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Abstract—In this paper, a novel beamformer for adaptive combina-
tion of two adaptive filters is proposed for interference mitigation of
sensor array. The proposed approach adaptively combines two indi-
vidual filters by coefficient weights vector instead of one scale param-
eter and takes the constraint of affine combination into consideration
rather than previous studies. Due to the more degrees of freedom
offered by the mixing vector, the proposed beamformer significantly
improves the convergence and tracking performances of the combined
filter under both stationary and non-stationary environments, respec-
tively. Based on the generalized sidelobe canceller (GSC) structure,
the optimal mixing vector is derived by Lagrange method, and then
several new effective iterative algorithms are developed for its updat-
ing in practical implementation. Furthermore, theoretical discussions
of the convergent performances and complexities of the proposed it-
erative algorithms are also investigated to verify the feasibility of the
proposed beamformer. Moreover, the proposed methods in applica-
tion of beamforming for interference mitigation of antenna array are
simulated based space-time processing technique. When compared to
existing methods, the proposed approach exhibits faster convergence
rate and higher output signal to interference plus noise ratio (SINR).
Its good behavior is illustrated through simulation results.
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1. INTRODUCTION

Adaptive beamforming techniques have been successfully developed to
improve the reception of a desired signal while suppressing interferences
at the output of a sensor array [1–4]. Adaptive or smart antennas
have become a key component for array signal processing applications
in radar, astronomy, sonar, wireless communication, and navigation
systems [5–11]. Many of these techniques have employed adaptive
algorithms to track the desired signals and suppress the interference
signals [12–19].

The reduced-rank space-time adaptive processing (STAP) filters
constitute a powerful and effective technique [20]. They exhibit faster
convergence rate, better tracking capability, and lower computational
complexity than full rank techniques. Several reduced-rank methods
have been proposed in the last decade, such as auxiliary vector
filter (AVF), conjugate gradient reduced-rank filter (CGRRF) [21],
multistage nested Wiener filter (MNWF) [22] and its modified
approaches applied in a wide area of adaptive array beamforming [23–
25]. Many important results on how to improve the convergence rate
and/or how to reduce the computational complexity of reduced-rank
adaptive filters have been obtained in the literature (see, e.g., [26, 27]).
However, there is a tradeoff between convergence rate and steady-state
signal to interference plus noise ratio (SINR). Therefore, the design of
an adaptive filter with a good tradeoff among these factors is a problem
of wide interest in array processing.

Recently, combination schemes have been proposed to improve
the fundamental tradeoff between convergence rate and steady-state
excess mean-square error (EMSE) in adaptive filters. The basic idea
is that two (or more) adaptive filters with complementary capabilities
combine adaptively their outputs by means of a mixing parameter, in
order to obtain an overall filter of improved performance. Among these
schemes, convex [28–30], linear [31] and affine [32, 33] combinations
have received attention due to their simplicity and universal behavior
in steady-state, i.e., the combined estimate is at least as good as the
best of the component filters. And the convex combination proposed
in [34] for knowledge-aided STAP obtains a significant improvement to
estimate the inverse interference covariance matrix by combining the
inverse of a priori known covariance matrix and a sample covariance
matrix with a scale weighting parameter. Although these schemes
achieve a lower EMSE in theory, they cannot improve the performance
over that of a single filter of the same type with optimal selection of the
step-size. However, combining adaptive filters of different families, it
is possible to achieve smaller errors than optimally adjusted individual
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filters [35].
In this paper, we propose a novel general affine combination

structure of two adaptive filters for interference mitigation of antenna
array. Instead of using a scalar as mixing parameter, a vector is
used to combine each two component filters’ weight for minimizing
the mean-square error (MSE) of the combined filter, which exploits
every entry of the two filters’ weights to ameliorate quality of the
estimates. In order to make the implementation of the adaptive
array efficiently, a general sidelobe canceller (GSC) is adopted by
the proposed beamformer. And then the optimal mixing parameter
vector is derived based on GSC for beamforming. In addition, least
mean-square (LMS) and recursive least square (RLS) based algorithms
are proposed respectively for updating the mixing vector iteratively,
where the theoretical investigations for these algorithms in terms of
MSE and EMSE are also introduced. Furthermore, the output SINRs
and complexities are discussed following to demonstrate the practical
feasibilities of the proposed iterative algorithms. In particular, we
apply the proposed beamformer into a combination of the Lanczos
reduced-rank MNWF with the LMS filter to mitigate interference in
space-time processing. The Lanczos reduced-rank MNWF presents a
fast convergence rate to acquire the desired signals and suppress the
interferences quickly. For another, the LMS filter, one of the most
popular adaptive array beamforming techniques, is computationally
efficient, exhibiting a low distortion when its step-size is appropriately
adjusted. Thus, the combined filter should acquire the good properties
of both filters, exhibiting better performance under both stationary
and non-stationary environments. From the simulations, the results
show that the proposed beamformer has a good robustness to mitigate
the interferences with very fast convergent speed and high output
SINR.

Throughout the paper all vectors are column vectors and
represented by boldface lowercase letters. Matrices are represented by
boldface capital letters. E{·} denotes the mathematical expectation,
and (·)H stands for the Hermitian transpose while (·)∗ for complex
conjugation, respectively. The symbol ¯ indicates the Hadamard or
Schur product and the symbol ⊗ is Kronecker product, and | · | denotes
the absolute operation.

2. PROBLEM FORMULATION

Space-time processing techniques with multiple antennas can signif-
icantly increase the degrees of freedom (DOFs) in signal processing
and adaptively offer the capability of nulling multiple narrowband and
wideband jammers.
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Figure 1. Block diagram of the joint space time adaptive processing
beamformer for antenna array.

2.1. Configuration of the Space-time Processing

The STAP processor linearly combines the observational samples from
antenna array, each of them are followed by a tapped delay line,
forming a finite impulse response (FIR) filter in time domain as well
as an adaptive filter in the space domain as shown in Figure 1. This
scheme can reject whatever wideband and narrowband interference
simultaneously at two dimensions, direction of arrival (DOA) and
frequency (or time of arrival, TOA).

Therefore, with the prior known of the DOA of each desired signal
d(n), the optimal space time steering vector with dimension MN × 1
can be written as

s(φ, ω) = ss(φ)⊗ st(ω) (1)

where the space dimension steering vector ss(φ) and the time
dimension steering vector st(ω) are defined as followings

ss(φ) ,
[
1, e−jφ1 , . . . , e−jφi , . . . , e−jφM−1

]H
,

st(ω) ,
[
1, e−jωTs , . . . , e−jω(N−1)Ts

]H
(2)

where φi represents the incidence angle of the desired signal at
a certain type of arrays, M means the number of antenna array
elements, ω denotes the response frequency, and N is the length of
the delayed line with sampling interval Ts. The antenna locations
and sampling frequency fs = 1/Ts are chosen to meet the Nyquist
spatial sampling criterion to avoid aliasing effects in both spatial and
frequency domains. In particular, spatial adaptive processing (SAP)
is an example of STAP, i.e., N = 1 and Ts = 0.
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2.2. Linear Multiple Constraint Generalized Sidelobe
Canceller (LC-GSC)

The general purpose of problem in adaptive beamforming is to receive
the desired signals d(n) coming from specific direction or directions
while minimizing the reception of unwanted signals emanating from
other directions. The linearly constrained minimum variance (LCMV)
beamformer minimizes the output power subject to linear constraints
on the weight vector w̃LCMV. In general, the LCMV beamforming
problem is formulated as

min
w̃LCMV

w̃H
LCMVRxw̃LCMV subject to CHw̃LCMV = f (3)

where Rx , E{x(n)xH(n)} is auto-correlation of input vector x(n),
and C = [s1, . . . , sj , . . . , sMo ], j = 1, . . . ,Mo, is a MN×Mo constraints
matrix, including the desired multiple directions or other constraints,
whose columns are linear independent, so that its rank is Mo, the
number of constraints. The vector sj is given by (1) and f represents
the constraint vector corresponding to C, which can be expressed by
many forms [12] with Mo entries. If Rx is nonsingular and C has full-
column rank, the solution to (3) is w̃LCMV = R−1

x C(CHR−1
x C)−1f .

Apparently, the optimal w̃LCMV needs to find the inverse of the
matrix, e.g., R−1

x and (CHR−1
x C)−1, which inevitably consumes a lot

of computations.
However, the GSC structure for beamforming makes the

implementation much more efficient with adaptive algorithms, which
assumes the DOAs of desired signals are prior known to receiver
array according to signal estimation techniques [36] or other ways,
such as inertial navigation system (INS) or ephemeris information
of navigation receiver, etc.. And the LC-GSC weighting vector is
expressed by

w̃LC-GSC(n) = wq −BHw(n) (4)

where the quiescent weighting vector wq is set as the matched filter,
i.e., wq = C(CHC)−1f , which ensures that the desired signal passes
through the wideband beamformer without distortion, and blocking
desired signal matrix B satisfies BBH = I and BC = 0, where I is an
appropriate sized identity matrix. In this way, the linear constrained
optimization problem converts to the unconstrained one such that
the weighting vector w(n) can adjust w̃LC-GSC through unconstrained
adaptive algorithms [40].
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Figure 2. Proposed generalized sidelobe canceller for beamforming of
sensor array.

3. PROPOSED COMBINATION APPROACH FOR
BEAMFORMING USING A VECTOR η

In this paper, a novel adaptive array beamformer using an affine
combination of two filters based on GSC structure is proposed as shown
in Figure 2, which directly combines the each component adaptive
weights’ elements by vector η(n) = [η1(n), . . . , ηk(n), . . . , ηMN (n)]H ,
k = 1, . . . ,MN . Hence, the unconstrained adaptive weight vector is
assumed by

w(n) = η(n)¯w1(n) + (1− η(n))¯w2(n) (5)

where the symbol 1 denotes a vector of all entries one, and wi(n),
i ∈ 1, 2 denote the unconstrained weight vectors for component filters.
And the output of combined filter at time instant n is given by
e(n) , w̃H

LC-GSC(n)x(n). For simplicity of expression, we define the
vector w12(n) as the difference of two individual filters’ weights, i.e.,
w12(n) , w1(n)−w2(n) = [w121(n), . . . , w12k

(n), . . . , w12MN (n)]H .
Besides, each sub-filter’s adaptive weights based on GSC structure

for beamforming are written by w̃i(n) , wq − BHwi(n). And their
outputs are defined by ei(n) , (wq − BHwi(n))Hx(n) = wH

q x(n) −
wH

i (n)xo(n) = d(n) − d̂i(n), where d(n) = wH
q x(n), xo(n) = Bx(n)

and d̂i(n) = wH
i (n)xo(n) have been illustrated as in Figure 2.

4. OPTIMAL ADAPTIVE COMBINATION WEIGHTS
FOR BEAMFORMING

Considering the interference power is higher than the desired signal,
we need to restrict the desired DOAs, so the minimum variance (MV)
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criterion is adopted based on GSC for beamforming. Once the w1(n)
and w2(n) from the two component filters are acquired, then the goal
of optimization turns to the coefficient weighing vector η(n) at nth
snapshot. As the discussions above, the optimization problem of (3)
under the proposed approach reduces to

min
η

w̃H
LC-GSCRxw̃LC-GSC subject to CHw̃LC-GSC = f . (6)

Using the method of Lagrange multiplier, the optimization
equations can be written with the multiplier vector λ. Replacing (3)–
(5) in (6), and noting that w̃2 = wq − BHw2, then we have the
Lagrangian,

L(η, λ) =
1
2

(
w̃2 −BHη ¯w12

)H
Rx

(
w̃2 −BHη ¯w12

)

+<{
λH

[
f −CH

(
w̃2 −BHη ¯w12

)]}
(7)

where <{·} denotes the real part of a complex value. The optimal
solution can be obtained when

∇ηL(η, λ) = 0. (8)
From (7) and (8), we get

∂L(η, λ)
∂η∗

=
∂

(−1
2(η ¯w12)HBRxw̃2

)

∂η∗

+
∂

(
1
2(η ¯w12)HBRxBHη ¯w12

)

∂η∗

+
∂

(< (
λHCHBH(η ¯w12)H

))

∂η∗
= 0. (9)

After some algebraic manipulations, we arrive at
BRxBHw12 ¯ ηopt + BCλ = BRxw̃2. (10)

Note that, since Bx(n) = xo(n), so BRxBH = Rxo . Thus, the optimal
η(n) from the above equation can be expressed by

ηopt = (Rxo)
−1 (BRxw̃2 −BCλ)¯w−1

12 (11)
where w−1

12 represents a vector containing all the inverse elements
of w12, such that w12 ¯ w−1

12 = 1. In addition, w−1
12 can also be

expressed by w∗
12 ¯ w̄12, where w̄12 = [1/‖w121‖2, . . . , 1/‖w12MN‖2]H

and ‖ · ‖ denotes the Euclidean norm. Taking the constraints of
CHw̃LC-GSC = f into account, we obtain

λ =
(
CH(Rx)−1C

)−1
f . (12)

From (11) and (12), we can find that according to the prior DOA
knowledge, i.e., C and f , the coefficient weighting vector ηopt will
adaptively minimize the total output power under constraints.
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5. PROPOSED ITERATIVE ADAPTIVE COMBINATION
APPROACHES USING η-LMS AND η-RLS

In practical implementation of beamforming, iterative adaptive
approach is necessarily developed to update estimation of ηopt at every
observation x(n). In this section, the iterative adaptive combination
approaches based on LMS and RLS, i.e., η-LMS and η-RLS, are
proposed respectively for achieving this goal.

5.1. The Proposed Iterative Combination Algorithm Using
η-LMS

The LMS update is derived using the gradient of the instantaneous
squared error e2

LMS(n) to update the combination vector η̂LMS(n), the
estimation of ηopt(n), i.e.,

η̂LMS(n + 1) = η̂LMS(n)− 1
2
α∇H

η

{
e2
LMS(n)

}

= η̂LMS(n) + αe∗LMS(n)xo(n)¯w∗
12(n) (13)

where a priori output estimation errors of η-LMS is eLMS(n) ,
d(n) −wH

LMS(n)xo(n) and α is the step-size parameter. Additionally,
we define the input data as x̃o(n) , w∗

12(n) ¯ xo(n) instead of xo(n)
for expression of convenience. Hence, (13) can be also expressed by

η̂LMS(n + 1) = η̂LMS(n) + αe∗LMS(n)x̃o(n). (14)

Moreover, due to the combined adaptive weighting vector of η-LMS is
ŵLMS(n) = η̂LMS(n)¯w1(n) + (1− η̂LMS(n))¯w2(n), so the η-LMS
error can be also rewritten as

eLMS(n) = d(n)− (w2(n) + η̂LMS(n)¯w12(n))H xo(n)

= d(n)− d̂2(n)− η̂H
LMS(n) (w∗

12(n)¯ xo(n))

= d(n)− d̂2(n)− η̂H
LMS(n)x̃o(n). (15)

5.2. Convergence Analysis of the Iterative Combination
Algorithm Using η-LMS

We investigate the first-order and second order convergence of the
proposed algorithm by adopting the similar method as in [12, p. 814].
Firstly, the weight-error vector of η-LMS algorithm is defined as

η̃eLMS(n) , η̂LMS(n)− ηopt(n). (16)

Next, using (16) in (14) with optimal adaptive time-variant weights
wopt(n) = w2(n) + ηopt(n)¯w12(n), we obtain the iterative equation
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of the weight-error η̃eLMS(n)

η̃eLMS(n + 1) = η̃eLMS(n) + αx̃o(n) (d∗(n)

−xH
o (n) (η̃eLMS(n)¯w12(n) + wo(n))

)
. (17)

Taking the expectation on of both sides of (17), and using Wiener-
Hopf equations Rxowopt = rxo,d under the independence assumption
as in [12], where rxo,d , E{xo(n)d∗(n)} is cross-correlation of input
vector xo(n) and desired signal d(n), we have

E{η̃eLMS(n + 1)} = (I− αRx̃o
)E {η̃eLMS(n)} (18)

where Rx̃o
(n) = E{x̃o(n)x̃H

o (n)}. With 0 < α < 2/λmax(Rx̃o
), it

is ready to show limn→∞ E{η̃eLMS(n + 1)} = 0, where λmax(·) is the
maximum eigenvalue of the matrix in the bracket and 0 is a zero vector.

Thus, limn→∞ E{η̃LMS(n)} = ηopt. It is obviously

lim
n→∞E{ŵLMS(n)} = wopt. (19)

In order to obtain the MSE of the proposed algorithm, the auto-
correlation matrix of η̃eLMS(n) is defined by

ReLMS(n) , E
{
η̃eLMS(n)η̃eLMS(n)H

}
. (20)

To analyze the above equation, we rewrite (17) as

η̃eLMS(n + 1) = η̃eLMS(n) + αx̃o(n)
(
e∗o(n)− x̃H

o (n)η̃eLMS(n)
)

=
(
I− αx̃o(n)x̃H

o (n)
)
η̃eLMS(n) + αx̃o(n)e∗o(n) (21)

where the orthogonal error eo(n) , d(n) − wH
opt(n)xo(n), which is a

zero-mean random process uncorrelated with xo(n), whose variance is
denoted by ξo , limn→∞ E{|eo(n)|2}, i.e., the MSE of the combined
filter by optimal mixing vector ηopt. In order to make performance
analysis more tractable, the sequences {xo(n)} and {eo(n)} are
assumed stationary and we will use the common assumption that eo(n)
is independent of xo(n).

Substituting (21) into (20) gives

ReLMS(n + 1) = α2E
{
e∗o(n)x̃o(n)x̃o(n)Heo(n)

}

+(I− αRx̃o
)ReLMS(n) (I− αRx̃o

) . (22)

Using the moment factorization of jointly Gaussian random variables
and the independence assumption as in [12], we have

E
{
e∗o(n)x̃o(n)x̃o(n)Heo(n)

}
= ξoRx̃o

. (23)

Then, the ReLMS(n) is obtained.
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Substitution of (16) with eo(n) into (15) leads to eLMS(n) =
eo(n) − (η̃eLMS(n) ¯ w12(n))Hxo = eo(n) − η̃H

eLMS
(n)x̃o. Accordingly,

the MSE of η-LMS, i.e., ξη-LMS(n) , E{|eLMS(n)|2} at iteration n is

ξη-LMS(n) = E
{∣∣eo(n)− η̃H

eLMS
(n)x̃o(n)

∣∣2
}

= ξo + E
{
η̃H

eLMS
(n)x̃o(n)x̃H

o (n)η̃eLMS(n)
}

= ξo + Tr(Rx̃o
(n)ReLMS(n)) (24)

where Tr(·) stands for the trace of the matrix in the bracket. Thus,
EMSE of proposed iterative algorithm based on η-LMS is

ξη-LMS
ex (n) = ξη-LMS(n)− ξo = Tr (Rx̃o

(n)ReLMS(n)) . (25)
And the steady-state EMSE is

ξη-LMS
ex (∞) = lim

n→∞ ξη-LMS
ex (n) = ξo

N∑

k=1

αλk

2− αλk
(26)

where λk is the kth eigenvalue of Rx̃o
. If the step-size α is small enough

in the sense that αλk ¿ 1, then the expression of EMSE simplifies to

ξη-LMS
ex (∞) = ξo

αTr(Rx̃o
)

2− αTr(Rx̃o
)
. (27)

5.3. Proposed Adaptive Combination Approach Using
η-RLS

The proposed adaptive combination approach can also be applied for
other supervised adaptive filters, such as RLS, whose iterative updating
equation for RLS combination filter could be also derived by the
definition of x̃o(n). Using RLS, we need to minimize the least square
cost function

J = ||e||2 = eHe (28)

where e , d − d̂ = d − w(n)BHA, e , [e(1), . . . , e(n)]H , d ,
[d(1), . . . , d(n)]H , d̂ , [d̂(1), . . . , d̂(n)]H and AH , [x(1), . . . ,x(n)].
In order to find the optimal values of the mixing vector that minimize
the power of the global errors, we take the derivation of (28), obtaining

∇ηJ = 2
∂J
∂η∗

= 2
(
W∗

12 ¯BHA
)H

d

−2
(
W∗

12 ¯BHA)H(W∗
12 ¯BHA

)
η̂(n) (29)

where W12 , [w12(1), . . . ,w12(n)]. Setting (29) to zero, and after
some manipulations, we get η̂(n) to estimate proposed mixing vector
ηopt by deterministic normal equations

AH
o Aoη̂(n) = AH

o (d−BAW2) (30)
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where Ao , W∗
12 ¯ BHA = [w∗

12(1) ¯ xo(1), . . . ,w∗
12(n) ¯ xo(n)],

and W2 , [w2(1), . . . ,w2(n)]H . Considering non-stationary scenario,
forgetting factor µ is adopted into auto-correlation matrix Φ(n) of
the input vector and cross-correlation vector z(n) between x̃o(n) and
d(n)−BAW2 as followings

Φ(n) =
n∑

i=1

µn−ix̃o(i)x̃H
o (i) + Φ(0), (31)

z(n) =
n∑

i=1

µn−ix̃o(i)(d∗(i)−wH
2 (i)xo(i)) (32)

where 0 < µ 6 1 and Φ(0) = εI, ε is a small positive number. Hence,
the solution of the problem is easily obtained from

η̂RLS(n) = Φ−1(n)z(n). (33)

5.4. The Proposed Iterative Combination Algorithm Using
η-RLS

The iterative combination algorithm can be derived according to
matrix inversion lemma. Define P(n) , Φ−1(n), we get the recursive
equation of P(n)

P(n + 1) = µ−1P(n)− µ−1k(n + 1)x̃oP(n) (34)

where k(n + 1) is the gain vector which updates η̂RLS(n) at its each
element and expressed by

k(n + 1) =
µ−1P(n)x̃o(n + 1)

1 + µ−1x̃H
o (n + 1)P(n)x̃o(n + 1)

. (35)

Hence, the final recursion of η̂RLS(n) is given by

η̂RLS(n + 1) = η̂RLS(n) + Φ−1(n + 1)e∗RLS(n + 1)x̃o(n + 1)
= η̂RLS(n) + k(n + 1)e∗RLS(n + 1) (36)

where a priori output estimation errors of η-RLS is eRLS(n+1) , d(n+
1)−wH

RLS(n)xo(n+1) = d(n+1)−(w2(n)+η̂RLS(n)¯w12(n))Hxo(n+
1), where ŵRLS(n) = η̂RLS(n)¯w1(n) + (1− η̂RLS(n))¯w2(n).

5.5. Convergence Analysis of the Iterative Combination
Algorithm Using η-RLS

Similarly, the weight-error vector of η-RLS algorithm is defined as

η̃eRLS(n) , η̂RLS(n)− ηopt(n). (37)
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For µ = 1, substituting d(n) = wH
opt(n)xo(n) + eo(n) into (32) and

using (31), we can rewrite the (33) as

η̂RLS(n) = ηopt(n)− Φ−1(n)Φ(0)ηopt(n)

+Φ−1(n)
n∑

i=1

x̃o(i)e∗o(i). (38)

Using the independence assumption as in [37], i.e., E{Φ−1(n)} =
1
nR−1

x̃o
(n), n > MN , and taking the expectation on of both sides

of (38), we have

E {η̂RLS(n)} ≈ ηopt(n)− ε

n
R−1

x̃o
(n)ηopt(n). (39)

As shown from (39), when n À MN , limn→∞ E{η̂RLS(n)} = ηopt, so
it is obviously

lim
n→∞E {ŵRLS(n)} = wopt. (40)

The error-correlation matrix of η̂eRLS(n) is similarly defined by

ReRLS(n) , E
{
η̃eRLS(n)η̃eRLS(n)H

}
. (41)

Substituting (38) with (37) into (41) and ignoring the effect of
initialization of Φ(0) yields

ReRLS(n) = E



Φ−1(n)

n∑

i=1

n∑

j=1

x̃o(i)x̃H
o (j)(Φ−1(n))He∗o(i)eo(j)





= ξoE

{
Φ−1(n)

n∑

i=1

x̃o(i)x̃H
o (i)Φ−1(n)

}

= ξoE
{
Φ−1(n)

}
. (42)

Therefore, as the derivation of [37], the MSE of the η-RLS, i.e.,
ξη-RLS(n) , E{|eRLS(n)|2} at iteration n, when n À MN , is given
by

ξη-RLS(n) = E
{∣∣eo(n) + (wopt(n− 1)−wRLS(n− 1))Hxo(n)

∣∣2
}

= E
{∣∣eo(n) + η̃H

eRLS
(n− 1)x̃o(n)

∣∣2
}

≈ ξo +
1
n

ξoTr
{
Rx̃o

(n)R−1
x̃o

(n− 1)
}

≈ ξo +
MN

n
ξo. (43)
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It is easy to find out that the EMSE of the η-RLS is ξη-RLS
ex (n) ,

ξη-RLS(n) − ξo = MNξo/n, i.e., the performance of η-RLS is
independent of the input covariance matrix Rx, which benefits the
η̂RLS to trend ηopt quickly with few snapshots in stationary scenario.

In summary of the Section 5, due to the similarity of updated
Equations (14) and (36), the updates of ŵLMS(n) and ŵRLS(n) are
not only convergent but also have the similar expressions of MSE and
EMSE under the plausible assumptions as in [12, 31].

6. TRACKING PERFORMANCES ANALYSIS OF THE
PROPOSED ITERATIVE COMBINATION
ALGORITHMS

In non-stationary environment, tracking performance of the proposed
algorithms are needed to be investigated. After a general comment,
we study a particular model for the statistics of the desired data,
commonly used to model non-stationarity in tracking analysis [39],
which assumes that the variation of in optimal solution wopt follows a
random-walk model, i.e.,

wopt(n) = wopt(n− 1) + q(n). (44)

In this model, q(n) is an independent identically distributed
(i.i.d.) vector with positive-definite auto-correlation matrix Q ,
E{q(n)q(n)H}, independent of the initial conditions as in [5] and also
assumed independent of {x(m), d(m), eo(m)}, for all m ≤ n. From its
definition, Tr(Q) can be seen as a measure of the speed of changes in
wo. For sufficiently small α and (1− µ), analytical EMSE expressions
of the proposed η-LMS and η-RLS algorithms are given separately
by [39], i.e.,

ξη-LMS
ex (∞) =

αξoTr(Rx̃o
) + α−1Tr(Q)
2

(45)

and

ξη-RLS
ex (∞) =

ξo(1− µ)MN + (1− µ)−1Tr(QRx̃o
)

2
. (46)

Theorem I: from the (45) and (46), the proposed general affine
combination approach has faster convergence rate and less steady-
state EMSE determined by the relationship between the two individual
weights w1(n) and w2(n).

Proof: Because the auto-correlation matrix of x̃o(n) satisfies
Rx̃o

(n) = E{xo(n)¯w12(n)(xo(n)¯w12(n))H} = Rxo(n)¯Rw∗12(n),
where the matrix Rw∗12(n) , E{w∗

12(n)(w∗
12(n))H} = [wij ]MN×MN ,
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so the improvements of ξη-LMS
ex (∞) and ξη-RLS

ex (∞) depend on the
correlation among the individual adaptive filtering weights.

According to Schur’s theorem, since the relationship between the
eigenvalues of Rxo(n) and Rx̃o

(n) satisfies

min(wii)λmin(Rxo(n)) ≤ λmin(Rx̃o
(n))

≤ λmax(Rx̃o
(n)) ≤ max(wii)λmax(Rxo(n)) (47)

where λmin(·) is the minimum eigenvalue of the matrix in the bracket.
Therefore, the combined filter will accelerate the convergent rate
by wii(n) to adjust flexibly λmax(Rx̃o

(n))/λmin(Rx̃o
(n)) rather than

the fixed one of λmin(Rxo(n)) and λmax(Rxo(n)), which can be also
interpreted that the combined filter has different step-sizes which are
assigned appropriately by each entry of the mixing vector.

Again, from the inequality equation of the Schur product, we know
that ‖Rx̃o

(n)‖ ≤ ‖Rxo(n)‖‖Rw∗12(n)‖. Regarding that two individual
filters deal with the same input x(n), they are correlated so that
‖Rw∗12(n)‖ becomes small (generally, |wij(n)| ¿ 1), which benefits
the proposed overall filter with less ξη-LMS

ex (∞) or ξη-RLS
ex (∞) in non-

stationary environment.

7. SINRS OF THE PROPOSED ITERATIVE
COMBINATION ALGORITHMS FOR BEAMFORMING

The primary measure of filters’ performances is output signal power
Ps to interference plus noise power Pi+n ratio (SINR) of an antenna
array, which is computed as following

SINR =
Ps

Pi+n
=

w̃H
LC-GSCRsw̃LC-GSC

w̃H
LC-GSCRi+nw̃LC-GSC

(48)

where Rs is the desired signal’s auto-correlation matrix; Ri+n is the
auto-correlation matrix of interference signal plus noise.

Theorem II: If the Theorem 1 stands, then the proposed general
affine combination approach based on GSC also has higher output
SINR relatively to other conventional algorithms, when n →∞.

Proof: The denominator of the output SINR in (48) can be also
changed to

Pi+n = lim
n→∞E

{∣∣w̃H
LC-GSC(n)x(n)− w̃H

LC-GSC(n)sd(n)
∣∣2

}

= lim
n→∞wH

q Rx(n)wopt + Tr
{
BRx(n)BHRe(n)

}− Ps

= ξo + ξex(∞)− Ps (49)
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where sd = s(φ, ω)d(n) is the desired optimal vector and ξex(∞) is the
EMSE of the iterative algorithm, e.g., ξη-LMS

ex (∞) and ξη-LMS
ex (∞), and

Re(n), e.g., ReRLS(n) and ReLMS(n), represents the auto-correlation
matrix of the weight-error vector η̃e(n), e.g., η̃eLMS(n) and η̃eRLS(n).
Equation (49) shows ξex(∞) affects the output SINR of beamformer,
i.e., the smaller the EMSE value is, the larger the steady-state SINR
becomes. Therefore, as the EMSEs of the proposed η-LMS and
η-RLS shown in (45) and (46), the output SINRs of η-LMS and
η-RLS are given by SINRη-LMS = Ps/(ξo + ξη-LMS

ex (∞) − Ps) and
SINRη-RLS = Ps/(ξo + ξη-RLS

ex (∞)−Ps), respectively, which are higher
than conventional adaptive GSC because of the role of the general
affine combination method as illustrated in Theorem 1.

8. COMPLEXITY ANALYSIS OF THE PROPOSED
ITERATIVE COMBINATION ALGORITHMS FOR
BEAMFORMING

Finally, another essential description of adaptive filters depends on
their complexities, which plays a critical role of their practical
implementations. The complexities of typical algorithms used in this
paper have been shown in Table 1. There is no doubt that the adaptive
combination of multiple individual filters will increase the complexity
of the overall filter and computational cost for beamformer. But as
the rapid development of the processing abilities of electronic chips
and thanks to the high efficient algorithms, e.g., a family of reduced-
rank algorithms, the proposed approach may be a promising way to
enhance the beamforming performance for interference mitigation.

For example, the Lanczos reduced-rank algorithm represents an ef-
ficient way to compute the mutual orthogonal basis ti in r-dimensional
Krylov subspace κr = span(rxo,d,Rxorxo,d, . . . ,R

(r−1)
xo rxo,d) as in liter-

ature [38]. Because the covariance matrix Rxo is Hermitian, so only
upper (or lower) triangular portion of Rxo needs to be computed, re-
sulting in the complexity (1 + K)K/2 and the backward iteration pro-
cess of the Lanczos reduced-rank MNWF by constructing tridiagonal
matrix can be processed in parallel with the complexity of O(r) as
in [38], where K is the total number of sensors, i.e., K = M × N for
space-time processing. Consequently, the complexity of the Lanczos
reduced-rank MNWF is O(rK2) per iteration. Furthermore, multi-
ple constrained reduced-rank MNWF based on correlations subtractive
structure (CSS) as proposed in [41] only involve complex vector-vector
products in forward recursion, not complex matrix-vector products
(for the single space-time weight constraint), thereby implying com-
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Table 1. Computational complexity of the algorithms per iteration
for complex-valued data in terms of the number of complex
multiplications, complex additions and complex divisions.

Algorithm Additions Multiplications Divisions

LMS 2K 2K + 1

NLMS 3K 3K + 1

RLS K2 + 3K K2 + 5K + 1 1

Lanczos MNWF r(K2 + 5K + 3) r(K2 + 6K + 7) r(K + 1)

η-LMS (combined filter) 4K 4K + 1

η-RLS (combined filter) K2 + 5K K2 + 7K + 1 1

η-PLMS (combined filter) 3K + Np 3K + Np + 1

η-PRLS (combined filter) K2 + 4K + Np K2 + 6K + Np + 1 1

putational complexity O(rK) per snapshot. Therefore, the Lanczos
reduced-rank MNWF based on CSS is suitable for being the compo-
nent filter.

Meanwhile, the combined filter of the proposed adaptive
approaches will increase the complexity slightly because of 2K
additions for computing w12(n) and w2(n) + η(n) ¯ w12(n) and 2K
multiplications for η(n) ¯ w12(n) and w∗

12(n) ¯ x(n). Overall, the
complexity of the η-LMS and η-RLS is proportional to LMS O(K)
and RLS O(K2). In order to reduce the complexity of the proposed
algorithms further in hardware application, partially updated η̂(n)
algorithms (η-PLMS and η-PRLS) are proposed to reduce to the
amount of float additions and multiplications. Hence, the proposed
η-PLMS and η-PRLS only update the Np entries of their updated
η̂LMS(n + 1) and η̂RLS(n + 1) which change significantly than other
ones, separately. This way will save N−Np multiplications to compute
the incremental values of η̂(n + 1) and N − Np additions to update
η̂(n + 1) respectively per iteration.

Otherwise, beamformer can also adopt inverse square-root RLS
rather than RLS for reducing its complexity. The inverse square-
root RLS algorithm can be implemented based on Systolic structure
by parallel computing and holds better numerical stability, fast
convergence speed and applicable for non-stationary environment.
As the discussions above, the proposed approach imposes acceptable
computational burden to antenna array processor.
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9. SIMULATION RESULTS

In this section, we apply our proposed adaptive combination approach
into wideband receiver antenna array for space-time processing. The
Lanczos reduced-rank MNWF (rank = 4) and LMS are adopted as two
component filters due to their low complexities and complementary
characteristics. On the one hand, the Lanczos reduced-rank MNWF
enjoys a fast convergent rate but suffers more errors in non-stationary
scenario. Because the Lanczos reduced-rank MNWF minimizes an
erroneous MSE function in this case in the Krylov subspace, so there
is a mismatch in estimate of the auto-correlation matrix and the cross-
correlation vector such that the ti cannot hold orthogonality with
each other, i.e., tH

i tj 6= 0, i, j ∈ r. Therefore, the solution obtained
at each iteration is no longer optimal in the sense of minimizing
the true MSE within the Krylov subspace [26]. On the other hand,
the MSE of LMS filter is determined by the step-size, if it has
a small MSE, then it converges very slowly. However, the LMS
filter has good performance for anti-narrowband interference because
of its nonlinear filtering rather than Lanczos reduced-rank MNWF.
Therefore, adaptive combination of this two kind of filters may achieve
a better performance both on convergence rate and output SINR in
stationary and non-stationary environment.

Besides, the proposed η-LMS, η-PLMS, η-RLS and η-PRLS are
exploited as the combined iterative combination algorithm respectively.
The combined filter uses the combination vector η(n) to weight
these two individual filters, which makes their adaptive convergent
rates independently in order to enhance the convergent speed.
Attributing to the more DOFs offered by the mixing vector η(n), the
combination approach presents significant performance improvement
over the current approaches. The simulation results demonstrate
the proposed adaptive combination filters have faster convergent
speed, higher output SINR and better robustness performances than
other existing adaptive filters under various interference environments
including stationary, non-stationary, mixed wideband and narrowband
interferences scenarios via 100 Monte Carlo trials. Specific simulation
parameters are as shown in Table 2.

Two-dimensional beam pattern is one of important measure to
evaluate the results of beamforming from the view of space and
frequency dimensions, which is defined as

G(θ, f)(dB) , 10 log
|F (θ, f)|2

max |F (θ, f)|2 (50)

where θ represents the DOA and f denotes the normalized frequency,
and the array factor F (θ, f) is calculated by multiplication of w̃LC-GSC
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with each elementary direction vector which covers the dimensions
from both space and frequency.

Figure 3 shows clearly that the antenna gain pattern of proposed
algorithm based on space-time processing can resist more than the
number of M − 1 interferences simultaneously because of which not
only suppressing the wideband interferences at the spatial dimension

Table 2. Simulation parameters.

Parameters Specifications

Antenna type uniform linear array (ULA)

Antenna element space half of a wavelength

Antenna element number (M) 5 elements

Number of delay line taps (N) 4 taps

Desired direction (θd) 0◦

Sampling frequency (fs) 5.5MHz

Spread code rate 1MHz

Wideband interference rate 10MHz

Narrowband interference rate 1MHz

Incidence angle (wideband interference) 40◦ −20◦ −60◦

Incidence angle (narrowband interference) 60◦

Signal to interference ratio (SIR)/per −40 dB

Signal to noise ratio (SNR) −10 dB
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Figure 3. Two-dimensional beam pattern of the proposed
beamformer. (a) There are 3 wideband interferences and 1 narrowband
interference. (b) There are 4 wideband interferences, one of them
comes from −40◦ with SIR = −40 dB and 1 narrowband interference
which is the same as in Figure 3(a).
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but also forming a notch at the frequency dimension to mitigate
narrowband interference effectively, where the snapshot n = 1000 and
the proposed η-LMS (α = 1× 10−7) algorithm is adopted. The carrier
frequency of narrowband interference is the same as the desired signal.
More other rest of specific parameters are as shown in Table 2.

In Figure 4, there are 3 wideband interferences generated. We
evaluate the proposed the beamformer by iterative algorithms in terms
of output SINR, where the step-size of the component filter LMS is
1 × 10−7, and the one of the traditional affine approach proposed
in [33] is µη = 1 × 10−4. In addition, α = 1 × 10−7 and µ = 0.995
are the step-sizes of the proposed η-LMS and η-RLS, respectively.
More other rest of specific parameters are as shown in Table 2. In
Figure 4(a) the square green curve plots the result of adaptive affine
combination algorithm proposed in [32, 33] which is applied into the
proposed beamformer based on GSC in this paper, whose output SINR
has outperformed the any signal individual filter’s SINR whatever
in transient-state and steady-state. However, we can easily find out
that the proposed adaptive combination method has even more fast
convergent rate with high output SINR. Because the proposed iterative
approach based on mixing vector η(n) has more DOFs to deal with
the problem of convergence, so it can further suppress the residual
errors and adaptively weight the two sub-filters’ weights thoroughly,
especially for combining two individual filters at both space and time
dimensions. In particular, this result can be also verified in terms
of MSE, mean value of weights and mean square derivation (MSD)
of every filter as in Figures 4(b)–(d), where the MSD is defined by
D(n) = E{‖wopt(n)−w(n)‖2}. The results of partially updated η̂(n)
performances are depicted in Figures 4(e) and (f) which illustrate that
the η-PRLS has better performance than η-PLMS regarding that the
gain vector k(n) provides more accurate weights than α for updating
the mixing vector η̂(n).

Figure 5 plots that there is a strong narrowband existing in
stationary environment. And there are still 2 wideband interferences
and 1 narrowband interference. Rather than the values as in Table 2,
their SIRs are −30 dB, −40 dB and −50 dB corresponding to their
DOAs, respectively. And the step-size of the component filter LMS
is 5× 10−8, and the step-size µη = 1× 10−5 is for the traditional affine
approach proposed in [33]. Meanwhile, α = 1×10−8 and µ = 0.995 are
the step-sizes of the proposed η-LMS and η-RLS, respectively. More
other rest of specific parameters are still as shown in Table 2. From
Figures 5(a) and (b), we can find out although the Lanczos reduced-
rank MNWF doesn’t work well, the proposed iterative algorithms still
hold perfect tracking performance with faster convergent rate than
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Figure 4. Output performances evaluation of the proposed
adaptive combination approach with iterative algorithms in stationary
environment. (a) Relationship of the combined filters and their
component filters. (b) MSE of the filters in the left figure. (c) Mean
value of the 1st entry of weight. (d) Mean square derivation of the
filters. (e) Comparison of the proposed iterative algorithms with their
partially updated η(n) algorithms. (f) MSE of the filters in the left
figure.
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Figure 5. Output performances evaluation of the proposed adaptive
combination approach with iterative algorithms in a mixed bandwidth
interference environment. (a) Relationship of the combined filters and
their component filters. (b) MSE of the filters in the left figure. (c)
Comparison of the proposed iterative algorithms with their partially
updated η̂(n) algorithms. (d) MSE of the filters in the left figure.

the traditional affine combination approach only used a scale µη being
the mixing parameter as in [33] and similar high output SINRs at
steady-state. Figures 5(c) and (d) illustrate that partially updated
η̂(n) algorithms will not be affected by the Np significantly, because of
the sparsity of the narrowband interference in space-time processing as
depicted in Figure 3(a). Hence, the partially updated η̂(n) algorithms,
i.e., η-PLMS and η-PRLS with Np = 3, Np = 6 and full updated η̂(n)
have the analogous curves of SINRs and the differences of their SINRs
are only within 1 dB.

We also implement these new algorithms and other conventional
ones, such as RLS, normalized LMS (NLMS) and MNWF (rank
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= 5) in non-stationary scenario in Figure 6. There are 3 wideband
interferences as in Table 2 and 1 wideband interference with the power
of SIR = −40 dB comes from −40◦ at 500th snapshot, where the step-
size of the component filter LMS is 1 × 10−7, and the ones of the
traditional NLMS and RLS algorithms are 1× 10−4 and 0.995. Again,
α = 1 × 10−7 and µ = 0.995 are the step-sizes of the proposed η-
LMS and η-RLS, respectively. Simultaneously, other rest of specific
parameters are as shown in Table 2. We observe that when an
unexpected wideband interference starts suddenly at 500th snapshot,
the output SINRs of all filters slump down quickly because of the effect
of outdated data. In particular, the output SINRs of the Lanczos
reduced-rank MNWF (rank = 4 and rank = 5) fall down significantly
caused by erroneous estimate of the auto-correlation matrix Rxo(n)
and the cross-correlation vector rxo,d(n). Comparably, the proposed
approach recovers faster than any other algorithms, especially for η-
RLS and η-PRLS. Their EMSEs are changed by Tr(QRx̃o

) as proved
in Theorem 1, which enable filters to update their weights timely by
acquired new data and enhance the proposed overall filter’s ability to
minimize the output signal variance under constraints.

We also investigate the effect of SINR loss at the output of
beamformer, when a jammer arrives from different DOAs as [42] in
Figure 7. There are 2 wideband interferences coming from 40◦ and
−40◦, and their SIRs are −30 dB and −50 dB, respectively. And one
wideband interference with the power of SIR = −40 dB is arriving
over a range of DOA from 90◦ to −90◦, where the snapshot is n = 400.
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Figure 6. Output SINR performances evaluation of the proposed
adaptive combination approach with iterative algorithms in a
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Figure 7. DOAs of the interference versus output SINRs, when the
DOA of desired signal arrives from two directions (a) The DOA of
desired signal is θd = 90◦. (b) The DOA of desired signal is θd = 0◦.

The step-sizes of all filters and rest of specific parameters are the same
as Figure 6. From Figure 7, the proposed beamformer reveals less
fluctuation than conventional approach in output SINR as expected,
when the interference is arriving outside the main beam of the array.
This is true for both θd = 0◦ and θd = 90◦.

10. CONCLUSION

To sum up, there are four primary contributions of this paper:
i) A novel versatile array beamforming approach using an affine
combination of two different adaptive filters by a mixing vector is
proposed to mitigate interference of sensor array. ii) The optimal
combination vector and its iterative algorithms are provided based
on LC-GSC for implementation. iii) The theoretical MSEs, EMSEs
and SINRs of the proposed algorithms are studied which show that
the proposed approach has fast convergent rate and high output
SINR by employing appropriately component filters. iv) Besides, the
complexities of the proposed iterative algorithm are discussed as well
in terms of additions and multiplications to verify the effectiveness of
the algorithm in practical application. In conclusion, the proposed
methods are developed to achieve a good performance among the
convergence rate, tracking ability, robustness and complexity over
comprehensive considerations. Simulation results for space-time
processing of antenna array illustrate that the proposed adaptive filter
greatly improves the two sub-filters’ performances by utilizing the two
individual filters from two families, LMS and Lanczos reduced-rank
MNWF, respectively.
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