E

∂ρ
|ρ=a= 0 (51)

The electric field expressions, for the circular disc structure is

Ez = E0Jn(kρ)ejnφ (52)

Since E = ẑEz, the magnetic fields components are

Hρ =
j

ωµ

1
ρ

∂Ez

∂φ
= − n

ωµρ
E0Jn(kρ)ejnφ (53)

Hφ =
j

ωµ

∂Ez

∂ρ
= − j

ωµ
E0

∂

∂ρ
[Jn(kρ)] ejnφ (54)

The surface currents on the circular patch can be obtained from

K = n̂×H = âz × (Hρâρ + Hφâφ) = âρHφ − âφHρ (55)

At the edge of the disk, the radial component of the surface
current, K, must vanish; therefore

J ′n(ka) = 0 (56)

Finally, the basis function is found by applying the same procedure
as (25) to the tangential currents:

Ksm(±)(ρ) = Hmφ ∓ jHmρ = Jn±1(kmρ) (57)

where

J ′n(kma) = 0 (58)

Using the same procedure, the basis functions for annular ring
structure are found as

Ksm(±)(ρ) = Jn±1(kmρ)− J ′n(kma)
Y ′

n(kma)
Yn±1(kmρ) (59)

and km is the root of

J ′n(kmb)Y ′
n(kma)− J ′n(kma)Y ′

n(kmb) = 0 (60)

where Jn(x) is Bessel function of the first kind, Yn(x) is Bessel function
of the second kind and the primes denote the first derivative with
respect to the argument.
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These basis functions can fortunately be analytically Hankel
transformed. Simpson method is employed to carry out numerical
integrations for matrix elements in (40), (41) and Muller method is used
for root finding of (42). In order to consider the effects of the fringing
fields around the patch, the effective radius is considered as in [26].
For any values of patch radius, substrate thickness and dielectric
permittivity, only few computer seconds are needed to determine the
resonant frequency and the quality factor.

Tables 1 and 2 compare the experimental results reported in [11]
and [17] respectively for circular disk and annular ring microstrip
antenna with the numerical method presented in this paper. These
comparisons indicate excellent agreements for isotropic substrate case.
In Fig. 2, a comparison is done for radiation pattern of circular disk
microstrip antenna between experimental results reported in [11] and
our results which have excellent agreement either.

Next, the effect of uniaxial anisotropy on the resonant frequency,
quality factor and radiation pattern of the structure is analyzed. The
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Figure 2. Radiation pattern of the fundamental resonant mode of a
circular disk microstrip antenna on a single dielectric substrate (εr1,
d = 1.5875mm, d/a = 0.0236). (a) Eθ. (b) Eφ.

Table 1. Comparison of the experimental results in [11] with the
results of the numerical method of this paper for the resonant frequency
of the fundamental mode of a circular microstrip patch on a single layer
isotropic dielectric substrate of permittivity εr = 2.43 and thickness
d = 0.49mm.

a/d fr (Numerical) (GHz) fr (Experimental) (GHz) Error%
4.02 25.4 25.3 −0.4
8.08 13.3 13.1 −1.5
12.02 9.2 9.0 −2.6
20.33 5.6 5.5 −2.3
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Table 2. Comparison of the experimental results in [17] with the
results of the numerical method of this paper for the resonant frequency
of the fundamental mode of an annular ring microstrip patch on a
single layer isotropic dielectric substrate of permittivity εr = 2.32 and
thickness d = 0.49 mm. The ratio of the outer and inner radius of the
ring is b/a = 2.

a (mm) fr (Numerical) (GHz) fr (Experimental) (GHz) Error%
25 0.894 0.876 −2.06
35 0.642 0.626 −2.72
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Figure 3. (a) Normalized resonant frequency. (b) Normalized quality
factor of circular patch microstrip antenna versus anisotrpy ratio when
εr2 = 2.43 εr1 varies.

anisotropy ratio (AR) is defined as AR = ε2/ε1. Fig. 3(a) represents
the normalized resonant frequency of the fundamental mode versus
anisotropy ratio for a circular patch printed on a uniaxial substrate at
different values of patch radius and substrate thickness. As anisotropy
ratio changes from 0.5 to 2, the normalized resonant frequency varies
by approximately 0.7. Thus, considering the narrow bandwidth of
microstrip antennas, the anisotropy effect on the resonant frequency
can not be ignored and must be taken into account in the design
procedure. In addition, the resonant frequency reduction could be used
for reducing the radiating element size or attending desired directivity
as shown later.

In Fig. 3(b) the variation of antenna quality factor with respect
to anisotropy ratio is shown. It is observed that in order to decrease
the quality factor to achieve wider bandwidths, anisotropy ratio must
be more than unity. Using an anisotropy ratio less than one leads to a
high quality factor suitable for resonator design.
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In Fig. 4 the author compares the radiation patterns obtained for
two circular disk microstrip antennas on uniaxial substrates with two
different values of anisotropy ratio of 0.75 and 1.75. It is observed that
the directivity of the antenna with greater value of anisotropy ratio
is more than the smaller one. This treatment has physical agreement
with the results obtained in Fig. 3(a). We saw in Fig. 3(a) that the
greater anisotropy ratio the greater resonant frequency and of course
the smaller operating wavelength. Concerning that the patch size
is frozen, the ratio of patch size to wavelength will be greater and
accordingly we get greater directivity.

Similar results are achieved for annular ring microstrip antenna
in Fig. 5(a), Fig. 5(b) and Fig. 6 for resonant frequency, quality factor
and radiation patterns respectively.
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Figure 4. Radiation patterns of the fundamental resonant mode of a
circular disk microstrip antenna on uniaxial substrate for two different
values of anisotropy ratio. εr2 = 2.43, d = 1 mm, a = 10 mm. (a) Eθ.
(b) Eφ.
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Figure 5. (a) Normalized resonant frequency. (b) Normalized quality
factor of annular ring microstrip antenna versus anisotrpy ratio when
εr2 = 2.32 and εr1 varies.
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Figure 6. Radiation patterns of the fundamental resonant mode of an
anular ring microstrip antenna on uniaxial substartes for two different
values of anisotropy ratio. εr2 = 2.32, d = 1.5875mm, a = 25mm,
b = 50 mm. (a) Eθ. (b) Eφ.

6. CONCLUSION

An analytical solution of a circular disk and annular ring microstrip
antenna with uniaxial anisotropic substrate is derived in Hankel
transform domain using Hertz potential vectors. The analytical
solution not only gives a better understanding of the physical problem,
but also provides an accurate and fast method to find the resonant
and far field characteristics of the structures. Galerkin’s method
together with parsval’s relation in Hankel transform domain has been
used for the numerical calculation of resonant frequency and quality
factor of the first resonant modes of circular disk and annular ring
patches. Finally, radiation pattern of the structures are found using the
angular spectrum theorem. The results prove that there is considerable
resonant frequency shift, quality factor value change and radiation
pattern variations due to anisotropy of the substrate.
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