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Abstract—Cylindrical EBG structures excited by a Hertzian dipole
source and TM polarized plane wave at oblique incidence are analyzed
using a rigorous semi-analytical method based on the cylindrical
Floquet mode expansion. Concentric and eccentric cylindrical EBG
structures are investigated. Resonance and stopband characteristics
in the transmission spectra of the cylindrical EBG structures,
enhancement and shading effects in the excited fields, radiation
patterns of Hertzian dipole located inside the cylindrical EBG
structures in both H-plane and E-plane are numerically studied.
Co-polarization and cross-polarizations scattering effects between the
electric and magnetic fields are investigated at the oblique incidence of
plane waves.

1. INTRODUCTION

Periodic dielectric or metallic structures are a subject of continuing
interest because of their wide use for practical devices in microwaves
and optical waves [1, 2]. Periodic structures are under the growing
attention as electromagnetic filters, polarizers, as the components of
various devices used in optics and microwave engineering. A periodic
array of circular rods is typical of a discrete periodic structure. Various
techniques have been developed to formulate the electromagnetic
scattering from the planar periodic arrays [3–7]. Recently, we have
theoretically investigated radiation of a line source coupled to planar
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EBG structure and explained how the radiation patterns are modified
in the presence of EBG structure [8].

An alternative of the planar configuration is a cylindrical array
formed by circular rods periodically distributed on a circular ring.
Cylindrically periodic structures have received a growing attention
because of their potential applications to the designs of photonic crystal
fibers [9, 10], directive antennas or beam-switching antennas [11–
14]. Recently, we have proposed a semi-analytical approach for two-
dimensional electromagnetic scattering, guidance and radiation by the
cylindrical arrays. The formulation is rigorous. The method uses three-
dimensional T -matrix approach [15], the reflection and transmission
matrices of a cylindrical array based on the cylindrical harmonics
expansion [16, 17], and the generalized reflection and transmission
matrices for a cylindrically layered structure [15, 18]. It should be noted
that similar semi-analytical techniques have been reported in [19, 20].
Using the cylindrical harmonic expansion and applying the boundary
conditions on each surface of the cylinders, the authors have derived
a set of linear equations for unknown scattering coefficients of each
individual circular rod. After that, the matrix equation has been
directly solved. However, using this technique the number of unknowns
increases proportionally to the number of layers and number of circular
rods along each layer. In contrast, in our approach, we firstly extract
the reflection and transmission matrices of a single cylindrical periodic
layer and then obtain the characteristics of the whole layered structure
by using a simple recursive formula [15]. Our proposed method could
be easily applied to various configurations of the layered cylindrical
arrays with different types and locations of the excitation sources. We
have applied the method to the modal analysis of guided waves in a
specific microstructured optical fiber [21, 22], to the analysis of two-
dimensional plane wave scattering by cylindrical structures [17, 23],
analysis of line source radiation located inside the cylindrical EBG
structures [24] and proofed its accuracy, validity and usefulness. To
be best of our knowledge, the rigorous analysis of cylindrical EBG
structures has been proposed first time.

In this manuscript, based on the proposed formulation cylindrical
EBG structure excited by a Hertzian dipole source and TM polarized
plane at oblique incidence is considered. Transmission spectra of
concentric and eccentric configurations of cylindrical EBG structures
taking into account all cylindrical Floquet modes and the interaction
between the modes are investigated. Resonances and stopband
regions of the transmission spectra into several cylindrical modes are
numerically studied. It is shown that when the cylindrical EBG of
both configurations is obliquely illuminated by plane wave of particular
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frequencies related to the resonance frequencies or stopbands, the field
patterns are strongly enhanced or shaded inside the cylindrical EBG
structure. Discussions about the relation between the resonance and
stopband characteristics of the transmission spectra and the excited
field patterns inside the cylindrical EBG structure are given. The
features may be useful to manipulate the electromagnetic properties
of a space by surrounding it with a cylindrical EBG structure.
Co-polarization and cross-polarization scattering effects [25] between
the electric and magnetic fields at oblique incidence of plane waves
on concentric and eccentric cylindrical EBG structures are also
numerically studied. Correctness and accuracy of our solutions has
been proved by the test of the optical theorem [26], and comparison
with other references for some particular cases.

2. FORMULATION OF THE PROBLEM

Cross sectional view of N -layered cylindrical arrays of circular rods
located in a homogeneous background medium with material constants

(a) (b)

Figure 1. Cross-sectional view of N -layered cylindrical EBG structure
formed by M circular rods with radius rν periodically distributed on
each of N layered: (a) concentric cylindrical arrays, (b) eccentric
cylindrical arrays. Radii of the N -layered concentric and eccentric
cylindrical surfaces are Rν (ν = 1, 2, 3, . . . , N). For eccentric
configuration the centre of the 1-st cylindrical layer coincides with the
global origin O and a distance between the centers of the 1-st and of the
v-th cylindrical layers is d1,ν . Excitation by a Hertzian dipole source
placed in the innermost region (0) or a plane wave oblique incidence
from the outermost (N) region are considered.
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ε0 and µ0 is shown in Figure 1. The z dependence of all field
components is given as exp(iξz), where ξ is the propagation constant
along the z-axis. The rods are infinitely long along the z axis and
parallel to each other. The problem is formulated by employing electric
Ez and magnetic Ĥz = (µ0/ε0)1/2Hz fields as the leading fields. Other
transversal components of the electric and magnetic fields could be
easily defined through Ez and Hz fields.

The M circular rods of radius rν and the material constants εν

and µν are symmetrically distributed on each of N -layered concentric
and eccentric cylindrical surfaces with radii Rν (ν = 1, 2, 3, . . . , N)
as illustrated in Figures 1(a) and 1(b), respectively. The separation
angle between nearest two rods along a circular ring is θM = 2π/M
and δν is an angle of rotation of the cylindrical layers. Region with
Rν < ρ < Rν+1 is labeled as region (ν) and the innermost region
as region (0). For the eccentric configuration (Figure 1(b)) we have
assumed that the center of the innermost 1-st cylindrical layer coincides
with the global origin O, whereas the centers of other cylindrical layers
are displaced along the positive x direction. Distance between the
centers of the 1-st and the ν-th layers, 1-st and the N -th layers are
d1,ν and d1,N , respectively. Figure 2 shows the detailed configuration
of the scattering process through ν-th layer of the cylindrical array.
The total field in the (ν)-th region and (ν − 1)-th region are expressed

Figure 2. Schematic view of scattering process through the ν-th layer
of the cylindrical arrays and local coordinate systems attached to each
of M circular rods. b̄(ν) and c̄(ν) are the amplitude vectors of incoming
and outgoing cylindrical waves, respectively.
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in the matrix form as follows:

ψ̄tot(ν) = Φ̄T · b̄(ν) + Ψ̄T · c̄(ν) (1)

ψ̄tot(ν−1) = Φ̄T · b̄(ν−1) + Ψ̄T · c̄(ν−1) (2)

with

ψ̄tot(ν) =

[
E

(ν)
z

Ĥ
(ν)
z

]
, ψ̄tot(ν−1) =

[
E

(ν−1)
z

Ĥ
(ν−1)
z

]
(3)

Φ̄T =
[

ΦT 0
0 ΦT

]
, Φ = [Jm(κρ) exp(imϕ)] (4)

Ψ̄T =
[

ΨT 0
0 ΨT

]
, Ψ = [H(1)

m (κρ) exp(imϕ)] (5)

b̄(ν) =
[

be(ν)

bh(ν)

]
, c̄(ν) =

[
ce(ν)

ch(ν)

]
(6)

where κ =
√

k2
0 − ξ2, Jm and H

(1)
m are Bessel and Hankel functions

of the m-th order, respectively, b̄(ν), b̄(ν−1) and c̄(ν), c̄(ν−1) are the
scattering amplitudes of the incoming and outgoing cylindrical waves
on the ν-th layer and ν − 1-th layer, respectively and “T” denotes
the transpose of the indicated vectors. Using the semi-analytical
approach [16, 17, 23], we obtain the following relations between the
unknown scattering amplitudes:

[
ce(ν)

ch(ν)

]
= R̄ν,ν−1

[
be(ν)

bh(ν)

]
+ F̄ν,ν−1

[
ce(ν−1)

ch(ν−1)

]

=
[

REE
ν,ν−1 REH

ν,ν−1

RHE
ν,ν−1 RHH

ν,ν−1

] [
be(ν)

bh(ν)

]

+
[

FEE
ν,ν−1 FEH

ν,ν−1

FHE
ν,ν−1 FHH

ν,ν−1

] [
ce(ν−1)

ch(ν−1)

]
(7)

[
be(ν−1)

bh(ν−1)

]
= F̄ν−1,ν

[
be(ν)

bh(ν)

]
+ R̄ν−1,ν

[
ce(ν−1)

ch(ν−1)

]

=
[

FEE
ν−1,ν FEH

ν−1,ν

FHE
ν−1,ν FHH

ν−1,ν

] [
be(ν)

bh(ν)

]

+
[

REE
ν−1,ν REH

ν−1,ν

RHE
ν−1,ν RHH

ν−1,ν

] [
ce(ν−1)

ch(ν−1)

]
(8)

where R̄ν,ν−1 and R̄ν−1,ν are the reflection matrices of the ν-th layer,
which characterize the reflection from the inner region (ν − 1) to the
outer region (ν) and from the outer region (ν) to the inner region
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(ν − 1), respectively; F̄ν−1,ν and F̄ν,ν−1 are the transmission matrices
of the ν-th layer that define the transmission from the outer region
(ν) to the inner region (ν − 1) and from the inner region (ν − 1) to
the outer region (ν), respectively. We have omitted in the paper the
detail calculation procedure of the reflection and transmission matrices
for the cylindrical layers. The readers can refer to our previously
published papers [16, 17, 23, 24]. The closed form of the reflection and
transmission matrices are related to the three-dimensional T -matrix of
a single circular rod in isolation located on the ν-th circular ring [15],
and the geometrical parameters characterizing the periodic distribution
of the circular rods along the cylindrical layers. The reflection
R̄ν,ν−1, R̄ν−1,ν and transmission F̄ν−1,ν , F̄ν,ν−1 matrices consist of
four block matrices. The diagonal block matrices {REE

ν,ν−1,R
HH
ν,ν−1},

{REE
ν−1,ν ,R

HH
ν−1,ν} and {FEE

ν,ν−1,F
HH
ν,ν−1}, {FEE

ν−1,ν ,F
HH
ν−1,ν} represent the

reflection and transmission into the co-polarized electric and magnetic
fields, while the non-diagonal block matrices {REH

ν,ν−1,R
HE
ν,ν−1},

{REH
ν−1,ν ,R

HE
ν−1,ν} and {FEH

ν,ν−1,F
HE
ν,ν−1}, {FEH

ν−1,ν ,F
HE
ν−1,ν} describe the

reflection and transmission into the cross-polarization space-harmonic
components. In case of dielectric scatterers both co-polarized and
cross-polarized fields give the contribution in the formation of the
scattered field, however in case of perfect conductor scatterers, the
cross-polarization scattering effect disappears and the problem is
reduced to the consideration of TM and TE waves, separately.

3. EXCITATION BY HERTZIAN DIPOLE SOURCE

Let us consider that Hertzian dipole source located in the innermost
(0) region at (ds, φs, 0) is directed in z direction. Using the Fourier
integral representation, the source field in the local coordinate (ρs, ϕs,
z) is given as:

Ei
z =

1
2π

∞∫

−∞
Ẽi

z(ρs, ξ) exp(iξz)dξ, H i
z = 0 (9)

with

Ẽi
z(ρs, ξ) = −ωµ0I`

4
κ2

k2
H

(1)
0 (κρs) (10)

where κ =
√

k2
0 − ξ2, ξ is the propagation constant along the z-axis,

and I` is the current moment of the electric dipole. Using the Graf’s
addition theorem [27], the source field in the spectral domain (9) is
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expressed in the global coordinate system (ρ, ϕ) as follows:

Ẽi
z(ρ, ϕ, ξ) = −ωµ0I`

4
κ2

k2
ΨT · se (11)

with
se = [Jm(κds) exp(−imφs)] . (12)

where se is the spectral amplitude of the source field. Following the
same calculation procedure as presented in [16], the transmitted fields
E

t(N)
z and Ĥ

t(N)
z in the far-zone are obtained as:[

E
t(N)
z

Ĥ
t(N)
z

]
= −ωµ0I`

4
exp(ikr)

πr
sin2 θ

∞∑
m=−∞

exp(imϕ)

exp
[
−i(2m + 1)

π

4

] [
cm(ξ)e(N)

cm(ξ)h(N)

]

ξ=k0 cos θ

(13)

where {cm(ξ)e(N)} and {cm(ξ)h(N)} are the spectral scattering
amplitudes in the outermost (N) region of E

(N)
z and Ĥ

(N)
z fields,

respectively and (r, ϕ, θ) denote the location of an observation point
with respect to the global origin O. The scattering amplitudes
{cm(ξ)e(N)} and {cm(ξ)h(N)} are related to the amplitude of the source
field {se

m(ξ)} in the (0) region through the generalized transmission
matrix ˜̄FN,0: [

cm(ξ)e(N)

cm(ξ)h(N)

]
= ˜̄FN,0

[
se
m(ξ)
0

]
(14)

where
˜̄FN,0 = F̄N,N−1 · Γ̄N−1,N−2 . . . Γ̄ν,ν−1 . . . Γ̄1,0 (15)

Γ̄ν,ν−1 =
(
I− Ū−1

ν−1,ν · R̄ν,ν−1 · Ūν−1,ν · ˜̄Rν,ν+1

)−1

· Ū−1
ν−1,ν · F̄ν,ν−1 (16)

˜̄Rv,v+1 = R̄v,v+1 + F̄v,v+1 · Ūν−1,ν · ˜̄Rν+1,ν+2

·
(
Ī− Ū−1

ν−1,ν · R̄ν+1,ν · Ūν−1,ν · ˜̄Rν+1,ν+2

)−1

· Ū−1
ν−1,ν · F̄v+1,ν (17)

Ūν−1,ν =
[

Uν−1,ν 0
0 Uν−1,ν

]
, Uν−1,ν = {Jm−n(κdν−1,ν)} (18)

Ī =
[

I 0
0 I

]
, I = [δmm′ ] (19)
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Here ˜̄Rv,v+1 denotes the generalized reflection matrix viewed from the
(ν)-th region to the whole outer region and it is calculated through
the N times recursion process starting with ˜̄RN,N+1 = 0. I is the unit
matrix. In (18) dν−1,ν denotes a distance between the centers Oν−1,
Oν of ν−1-th and ν-th cylindrical layers for the eccentric configuration
shown in Figure 1(b). If dν−1,ν = 0, we have Ūν−1,ν = Ī and (14)–(17)
reduce to the expressions for the concentric configuration of cylindrical
EBG structure (Figure 1(a)).

4. EXCITATION BY PLANE WAVE AT OBLIQUE
INCIDENCE

Let us consider a plane wave of unit amplitude with a wavevector k0

is obliquely incident from the outermost region (N) on the cylindrical
structure, where k0 = (k0, θ

i, ϕi) is the spherical coordinate system
with the origin O, k0 = 2π/λ and λ is the wavelength in the free space.
The z components of the incident field are expressed in the cylindrical
coordinate system (ρ, ϕ) as follows:

ψ̄i(N) = Φ̄T · b̄(N) (20)

with

ψ̄i(N) =

[
E

i(N)
z

Ĥ
i(N)
z

]
(21)

Figure 3. Oblique incidence of plane waves, where (θi, ϕi) denotes the
angle of incidence in spherical coordinate system and ψi is polarization
angle of the incident electric field.



Progress In Electromagnetics Research, Vol. 121, 2011 325

b̄(N) =
[

be(N)

bh(N)

]
(22)

be(N) = exp(iξz) sin θi cosψis (23)

bh(N) = exp(iξz) sin θi sinψis (24)

s =
[
im exp(−imϕi)

]
(25)

where κ =
√

k2
0 − ξ2, ξ = k0 cos θi and ψi is the polarization angle

of the incident electric field as depicted in Figure 3. By tracing the
scattering process (Figure 2) over the layered cylindrical arrays, the
generalized reflection matrices ˜̄Rν,ν−1 viewed from region (ν) to all of
the inner regions could be obtained as follows:

˜̄Rν,ν−1 = Ū−1
ν−1,νR̄ν,ν−1Ūν−1,ν + Ū−1

ν−1,νF̄ν,ν−1
(
Ī− ˜̄Rν−1,ν−2R̄ν−1,ν

)−1 ˜̄Rν−1,ν−2F̄ν−1,νŪν−1,ν (26)

The generalized reflection matrix ˜̄Rν,ν−1 could be calculated through
the N times recursion process starting with ˜̄R2,1 = R̄2,1. Since the
reflection R̄ν,ν−1, R̄ν−1,ν and transmission F̄ν−1,ν , F̄ν,ν−1 matrices for
each cylindrical array and the generalized reflection matrix ˜̄Rν,ν−1 for
the N -layered cylindrical structure are derived, the total field in each
region of the cylindrical structure could be defined. The total field in
the outermost (N)-th region is expressed as:

ψ̄tot(N) =
(
Φ̄T · Ū1,N + Ψ̄T · Ū1,N · ˜̄RN,N−1

)
· b̄(N) (27)

In the (ν)-th region inside the cylindrical structure, the total field is
given by the following expression:

ψ̄tot(ν) = (Φ̄T · Ū1,ν + Ψ̄T · Ū1,ν · ˜̄Rν,ν−1) · ˜̄Fν,N · b̄(N) (28)

where
˜̄Fν,N = Λ̄ν,ν+1 · Λ̄ν+1,ν+2 . . . Λ̄N−1,N (29)

Λ̄ν,ν+1 = (Ī− R̄ν,ν+1 · ˜̄Rν,ν−1)−1 · F̄ν,ν+1 · Ūν,ν+1 (30)

Transmitted field in the innermost (0)-th region is given as:

ψ̄tot(0) = Φ̄T · ˜̄F0,N · b̄(N) (31)

Here ˜̄F0,N is the generalized transmission matrix in the innermost
(0) region from the outermost (N) region. If dν−1,ν = 0, we have
Ūν−1,ν = Ī and (26)–(31) reduce to the expressions for concentric
configuration of cylindrical EBG structure (Figure 1(a)).



326 Jandieri, Yasumoto, and Cho

5. NUMERICAL RESULTS AND DISCUSSIONS

Although a substantial number of numerical results could be generated
for different configurations of cylindrical EBG structures, for the
numerical analysis we consider two different concentric and eccentric
configurations of three-layered (N = 3) cylindrical EBG structures
composed of M1 = M2 = M3 = 8 identical circular rods r1 = r2 =
r3 = 0.15R1 periodically distributed along each cylindrical layer having
radii R1, R2 = 2R1, R3 = 3R1 and δ1 = δ2 = δ3 = 0◦. In case of
eccentric cylindrical configuration, we assume that O1O2 = O2O3 =
0.4R1. Firstly, we numerically investigate the spectral responses of
both concentric and eccentric cylindrical structures in terms of the
generalized transmission matrix ˜̄FN,0(ω, θ) given in (14)–(19). The
circular rods are assumed to be perfect conductors.

When the Hertzian dipole source is located at the global origin
O of concentric cylindrical EBG structure, the structure is symmetric
viewed from the origin O and only (0, 0), (±8, 0), (±16, 0) elements
contribute in the excitation of the lowest principle cylindrical Floquet
modes [29]. Figure 4 shows the dependence of the generalized

Figure 4. Frequency response of the generalized transmission matrix
| ˜̄Fm,0

3,0 (ω, θ)| for three layered concentric cylindrical EBG structure
composed of eight perfect conductor circular rods (r1 = r2 = r3 =
0.15R1) periodically distributed along each cylindrical layer having
radii R1, R2 = 2R1, R3 = 3R1. Note that | ˜̄Fm,0

3,0 (ω, θ)| = | ˜̄F−m,0
3,0 (ω, θ)|.

Green line — θ = 20◦; red line — θ = 45◦; blue line — θ = 60◦; black
line — θ = 90◦.
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transmission matrix | ˜̄Fm,0
3,0 (ω, θ)| as a function of R1ω/c, where

˜̄Fm,0
3,0 (ω, θ) represents (m, 0) elements of matrix ˜̄F3,0(ω, θ). From

Figure 4 we can see that there exist a series of stopband and passband
for each of the excited cylindrical mode. The transmission is very
small in the stopband regions, whereas sharp resonance peaks appear
in the passband regions. The main resonances occur at R1ω/c = 0.41
and R1ω/c = 0.915 for θ = 90◦ (black line), at R1ω/c = 0.475,
R1ω/c = 1.055 and R1ω/c = 1.17 for θ = 60◦ (blue line), at
R1ω/c = 0.58 and R1ω/c = 1.295 for θ = 45◦ (red line) and at
R1ω/c = 1.2 for θ = 20◦ (green line).

Firstly, we study the total field distributions inside the concentric
cylindrical EBG structure illuminated by obliquely incident TM
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Figure 5. Total field distribution of the three layered (N = 3)
concentric cylindrical EBG structure composed of eight (M = 8)
perfect conductor circular rods (r1 = r2 = r3 = 0.15R1) periodically
distributed along each layer having radii R1, R2 = 2R1, R3 = 3R1 for
the excitation of oblique incidence TM plane wave at R1ω/c = 0.58:
(a) θi = 90◦, (b) θi = 60◦, (c) θi = 45◦ and (d) θi = 20◦; ϕi = 180◦.
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polarized plane wave ψi = 0◦ when ϕi = 180◦. Figure 5 shows the total
field distribution at the normalized excitation frequency R1ω/c = 0.58,
which corresponds to the resonance frequency for | ˜̄F0,0

3,0(ω, θ = 45◦)|
and | ˜̄F8,0

3,0(ω, θ = 45◦)| as presented in Figure 4 (red line). On the other
hand, R1ω/c = 0.58 lies in a stopband region for other cylindrical
Floquet modes. Since | ˜̄F0,0

3,0(ω, θ = 45◦)| À | ˜̄F8,0
3,0(ω, θ = 45◦)| we can

see that a strong enhancement of the field intensity is observed at the
oblique incidence of TM plane wave for θi = 45◦ and a focused field
pattern is formed in the innermost region of the concentric cylindrical
EBG structure (Figure 5(c)). Note that at the other angles of θi the
innermost region of the cylindrical EBG structure is shaded because
of the stopband nature of the structure.
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Figure 6. Total field distribution of the three layered (N = 3)
concentric cylindrical EBG structure composed of eight (M = 8)
perfect conductor circular rods (r1 = r2 = r3 = 0.15R1) periodically
distributed along each layer having radii R1, R2 = 2R1, R3 = 3R1 for
the excitation of oblique incidence TM plane wave θi = 60◦ at: (a)
R1ω/c = 0.475, (b) R1ω/c = 1.055, (c) R1ω/c = 1.17.
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In Figure 6 we present the total field distributions of the concentric
cylindrical EBG structure obliquely illuminated by the TM polarized
plane wave θi = 60◦ at the normalized excitation frequencies R1ω/c =
0.475, R1ω/c = 1.055 and R1ω/c = 1.17, which correspond to the
resonance frequencies for | ˜̄F0,0

3,0(ω, θ = 60◦)|, | ˜̄F8,0
3,0(ω, θ = 60◦)| and

| ˜̄F16,0
3,0 (ω, θ = 60◦)| (blue line in Figure 4). It could be seen that the

interference between the resonated cylindrical modes produces a strong
focused field pattern in the innermost region (Figures 6(a), 6(b)) and
a unique field pattern with 16 maxima between the first and second
layers of the concentric cylindrical EBG structure (Figure 6(c)). The
appearance of field pattern with 16 maxima at R1ω/c = 1.17 could be
explained by the strong contribution of (16, 0) cylindrical mode in the
formation of the field (Figure 4).

Next, we numerically investigate the resonance and stopband
characteristics of eccentric cylindrical EBG structures in terms of the
frequency responses of the generalized transmission matrix ˜̄FN,0(ω, θ)
given in (14)–(19). Hertzian dipole source is located at the global
origin O of eccentric cylindrical EBG structure, which coincides with
the centre of the 1-st cylindrical layer. It should be mentioned that
comparison to the concentric configuration, the eccentric cylindrical
EBG structure is not symmetric viewed from the origin O and all
cylindrical Floquet modes m = 0,±1,±2,±3, . . .; n = 0 are excited.

Figure 7. Frequency response of the generalized transmission matrix
| ˜̄Fm,0

3,0 (ω, θ)| of the lowest six cylindrical modes for eccentric cylindrical
EBG structure O1O2 = O2O3 = 0.4R1. Other parameters are the same
as those in Figure 4.
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Figure 8. Total field distribution of the three layered (N = 3)
eccentric cylindrical EBG structure O1O2 = O2O3 = 0.4R1 for the
excitation of oblique incidence TM plane wave θi = 600 at: (a)
R1ω/c = 0.475, (b) R1ω/c = 1.055. Other parameters are the same as
those in Figure 6.

Figure 7 shows the dependence of the generalized transmission matrix
| ˜̄Fm,0

3,0 (ω, θ)| as a function of R1ω/c for the lowest six cylindrical Floquet
modes. From Figure 7 we could see that the most of the resonance
peaks are at the same frequencies as those for concentric configuration,
however the peaks’ maxima are different. Note that the resonance peak
at R1ω/c = 1.17 for the concentric configuration (Figure 4), which
contributed in the formation of a unique field pattern in Figure 6(c),
is not observed in case of eccentric configuration. In Figure 8 the
total field distributions of the eccentric cylindrical EBG structure
illuminated by the TM polarized plane wave θi = 60◦ at the normalized
excitation frequencies R1ω/c = 0.475 and R1ω/c = 1.055 are presented
and compared to those in Figure 6 for concentric configuration. From
Figure 8 it could be seen that the total field intensity is greatly
enhanced in the innermost region at R1ω/c = 0.475, whereas it slightly
decreases at R1ω/c = 1.055. It could be explained by the interference
of the cylindrical Floquet modes at particular resonance frequencies
(Figure 7).

Next, we investigate the radiation pattern of a Hertzian dipole
source located inside the concentric cylindrical EBG structure in both
principle H-plane and E-plane. The geometry of the problem is the
same as for Figures 4–6. The radiation patterns in both H-plane and
E-plane are presented in Figures 9 and 10 for two resonance frequencies
R1ω/c = 0.41, 0.915 at θ = 90◦ (principle H-plane), when the Hertzian
dipole is located at the origin of the cylindrical EBG structure ds = 0.
At R1ω/c = 0.41 (dashed line) the radiation pattern in H-plane is
almost omnidirectional. It could be explained by the fact that the
absolute value of the (0, 0) component of the generalized transmission
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Figure 9. Radiation patterns of hertzian dipole in H-plane at two
resonance frequencies for θ = 90◦ (Figure 4) of concentric cylindrical
EBG structure: R1ω/c = 0.41 (dashed line) and R1ω/c = 0.915
(dashed-dotted line). Radiation pattern of hertzian dipole without
cylindrical EBG (solid line).

30

210

60

240

90

270

120

300

150

330

180 0

dB0

-10

-20

-10

0

Figure 10. The same as in Figure 9 in E-plane.

matrix is much greater than that for the excited higher order cylindrical
Floquet modes | ˜̄F0,0

3,0(ω, θ = 90◦)| À | ˜̄F8,0
3,0(ω, θ = 90◦)|. Note that

if (±8, 0) mode of the generalized transmission matrix were almost
zero | ˜̄F8,0

3,0(ω, θ = 90◦)| ≈ 0, completely omnidirectional radiation
pattern would be formed [29], since radiated field would not contain
any term with ϕ dependence. At R1ω/c = 0.915 (dashed-dotted line)
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the radiation pattern with 8 beams is formed, since the higher order
modes (±8, 0), (±16, 0) also give the contribution in the formation of
the radiated field. However, the multibeam effect is not substantial.
This is because | ˜̄F0,0

3,0(ω, θ = 90◦)| is a big value at R1ω/c = 0.915
and it compensates the effect of interaction of the higher order modes
to form the strongly directive multibeam radiation pattern. Despite
the fact that the proposed cylindrical EBG structure could not be
considered as an appropriate structure from the viewpoint of design
the multibeam antenna, our analysis have demonstrated the principles
of the formation of multibeam radiation pattern of Hertzian dipole
source and shown that the directivity of radiation of a Hertzian dipole
is closely related to the resonance characteristics in the transmission
spectra of the cylindrical EBG structure. The results are not presented
here, however, it should be mentioned that for realization of the
multibeam radiation pattern with 8 narrow beams in H-plane in the
presence of cylindrical EBG structure, it would be better to increase
the number of circular rods along the second and third cylindrical
layers such as M2 = 2M1 = 16, M3 = 3M1 = 24 [29]. Interestingly,
narrow beam radiation patterns in the vertical direction are formed
at both resonance frequencies in E-plane (ϕ = ϕmax) as presented in
Figure 10. For comparison the radiation patterns of Hertzian dipole
source without the cylindrical EBG structures are also plotted by a
solid line in both principle planes.
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Figure 11. Radiation patterns of Hertzian dipole in H-plane at
two resonance frequencies (Figure 4) of concentric cylindrical EBG
structure: R1ω/c = 0.41 (solid line), R1ω/c = 0.475 (dashed-dotted
line) and R1ω/c = 0.58 (dashed line).
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Figures 11 and 12 illustrate the radiation pattern of Hertzian
dipole located at a distance ds/R1 = 0.8 from the origin in the
innermost region of concentric cylindrical EBG structure. We should
mention that when the excitation source is not located at the
origin, all the components of the generalized transmission matrix
give contribution in the formation of the radiated field. Note that
in the previous case, when the source was located at the origin
ds = 0, only | ˜̄Fm,0

3,0 (ω, θ)|, m = ±8,±16,±24, . . . components have
been taken into account. We consider three normalized frequencies
R1ω/c = 0.41, 0.475, 0.58, which correspond to three lowest resonance
frequencies for θ = 90◦, θ = 60◦ and θ = 45◦, respectively
(Figure 4). As it could be expected, very narrow directive patterns
are observed in E-plane along θ = 90◦, θ = 60◦ and θ = 45◦ at
these particular frequencies plotted by solid, dashed-dotted and dashed
lines, respectively. However, no directive radiation patterns are formed
in principle H-plane (Figure 11). In order to improve the radiation
pattern in H-plane we placed one additional circular rod of perfect
conductor having radius rorig/R1 = 0.2 at the origin of the cylindrical
EBG structure. This circular rod could serve as a ground plane for
cylindrical EBG structure. Please note that reflection matrix of this
circular rod is just a diagonal T -matrix of a circular rod in isolation.
From Figure 13 it follows that the radiation pattern in H-plane is
substantially improved and very fine radiation patterns are formed in
vertical direction. As for E-plane shown in Figure 14, the radiation
patterns are changed comparison to Figure 12 by the interaction with
the circular rod placed at the origin. Three directive radiation pattern
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Figure 12. The same as in Figure 11 in E-plane.
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are formed in the vertical direction, whose Full Width at Half Maxima
(FWHM) are approximately 60 degree.

Finally, we study in some detail the co-polarization and
cross-polarization scattering characteristics between the electric and
magnetic fields at the oblique incidence of plane waves on the
cylindrical EBG structures. Geometry of the problem is the same as
for Figures 4–8. Using the asymptotic behavior of cylindrical Hankel
function in (27), the scattered fields in the far-zone κρ À 1 is expressed
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Figure 13. The same as in Figure 11, but one additional perfect
conductor circular rod having radius rorig/R1 = 0.2 is placed at the
origin of concentric cylindrical EBG structure.
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Figure 14. The same as in Figure 13 in E-plane.
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as follows: [
Es

z

Ĥs
z

]
'

[
fe(ϕ, θi, ϕi)
fh(ϕ, θi, ϕi)

]
exp(κρ)√

ρ
(32)

where

fe(ϕ, θi, ϕi) =
1− i√

πk0 sin θi

(∑
m,n

(−i)m exp(imϕ)REE
N,N−1;mnbe(N)

n

+
∑
m,n

(−i)m exp(imϕ)REH
N,N−1;mnbh(N)

n

)
(33)

fh(ϕ, θi, ϕi) =
1− i√

πk0 sin θi

(∑
m,n

(−i)m exp(imϕ)RHE
N,N−1;mnbe(N)

n

+
∑
m,n

(−i)m exp(imϕ)RHH
N,N−1;mnbh(N)

n

)
(34)

Here b
e(N)
n and b

h(N)
n are the amplitudes of the incident fields given

by (20)–(25). Note that the scattering amplitudes in (33), (34)
are expressed through the generalized reflection matrices of both co-
polarized and cross-polarized space harmonics. In the numerical results
the normalized frequency parameter is R1/λ = 0.7 and ϕi = 180◦.
In Figures 15–18 we plot the normalized differential scattering cross-
section:

k0σ = 2π
1

sin3 θi

(
|Es

z |2 + |Hs
z |2

)

= 2π
1

sin3 θi

(∣∣∣f̃e(ϕ, θi, ϕi)
∣∣∣
2
+

∣∣∣f̃h(ϕ, θi, ϕi)
∣∣∣
2
)

(35)

Figures 15 and 16 illustrate the dependence of the normalized
differential scattering cross section (35) versus angle of observation ϕ
at different angles of incidence θi for both concentric and eccentric
configuration of the cylindrical EBG structures, when the circular
rods are dielectrics. Dielectric permittivity of the circular rods is
ε1 = ε2 = ε3 = 4.0ε0. In Figure 15 we have assumed that an
angle of polarization of an incident electric field is ψi = 0◦, which
means that the incident field is TM polarized plane wave (be(N) 6= 0,
bh(N) = 0), whereas in Figure 16 an angle of polarization of the
incident electric field is ψi = 90◦, which means that the incident
field is TE polarized plane wave (be(N) = 0, bh(N) 6= 0). In
Figures 15(b), 15(d) and 16(b), 16(d) we could see that the cross-
polarization scattering effect is substantial at the low angles of oblique
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(a) (b)

(c) (d)

Figure 15. Normalized differential scattering cross section of (a),
(c) co-polarized k0σEE and (b), (d) cross-polarized k0σHE space-
harmonics versus angle of observation ϕ at oblique incidence of
TM plane waves (ψi = 0◦) on 3-layered concentric and eccentric
configuration of cylindrical EBG structures composed of 8 dielectric
circular rods (ε1 = ε2 = ε3 = 4.0ε0, r1 = r2 = r3 = 0.15R1)
periodically distributed along each layer having radii R1, R2 = 2R1,
R3 = 3R1. Green line — θi = 20◦; red line — θi = 45◦; blue line —
θi = 60◦; black line — θi = 90◦.

incidence θi = 20◦ (green line) and θi = 45◦ (red line) for both
configurations of cylindrical EBG structures and polarization angle
ψi of the incident field. The normalized differential scattering cross-
sections k0σHE and k0σEH for the cross-polarized space-harmonics are
almost 20 dB around ϕ = 90◦, 270◦ at θi = 20◦. Note that cross-
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(a) (b)

(d)(c)

Figure 16. Normalized differential scattering cross section of (a),
(c) co-polarized k0σHH and (b), (d) cross-polarized k0σEH space-
harmonics versus angle of observation ϕ at oblique incidence of
TE plane waves (ψi = 90◦) on 3-layered concentric and eccentric
configuration of cylindrical EBG structures. Other parameters are the
same as in Figure 15.

polarization scattering effect disappears in case of normal incidence of
plane waves when θi = 90◦. The results are not presented here, however
it should be mentioned that the cross-polarization effect becomes very
small in the lower frequency range, when R1/λ < 0.4. As for the co-
polarized scattering cross-sections k0σEE and k0σHH , strong directive
peaks in the forward direction ϕ = 180◦ in the range of 25 dB–35 dB
could be observed at different angles of oblique incidence θi for both
configurations of cylindrical EBG structure and polarization angle ψi.
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From the comparison of concentric and eccentric configurations, one
distinguishable feature appears at the low angle of oblique incidence
θi = 20◦ (green line), when the strong enhancement in the backward
direction is observed for eccentric configuration.

(a) (b)

Figure 17. Normalized differential scattering cross section of
co-polarized k0σEE space-harmonics versus angle of observation ϕ
at oblique incidence of TM plane waves (ψi = 0◦) on 3-layered
(a) concentric and (b) eccentric configuration of cylindrical EBG
structures composed of 8 perfect conductor circular rods (r1 = r2 =
r3 = 0.15R1) periodically distributed along each layer having radii R1,
R2 = 2R1, R3 = 3R1. Green line — θi = 20◦; red line — θi = 45◦;
blue line — θi = 60◦; black line — θi = 90◦.

(a) (b)

Figure 18. The same as in Figure 17 but at oblique incidence of TE
plane waves (ψi = 90◦).
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The normalized differential scattering cross section both concen-
tric and eccentric configuration of the cylindrical EBG structures,
when the circular rods are perfect conductors is shown in Figures 17
and 18. In case of perfect conductor scatterers the cross-polarizations
scattering effect disappears and only co-polarized scattering effect is
observed. From the comparison of the figures for concentric and ec-
centric configurations, it follows that scattered intensity in the forward
direction is strongly enhanced for the concentric configuration. Scat-
tering intensity for incident TM waves (Figure 17) is much stronger
than that for TE wave incidence (Figure 18) for both configurations,
which has not been observed in case of dielectric circular rods.

In order to confirm the accuracy of the presented numerical results,
we have checked the optical theorem [26] for our solutions. The
scattering cross section σs and the extinction cross section σe of the
cylindrical structures in case of the oblique incidence are given by:

σs

(
θi, ϕi

)
=

∫ 2π

0

(∣∣fe
(
ϕ, θi, ϕi

)∣∣2 +
∣∣∣fh

(
ϕ, θi, ϕi

)∣∣∣
2
)

dϕ (36)

σe

(
θi, ϕi

)
= −2 sin θi

√
π

κ
Re

{
(1 + i)f

(
ϕi, θi, ϕi

)}
(37)

where f(ϕ, θi, ϕi) = fe(ϕ, θi, ϕi) for TM wave incidence (ψi = 0◦)
and f(ϕ, θi, ϕi) = fh(ϕ, θi, ϕi) for TE wave incidence (ψi = 90◦).
The results are presented in Tables 1 and 2. It is evident that the
present solutions well satisfy the optical theorem. Further evidence of

Table 1. Test of optical theorem for three layered concentric and
eccentric cylindrical EBG structures presented in Figures 15 and 16 at
different truncation number L, θi = 60◦.

Concentric

Cylindrical Structure

Eccentric

Cylindrical Structure

L
Optical Theorem Optical Theorem

σs(θ
i, ϕi) σe(θ

i, ϕi) σs(θ
i, ϕi) σe(θ

i, ϕi)

TM

4 11.77152 14.97314 8.29191 13.94306

12 34.26664 34.73267 39.49036 40.02379

22 32.47690 32.47690 37.67755 37.67755

25 32.47690 32.47690 37.67755 37.67755

TE

4 11.16417 12.13700 11.98860 13.01658

12 22.29182 22.70043 21.52457 21.88859

22 23.89935 23.89935 22.92301 22.92301

25 23.89935 23.89935 22.92301 22.92301
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Table 2. Test of optical theorem for three layered concentric and
eccentric cylindrical EBG structures presented in Figures 17 and 18 at
different truncation number L, θi = 60◦.

Concentric

Cylindrical Structure

Eccentric

Cylindrical Structure

L
Optical Theorem Optical Theorem

σs(θ
i, ϕi) σe(θ

i, ϕi) σs(θ
i, ϕi) σe(θ

i, ϕi)

TM

4 10.41336 13.32741 8.00007 12.74957

12 38.63818 38.75950 38.30615 39.01999

22 38.57445 38.57445 36.17259 36.17259

25 38.57445 38.57445 36.17259 36.17259

TE

4 3.72721 4.86302 5.29174 6.55746

12 11.99529 12.40411 12.45603 12.85726

22 12.71366 12.71366 13.63746 13.63746

25 12.71366 12.71366 13.63746 13.63746

the validity of the proposed method is provided by comparisons with
previously published computational results. By use of our computation
code we can reproduce pertinent numerical results shown in [20]
(Figures 5 and 6) and in [28] (Figures 6 and 7).
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