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Abstract—The effect of exponentially graded material on the modal
dispersion characteristics, group velocity and effective group index as
well as phase index of refraction of a binary One-Dimensional Plasma
Photonic Crystals (1D-PPCs) has been studied. The dispersion
relation is derived by solving Maxwell’s equations and using the
transfer matrix method. The anomalous dispersion characteristics are
observed for different values of selection parameters. The introduction
of graded dielectric layers in 1D-PPCs provides additional parameters
for controlling the propagation characteristics of 1D-PPCs. Also, the
band gap is shown to become larger with the increase of plasma
frequency and plasma width. Hence the structure having plasma
and exponentially graded dielectric layer in unit cell is more useful
for controlling and tuning of the plasma functioning devices than the
structure having plasma and homogeneous dielectric layer in one unit
cell.

1. INTRODUCTION

The dispersion characteristics of photonic crystals (PCs) depend on the
strong coupling of forward and backward propagating electromagnetic
(EM) waves generated by the periodic arrangement of indices within
certain frequency range. Considerable amount of investigations have
been dedicated towards the study of behavior of photons in 1D-
PCs [1–4]. Discussions on a wide variety of such PCs have been
presented to achieve suitable forbidden band gaps [5–7] by producing
defects, disorders, etc. in it. Most of the explored 1D-PCs are
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now widely recognized and implemented in various issues related
to optics and photonics. Recently, the study of interaction of EM
waves with periodic plasma layers which is called Plasma Photonic
Crystals (PPCs) has received great attention due to its various
applications, such as plasma lens, plasma antenna, plasma stealth
aircraft, frequency filters, etc. [8–11]. These PPCs can be controlled by
external parameters and have the characteristics of PCs and plasma.
The concept of PPCs was firstly proposed by Hojo and Mase [12].
The transmission properties of 1D-PPCs in terms of number of unit
cells, thickness, and density of plasma layer is studied by Laxmi and
Mahto [13]. These PPCs structure was found to work as a perfect
reflector/mirror in a certain range of frequency [14, 15].

The propagation characteristics of PPCs are not only the function
of plasma parameter but also the function of angle of incidence [16, 17].
Very recently, Prasad et al. [18, 19] have investigated the modal
propagation characteristics of ternary 1D-PPCs structures and have
shown the plasma frequency, plasma width and dielectric constant
of dielectric media have influence on band gap, group index, group
velocity and phase velocity.

In most of the works discussed above related to PPCs, the band
gaps are controlled by plasma parameters, such as plasma density,
plasma frequency, relative plasma width etc., but these parameters
have their limitations viz., we cannot vary plasma density much. Hence
to obtain some additional parameters for controlling the band gap in
the desire range there are need of non-homogeneous material whose
permittivity varying with space.

Moreover, the investigations pertaining to 1D-PCs containing
graded materials are still less discussed in the literatures whereas some
studies of propagation of light in optical waveguide having graded
materials, whose physical properties can vary continuously in space,
appear in the literature [20–22]. These studies show that the change
of physical properties of graded materials makes them different in
behavior from the homogeneous materials and conventional composite
materials. The fabrications of graded materials are quite easy where
the variation of permittivity and permeability along a direction can
be achieved by imposing the temperature profile because permittivity
and permeability of materials are related to temperature [23]. Also by
using the diffusion method, one can fabricate compositionally graded
material in which compositions vary along a direction [24]. The optical
property of 1D-PCs containing graded materials is studied by Sang and
Li [25]. They also studied the properties of defect modes in 1D-PCs
containing a graded defect layer [26] and found that the introduction of
a graded defect layer in 1D-PCs provides possible mechanism for tuning
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the defect modes including the position, intensity and number of mode.
Recently Thapa et al. [27] have studied the omni-directional 1D-PCs
having exponential graded materials and found two omni-directional
reflection (ODR) bands in this structure; one in the visible and other
in the infrared region. The behavior of the ODR band in the infrared
region is different from the usual Bragg ODR band in the visible region.

It is clear from above discussions that the graded material may also
give additional degree of freedom to control the plasma photonic band
gaps preserving the characteristics of conventional PCs and plasma.
Therefore, in the present paper, the propagation of EM waves in 1D-
PPCs having graded dielectric profile in the unit cell is considered
which is not discussed by any researchers till now. Among the various
graded index profiles such as Gaussian, exponential, complementary
error function, etc., we choose only exponential graded profile because
this type of profiles are explicitly solved in terms of Bessel functions.
The paper is organized as follow: in Section 2 the dispersion relation
of the proposed structure is given. The other necessary formulas used
in this paper are also presented. Section 3 is devoted to result and
discussion. A conclusion is drawn in Section 4.

2. THEORETICAL MODELING

The proposed binary 1D-PPCs consist of plasma and graded dielectric
layer in one unit cell. In the graded dielectric layer the permittivity is
exponentially varying in space. We assume that the space-variation of
permittivity is perpendicular to the interface of layers. In this study
we have considered nonmagnetic materials for both plasma and graded
dielectric regions. The permittivity profile in a unit cell is written as

ε (ω, x) =

{
1− ω2

pe

ω2 ; (n− 1)Λ + b < x < nΛ
α eβx; (n− 1) Λ < x < (n− 1)Λ + b

(1)

with condition that ε (ω, x) = ε (ω, x + Λ), where Λ = a + b with a
and b are widths of plasma and graded dielectric layer as shown in

Fig. 1. Here ωpe =
√

e2 np
/
ε0 m is the electron plasma frequency, np is

density of plasma, β = 1
b ln εb

α with α and εb are the initial and final
permittivity of graded dielectric layer at boundaries x = 0 and x = b
respectively.

We know that the one dimensional Maxwell’s equation for En(x)
at normal incidence in nth unit cell is written as

d2

dx2
En(x) +

ω2

c2
ε(ω, x)En(x) = 0, (2)
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Figure 1. Schematic representation of the unit cell of binary 1D-PPCs
having exponentially graded material.

Hence the one dimensional Maxwell’s equation for both layers in nth
unit cell is separately written as

d2

dx2
En(x)+

ω2

c2

(
1−ω2

pe

ω2

)
En(x) = 0, (n− 1)Λ + b < x < nΛ

d2

dx2
En(x)+

ω2

c2

(
α eβx

)
En(x) = 0, (n− 1)Λ < x < (n− 1)Λ + b

(3)

By solving the above Maxwell’s wave Equation (3), we can write the
electric field in nth unit cell for ω > ωpe as

En(x)=





aneikp(x−nΛ) + bne−ikp(x−nΛ) (n−1)Λ + b < x < nΛ
cnJ0

(
2ω
√

α eβ(x−nΛ)

cβ

)
+dnY0

(
2ω
√

αeβ(x−nΛ)

cβ

)

(n−1)Λ < x < (n− 1)Λ + b

(4)

and for ω < ωpe as

En (x) =





aneκ(x−nΛ) + bne−κ(x−nΛ) (n−1)Λ + b < x < nΛ
cnJ0

(
2ω
√

αeβ(x−nΛ)

cβ

)
+ dnY0

(
2ω
√

αeβ(x−nΛ)

cβ

)

(n− 1)Λ < x < (n− 1)Λ + b

(5)

where kp = ω
c

√
1− ω2

pe

ω2 , κ = ω
c

√
ω2

pe

ω2 − 1. Here J0 and Y0 are the zero-
th order Bessel function of first kind and second kind respectively.

Imposing the continuity of electric field En(x) and its derivatives
∂En(x)

∂x at interfaces x = (n − 1)Λ, x = (n − 1)Λ + b and arranging
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coefficients an−1, bn−1, an and bn by transfer matrix method [28], we
obtained the following matrix relation:(

an−1

bn−1

)
=

(
A B
C D

)(
an

bn

)
(6)

where all the matrix elements A, B, C and D are given in Appendix A.
The matrix in Equation (6) is unit cell transfer matrix which relates
the complex wave amplitudes of incident wave and reflected wave in
(n− 1)th unit cell to respective amplitudes in the nth unit cell.

According to Floquet Theorem, a wave propagating in a periodic
medium is of form E (x) = E (x) ei(ωt−Kx), where E (x) is periodic with
period Λ, that is, E (x + Λ) = E (x). Hence the dispersion relation [28]
for proposed structure can be written as

K =
(

1
Λ

)
cos−1

[
1
2

(A + D)
]

; (7)

Here K is Bloch wave number. Some other parameters such as; group
velocity, effective phase index (neff (p)) and effective group index (ng)
are also calculated for the proposed structure. The expression of group
velocity can be obtained by taking derivative of K(ω) with respect to
ω which is written as:

Vg =
(

dK (ω)
dω

)−1

(8)

Expression for effective phase index (neff (p)), which is effective index
associated with the effective phase velocity is given by

neff (p) =
cK (ω)

ω
(9)

The effective group index (ng) [4] can be expressed as:

ng =
c

Vg
(10)

3. RESULTS AND DISCUSSION

We are now in position to present the results of numerical calculations
for Equations (7) to (10).

The exponentially graded material of width b with permittivity
εb = α eβ x is taken. For the comparison purpose with the result
reported in [12], two sets of values for α and ε, namely, α = 10,
εb = 2.04 and α = 6 εb = 4.13 have been chosen in such a way that
the average volume permittivity remain fixed at 5. The plasma of
width a having frequency dependent permittivity ε = 1− (

ω2
pe/ω2

)
is
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taken. Here a = d × b and d is a constant related to the width of
plasma layer (for d = 1, a = b). Also the normalized plasma frequency
(P = ωpe × b/c) 1, 2, and 4 and the normalized frequency ω × b/c,
have been considered. There are five selection parameters P, b, d, α
and εb considered in the numerical calculation which may affect the
propagation characteristics of proposed structure.

The curve between normalized frequencies and Bloch wavevector
K (called dispersion curve) is shown in Fig. 2 to Fig. 4. These curves
show an anomalous dispersion relation for different values of selection
parameters. Here the effects of theses parameters on the band gap
have been estimated. Fig. 2 shows the dispersion relation of EM
waves for P = 1, b = 500µm, d = 1 with α = 10, εb = 2.04 and
α = 6, εb = 4.13. These dispersion curves are plotted for two different
variations in the permittivity of graded dielectric layers keeping average
volume permittivity as constant. If the slope of the permittivity of
graded dielectric layer changes sharply then the width of the gap and
phase velocity increase considerably. This is due to reason that sharp
varying permittivity of graded dielectric layer increases the Bragg’s
reflection. The comparison of present dispersion curves with those
obtained in [12] show that the width of the band gap in the present
case is nearly constant in the given frequency range. This is the novelty

Figure 2. Dispersion curves for P = 1, b = 500µm, d = 1 with
α = 10, εb = 2.04 and α = 6, εb = 4.13.
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in the present dispersion curves. Fig. 3 shows the dispersion relation
of EM waves for P = 4, b = 500 µm, d = 1 with α = 10, εb = 2.04
and α = 6, εb = 4.13. This figure is plotted here to see the effect of
plasma frequency or plasma density. By comparing Fig. 3 with Fig. 2
it is found that the increase in plasma frequency or plasma density
flattened the dispersion curve and increases the band gap considerably
The similar results are also obtained in [12]. Fig. 4 shows the effect
of plasma width on the dispersion curves for P = 2, b = 500µm,
α = 6, εb = 4.13 with d = 0.1 and d = 1. It is observed that as the
width of plasma layer increases from d = 0.1 to d = 1 the band gap get
compressed and phase velocity decreases up to ω×b/c ∼= 0.15 after this
the phase velocity increases very rapidly and become larger than those
obtained for d = 0.1. This is an interesting result in the dispersion of
the proposed PPCs structure which is not obtained in [12].

The curves of effective phase index neff (p) with respect to the
normalized frequency for P = 1, b = 500µm, d = 1 with α = 10,
εb = 2.04 and α = 6, εb = 4.13 are shown in Fig. 5. This
figure shows that the effective phase index shifted toward higher
frequency at the cost of its magnitude for the slow variation in the
permittivity of graded dielectric layers. The variation of normalized
group velocity with respect to the normalized frequency for P = 1,
b = 500µm, d = 1 with α = 10, εb = 2.04 and α = 6, εb = 4.13
is also studied and shown in Fig. 6. It is clear that group velocity

Figure 3. Dispersion curves for P = 4, b = 500µm, d = 1 with
α = 10, εb = 2.04 and α = 6, εb = 4.13.
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Figure 4. Dispersion curves for P = 2, b = 500µm, α = 6, εb = 4.13
with d = 0.1 and d = 1.

Figure 5. The variation of the effective phase index neff (p) with
respect to normalized frequency for P = 1, b = 500µm, d = 1 with
α = 10, εb = 2.04 and α = 6, εb = 4.13.
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Figure 6. The variation of normalized group velocity with respect
to normalized frequency for P = 1, b = 500µm, d = 1 with α = 10,
εb = 2.04 and α = 6, εb = 4.13.

becomes negative in certain frequency range for both considered cases
because of anomalous dispersion relations. The left-right and up-down
symmetries for negative as well as for positive group velocities in both
cases are observed. This figure shows that if the variation in the
permittivity of graded dielectric layer is sharp then the numbers of
peaks for positive and negative group velocities are larger then those
for slowly varying permittivity in given frequency range. It is also
observed that the sharp varying graded dielectric layer permittivity
shift the group velocities towards lower frequency range and decrease
the magnitude of peaks of negative and positive group velocities.

Finally, the curves of effective group index ng with respect to
the normalized frequency for P = 1, b = 500µm, d = 1 with
α = 10, εb = 2.04 and α = 6, εb = 4.13 are obtained and shown in
Fig. 7. These curves have been studied for two different permittivity
profiles in the exponential graded layer. The magnitude of group index
increases considerably, near the band gap edges, for sharp varying
permittivity profile of graded dielectric layer. The negative effective
group of refraction, near band edges, for slow varying permittivity is
at ω × b/c ∼= 1 and 2.5 and for sharp varying permittivity it is at
ω × b/c ∼= 0.3, 0.85, 1.48, 2.1 and 2.6. This negative effective group of
refraction may be caused by wave interference from Bragg reflection.
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Figure 7. The variation of the effective group index ng with respect
to normalized frequency for P = 1, b = 500µm, d = 1 with α = 10,
εb = 2.04 and α = 6, εb = 4.13.

4. CONCLUSION

The effect of exponentially varying dielectric permittivity on the
propagation characteristic of 1D-PPCs has been studied. The two
exponentially varying dielectric profiles (sharp and slow) are chosen
in such a way that the volume average permittivity remains constant.
As expected, all the known characteristics of PPCs are found. It is
observed that as the slope of the permittivity profile in the graded
dielectric layer changes slowly, the band gaps get compressed, and
number of band gaps increases considerably. Therefore, by changing
the slope of the permittivity profile in the graded dielectric layer, the
band gap can be controlled or tuned instead of changing the plasma
density or plasma layer width.
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APPENDIX A. UNIT CELL TRANSFER MATRIX
ELEMENTS

Unit cell transfer matrix elements A, B, C and D for ω > ωpe are given
below:

A =

1
2e−ikpa




−J0(2t1
β )kpY1(2t2

β )t2 − iJ0(2t1
β )k2

pY0(2t2
β )

−it1J1(2t1
β )Y1(2t2

β )t2 + t1Y1(2t1
β )Y0(2t2

β )kp

+Y0(2t1
β )kpJ1(2t2

β )t2 + iY0(2t1
β )k2

pJ0(2t2
β )

+it1Y1(1, 2t1
β )J1(12t2

β )t2 − t1Y1(2t1
β )J0(2t2

β )kp




(
kp

(
−J0(2t2

β )Y1(2t2
β ) + Y0(2t2

β )J1(2t2
β )

)
t2

) (A1)

B =

1
2eikpa




−J0(2t1
β )kpY1(2t2

β )t2 + iJ0(2t1
β )k2

pY0(2t2
β )

−it1J1(2t1
β )Y1(2t2

β )t2 − t1J1(2t1
β )Y0(2t2

β )kp

+Y0(2t1
β )kpJ1(2t2

β )t2 − iY0(2t1
β )k2

pJ0(2t2
β )

+it1Y1(2t1
β )J1(2t2

β )t2 + t1Y1(2t1
β )J0(2t2

β )kp




(
kp

(
−J0(2t2

β )Y1(2t2
β ) + Y0(2t2

β )J1(2t2
β )

)
t2

) (A2)

C =

−1
2 ie−ikpa




−iJ0(2t1
β )kpY1(2t2

β )t2 + J0(2t1
β )k2

pY0(2t2
β )

−t1J1(2t1
β )Y1(2t2

β )t2 − it1J1(2t1
β )Y0(2t2

β )kp

+iY0(2t1
β )kpJ1(2t2

β )t2 − Y0(2t1
β )k2

pJ0(2t2
β )

+t1Y1(2t1
β )J1(2t2

β )t2 + it1Y1(2t1
β )J0(2t2

β )kp




(
kp

(
−J0(2t2

β )Y1(2t2
β ) + Yo(2t2

β )J1(2t2
β )

)
t2

) (A3)

D =

−1
2 ieikpa




−iJ0(2t1
β )kpY1(2t2

β )t2 − J0(2t1
β )k2

pY0(2t2
β )

−t1J1(2t1
β )Y1(2t2

β )t2 + it1J1(2t1
β )Y0(2t2

β )kp

+iY0(2t1
β )kpJ1(2t2

β )t2 + Y0(2t1
β )k2

pJ0(2t2
β )

+t1Y1(2t1
β )J1(2t2

β )t2 − it1Y1(2t1
β )J0(2t2

β )kp




(
kp

(
−J0(2t2

β )Y1(2t2
β ) + Y0(2t2

β )J1(2t2
β )

)
t2

) (A4)

where t1 = ω
c

√
ε0e−β Λ; t2 = ω

c

√
ε0e−β a, kp = ω

c

√
1− ω2

pe

ω2 .
Similarly, unit cell transfer matrix elements A, B, C and D for
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ω < ωpe can be written as:

A =

−1
2e−κa




−J0(2t1
β )κY1(2t2

β )t2 − J0(2t1
β )κ2Y0(2t2

β )
+t1J1(2t1

β )Y1(2t2
β )t2 + t1J1(2t1

β )Y0(2t2
β )κ

+Y0(2t1
β )κJ1(2t2

β )t2 + Y0(2t1
β )κ2J0(2t2

β )
−t1Y1(2t1

β )J1(2t2
β )t2 − t1Y1(2t1

β )J0(2t2
β )κ




(
κ

(
−J0(2t2

β )Y1(2t2
β )− Y0(2t2

β )J1(2t2
β )

)
t2

) (A5)

B =

−1
2eκa




−J0(2t1
β )κY1(2t2

β )t2 + J0(2t1
β )κ2Y0(2t2

β )
+t1J1(2t1

β )Y1(2t2
β )t2 − t1J1(2t1

β )Y0(2t2
β )κ

+Y0(2t1
β κpJ1(2t2

β )t2 − Y0(2t1
β )κ2J0(2t2

β )
−t1Y1(2t1

β )J1(2t2
β )t2 + t1Y1(2t1

β )J0(2t2
β )κ




(
κ

(
−J0(2t2

β )Y1(2t2
β )− Y0(2t2

β )J1(2t2
β )

)
t2

) (A6)

C =

1
2 ie−κa




J0(2t1
β )κY1(2t2

β )t2 + J0(2t1
β )κ2Y0(2t2

β )
+t1J1(2t1

β )Y1(2t2
β )t2 + t1J1(2t1

β )Y0(2t2
β )κ

−Y0(2t1
β )κJ1(2t2

β )t2 − Y0(2t1
β )κJ0(2t2

β )
−t1Y1(2t1

β )J1(2t2
β )t2 − t1Y1(2t1

β )J0(2t2
β )κ




(
κ

(
J0(2t2

β )Y1(2t2
β )− Yo(2t2

β )J1(2t2
β )

)
t2

) (A7)

D =

1
2 ieκa




J0(2t1
β )κY1(2t2

β )t2 − J0(2t1
β )κ2Y0(2t2

β )
+t1J1(2t1

β )Y1(2t2
β )t2 − t1J1(2t1

β )Y0(2t2
β )κ−

Y0(2t1
β )κJ1(2t2

β )t2 + Y0(2t1
β )κ2J0(2t2

β )
−t1Y1(2t1

β )J1(2t2
β )t2 + t1Y1(2t1

β )J0(2t2
β )κ




(
κ

(
J0(2t2

β )Y1(2t2
β )− Y0(2t2

β )J1(2t2
β )

)
t2

) (A8)

where t1 = ω
c

√
ε0e−βΛ; t2 = ω

c

√
ε0e−βa, kp = ω

c

√
1− ω2

pe

ω2 and

κ = ω
c

√
ω2

pe

ω2 − 1.
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