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Abstract—The scattering properties of dielectric waveguides con-
nected in cascade can be obtained by using the generalized scattering
matrix concept, together with the generalized telegraphist equations
formulism and the modal matching technique. This review aims to
show the potential of periodic structures in dielectric waveguides in
order to gain control of light in the design of microwave and pho-
tonic devices. The new inverted Π dielectric waveguide is presented.
Numerical and experimental results of the complex scattering coeffi-
cients were obtained at microwave frequencies. At optical frequencies,
results for planar waveguide photonic crystals are included and com-
pared with the numerical values from commercial software. In all cases
the agreement was excellent. Electromagnetic and photonic band gaps,
photonic windows, optical switching, optical resonant microcavities as
well as refractive index optical sensors can be achieved by means of
dielectric waveguides in cascade.

1. INTRODUCTION

At microwave frequencies, integrated circuits and devices using
dielectric waveguides require transitions from metallic rectangular
waveguides to dielectric waveguides, as well as transitions between
different dielectric waveguides and dielectric posts [1–8]. At
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104 Garćıa et al.

optical frequencies, periodic dielectric materials offer a great deal of
control over the propagation of electromagnetic waves. Periodically
segmented optical waveguides, waveguide gratings, photonic bandgap
microcavities and waveguide photonic crystals play an important
role in applied optics research [9–15]. Several efficient techniques
have been reported for the analysis of discontinuities in dielectric
waveguides [13–21]. However, these methods have been limited to
microwave frequencies and single step discontinuities in dielectric
slab waveguides (1-D) [16–21]. Eigenmode expansion methods
were presented for analyzing integrated optical devices such as:
photonic crystal structures, optical microresonators, vertical-cavity
surface-emitting lasers and couplers [13–15]. Apart from these
successful proposals, the analysis of single and multiple discontinuities
in arbitrary optical waveguides (1-D and 2-D) needs to be both
generalized and improved.

In the present paper, the authors provide a review of their
experience in the evaluation of the complete electromagnetic scattering
caused by multiple abrupt discontinuities in dielectric waveguides
with arbitrary sectional geometries and index profile functions. In
this work, periodic configurations in rectangular dielectric waveguides
at microwave frequencies, as well as in planar integrated optical
waveguides are considered. In all cases, the theoretical model encloses
the dielectric waveguides by perfectly conducting walls, and the cross
section of the resulting guiding system is covered by a grid of pixels
so that the refraction index inside each pixel is uniform. This method
relies on a new concept of the scattering matrix; consequently, it is
called Generalized Scattering Matrix Method (GSMM). In this work,
and in order to obtain the Generalized Scattering Matrix (GSM) of any
cascaded set of abrupt discontinuities, the Generalized Telegraphist
Equations (GTE) formulation [22, 23] and the Modal Matching
Technique (MMT) [24, 25] are extended at optical frequencies.

The accuracy and effectiveness of this procedure is analyzed at
microwave and optical frequencies. Theoretical and experimental
results are obtained for coupled cylindrical dielectric posts, gradual
transitions as well as cascaded inverted Π dielectric waveguides,
working at microwave frequencies. In all cases, results for the reflection
and transmission coefficients (modulus and phase) of the fundamental
proper mode are given. Matching between theory and experiment is
reported. The possibility of using rectangular metallic waveguides
partially filled with coupled dielectric posts and periodic dielectric
waveguides, for designing passive devices is confirmed. The method
is applied at optical frequencies for analyzing abrupt discontinuities in
integrated planar optical waveguides. We demonstrate the possibilities
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of designing microwave devices, waveguide photonic crystals as well as
optical devices using cascaded dielectric waveguides.

2. THEORY

The complete mathematical algorithm is divided in two steps [22]:

A) Dielectric waveguides proper modes analysis.
B) GSM evaluation: single and multiple discontinuities.

2.1. Dielectric Waveguides Proper Modes Analysis

The Modal Matching Technique (MMT) is applied to the analysis
of each single discontinuity. Figure 1 is a side view of an abrupt
discontinuity between two dielectric waveguides enclosed by perfectly
conducting walls separated by a distance ap,ch. Subscript p refers
to 1-D (slab and planar) dielectric waveguides whereas subscript ch
refers to 2-D (image, channel and cilyndrical) dielectric waveguides.
The application of the MMT requires the evaluation of the dielectric
waveguides proper modes. Slab and planar dielectric waveguides
(1-D) propagate TE and TM proper modes; however, image and
channel dielectric waveguides (2-D) propagate hybrid modes which,
in a medium with a diagonal dielectric tensor, can be approximated
by Ey

pq and Ex
pq proper modes [26–32]. The superscript indicates the

direction of polarization of the dominant electric field component while
the subscript denote the number of maxima, respectively, in the x and
y directions. We assume waveguides free from losses, small variations
of the index of refraction and propagation along the z axis of the

Figure 1. Side view of shielded dielectric waveguides, a and b, in
cascade and connected by an abrupt transition.
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form exp[j(ωt − βz)]. Under these assumptions, the following two
dimensional Helmholtz’s equation describes the propagation of the
electromagnetic field in terms of the vector electric field ~E, in the
waveguide:

∇2
t
~E +

[
k2

0n
2(x, y)− β2

]
~E = ~0 (1)

where k represents the free space wavenumber, β is the phase constant
in the propagation direction z and n(x, y) is the refraction index profile
for (2-D) dielectric waveguides. This function depends on the dielectric
waveguide geometry as well as the fabrication techniques. We assume
x and y as the horizontal and vertical coordinates, respectively. For the
simplest 1-D and 2-D dielectric waveguides (slab and image dielectric
waveguide, respectively), the refraction index functions are:

n(x, y) = n =
{

nc = 1, cover (air)√
εr, core (2)

where n(x, y) = n(y) = n for 1-D dielectric waveguides, and εr

represents the dielectric constant. For the special case of cylindrical
dielectric waveguides and posts, n(x, y) = n(r), and verifies:

n(r) = n =
{

nc = 1, cover (air)
fr, core (3)

where, usually f(r) =
√

εr.
At optical frequencies, channel optical waveguides show a

refraction index profile dependence in the form:

n(x, y) =

{
nc = 1, cover (air)
ns + ∆n · f(−y/h) · g(x/w), core
ns, substrate

(4)

For planar optical waveguides, the refraction index in the core can be
written as n(x, y) = n(y) = ns + ∆n · f(−y/h).

In Equation (4), ns is the refractive index of the substrate; ∆n
refers to the maximum refractive index increment; f and g are the
refraction index functions along y and x directions, respectively; h is
the diffusion depth, and w represents the width of the channel.

In order to calculate the proper modes, the dielectric waveguides
are assumed to be enclosed by perfectly conducting walls. If we are
interested in 1-D dielectric waveguides, there is no variation in the x
direction, and perfectly conducting parallel plates are used as shielding.
For 2-D and cylindrical dielectric waveguides, the transverse variation
of the refraction index requires the use of a perfectly conducting
shielding with a rectangular cross section.

To simulate the refraction index profile functions, the dielectric
waveguide cross section is modeled by a grid or mesh of pixels with
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Figure 2. Cross section of a shielded channel optical waveguide
modeled by a grid of pixels with different refractive indices.

different refraction index values, as shown in Figure 2 for 2-D dielectric
waveguides. The refraction index inside each pixel is uniform and the
model allows the use of arbitrarily fine meshes. The importance of
using such strategy lies in being able to employ higher mesh refinement
when accurate values of the fields are required. Moreover, the model
permits the use of variable meshes in zones of particular interest,
for example in the channel waveguide core, where refraction index
has xy-dependence. The main advantages of enclosing the dielectric
waveguides by perfectly conducting boundaries are the following:
a) The method does not restrict the dielectric waveguides cross
section shape as well as the index profile functions and the frequency
band of analysis; consequently, it does not depend on the dielectric
waveguides fabrication techniques. b) The algorithm offers functional
simplification in the series expansion, it is numerically stable, efficient
and accurate. c) It can be applied for analyzing any cascaded set of
abrupt discontinuities in arbitrary dielectric waveguides. d) As the
method provides all type of proper modes, including evanescent modes
solutions, the abrupt discontinuities can be placed as close together
as desired; consequently, the study of any dielectric configuration
modeled as a cascaded set of abrupt transitions is possible. e) In
all cases, for progressively increasing distance between the shielding
walls, a distance value is reached at which the proper modes solution
matches that of the unshielded dielectric waveguide [1, 33–36]. This
situation is achieved when the cross dimensions of the perfectly
conducting walls are sufficiently large so that the electromagnetic field
perturbation introduced by the shielding can be negligible. This was
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demonstrated, theoretically and experimentally, for shielded dielectric
waveguides at microwave frequencies [1]. Taking the scalable properties
of the electromagnetic wave problems into account, this behavior was
investigated and demonstrated theoretically at optical frequencies [33–
36].

2.2. GSM Evaluation: Single and Multiple Discontinuities

Regarding Figure 1, we denote as waveguide a and waveguide b the
shielded dielectric waveguides located at z < 0 and z > 0, respectively,
of the abrupt discontinuity, at z = 0.

In order to apply the MMT and for reducing computational time
when calculating the GSM, an adequate number of proper modes
which meet at the discontinuity must be selected (M proper modes
in waveguide a, and N proper modes in waveguide b). Obviously,
we investigate the proper modes which have the highest influence.
The criteria used for the selection of the proper modes was the
maximization of the coupling integrals between the fundamental proper
mode of the waveguide a with all the proper modes solutions in
waveguide b, and vice-versa [22]. These coupling integrals appear when
applying the MMT, so that the proper modes that maximize them are
chosen (Appendix).

Once the selection process is finished, we assume M and N proper
modes in waveguides a and b, respectively. Our GSMM formulation
implies the evaluation of the contribution of each proper mode to the
reflection, both from itself and from the rest of the proper modes in
the same waveguide, and to the transmission of all the proper modes
of the other waveguide.

Evidently, this effect must be evaluated for each M and N proper
mode of waveguides a and b, respectively. In this way, the discontinuity
is treated as a device of M + N electromagnetic ports, and each
proper mode is taken as an electromagnetic port. Waveguides a and
b are considered to be physical ports, labeled as 1 and 2, respectively.
Therefore, the GSM of a single discontinuity symbolizes a matrix of
electromagnetic ports corresponding to physical ports. This GSM,
denoted as [S], can be written as [34]:

[S] =
[
[S11] [S12]
[S21] [S22]

]
(5)

where [Sij ] (i = 1, 2; j = 1, 2) are submatrices whose complex elements
represent the reflection and transmission coefficients between proper
modes. Submatrices [S11] and [S21] are obtained when the M proper
modes in waveguide a impinge on the discontinuity; in the same way,
[S12] and [S22] are calculated taking the N proper modes of waveguide
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Figure 3. General representation of a cascaded set of N abrupt
discontinuities in shielded dielectric waveguides.

b. We denote [S11] and [S22] as submatrices of reflection, whereas [S21]
and [S12] are submatrices of transmission.

2.3. GSM of a Cascaded Set of Abrupt Discontinuities

Once the GSM of each abrupt discontinuity has been calculated,
we have to determine the total GSM of a cascaded set of abrupt
discontinuities. Figure 3 shows a general representation of a
cascaded set of N abrupt discontinuities in arbitrary optical dielectric
waveguides enclosed by perfectly conducting walls.

We denote the dielectric waveguides using the labels: a, b, c, . . .,
n, n + 1. The capitals: M , N , P , Q, . . ., T , U represent the number
of proper modes to be taken in the successive waveguides, respectively.
So, n+1 dielectric waveguides give N cascaded abrupt discontinuities,
labeled as: I, II, III, . . ., N− 1, N. The discontinuities are separated
by the dielectric waveguide lengths: l1, l2, l3, . . ., ln−1. The successive
single GSM’s are denoted as: [SI ], [SII ], [SIII ], . . ., [SN−1], [SN ].
To determine the total GSM, [ST ], we join the N GSM’s, two by
two and correlatively [34]. Finally, we obtain the total GSM, [ST ],
corresponding to the N discontinuities. It has the form:

[
ST

]
=

[
[ST

11(M ×M)] [ST
12(M × U)]

[ST
21(U ×M)] [ST

22(U × U)]

]
(6)

where the complex submatrices [ST
ij ] (i = 1, 2; j = 1, 2) are known.

3. RESULTS

In order to study the scattering characteristics of shielded cylindrical
and periodic rectangular dielectric configurations in cascade, we have
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(a) (b)

Figure 4. Top and side views of (a) two coupled dielectric
posts, and (b) a gradual dielectric transition, enclosed by perfectly
conducting boundaries. The modelization as a cascade set of multiple
discontinuities is shown.

obtained experimental results which are compared with the theoretical
ones. Figure 4 shows two coupled dielectric posts and a dielectric
gradual transition, respectively.

The cylindrical posts and the gradual transition were built
in polystyrene (εr = 2.56), and were fixed to the wider side
of the rectangular metallic waveguide with double adhesive tape.
The application of this method is not restricted theoretically to
symmetrically located dielectrics; however, in order to ensure a good
set up, all the dielectrics structures were placed symmetrically with
respect to the longitudinal axis, z-axis, of the metallic waveguide
typically used in the X-band frequencies (22.86mm× 10.16mm). The
circular dielectric waveguides were built in teflon (εr = 2.1), and foam
(εr ≈ 1) was used to locate them symmetrically with respect to the
longitudinal axis of the rectangular metallic waveguide. In all cases,
results of the reflection and transmission coefficients, both moduli and
phase, for the fundamental proper mode were measured and compared
with the theoretical ones [35]. For this reason, although the complete
generalized scattering matrix was calculated, only the first column of
the submatrices [ST

11, ST
21] and [ST

12, ST
22] is relevant because we are

interested, specifically, in the fundamental proper mode. In order to
simplify the results presentation, we denote by R the reflection, S11,
and by T the transmission, S21, coefficients.

Figure 5(a) compares the theoretical and experimental results
obtained for the reflection coefficient, R, of the fundamental proper
mode for two coupled dielectric posts. In this case, two electromagnetic
windows appear, at 8.5 GHz and 9.2GHz. When distance d between
the coupled posts is increased, the transparent frequency value
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Figure 5. (a) Theoretical and experimental results: moduli of
the reflection coefficient, R, of the fundamental proper mode, versus
frequency, for the coupled cylindrical dielectric posts in Figure 4(a).
Parameters: h = 8.1 mm, r = 8 mm, εr = 2.56. (b) Theoretical and
experimental results: moduli of the reflection, R, and transmission, T ,
coefficients, of the fundamental proper mode, versus frequency, for the
gradual dielectric transition in Figure 4(b). Parameters: lt = 49 mm,
lg = 74.5mm, w = 15.02mm, εr = 2.56.

decreases: 9.2 GHz for d = 8 mm and 8.5 GHz for d = 16 mm. In both
cases, the reflection characteristics can be adjusted easily by tuning
the desired frequency.

The theoretical results were obtained by using n + 1 = 21
dielectric waveguides in cascade (N = 22 abrupt discontinuities) in the
simulation of each dielectric post. A good agreement is noticed between
theory and experiment. The concordance improves when reflection
coefficient increases.

The method was applied for analyzing a dielectric gradual
transition which connects an empty rectangular metallic waveguide
to a shielded image dielectric waveguide. Figure 5(b) shows, for the
fundamental proper mode, the theoretical and experimental results
obtained for the moduli of the reflection, R, and transmission, T ,
coefficients. Figure 6 contains the phase results of the gradual
transition which was simulated by a set of N = 18 abrupt
discontinuities in cascade. When N increases, a better simulation
of the transition is obtained. In both cases, moduli and phase, the
numerical results are very close to the experimental ones when N = 18.
Additional numerical and experimental results were obtained when
shielded cylindrical dielectric waveguides are connected abruptly and
gradually. In all cases the concordance was excellent. The possibility of
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Figure 6. Theoretical and experimental results: phase of the
reflection, R, and transmission, T , coefficients, of the fundamental
proper mode, versus frequency, for the gradual dielectric transition in
Figure 4(b).

(a) (b)

Figure 7. (a) Inverted Π dielectric waveguide, and (b) cross section of
a shielded inverted Π dielectric waveguide. Geometrical and electrical
parameters are shown.

designing power dividers and filters using dielectrics with very simple
geometry was confirmed.

A new dielectric waveguide is introduced as a good candidate
for microwave devices design. We denote it as inverted Π dielectric
waveguide. The inverted Π dielectric waveguide consists of a square
dielectric rod (permittivity εr1), with a symmetrical longitudinal
channel. The channel may be filled with air or with any other dielectric
(permittivity εr2). This dielectric material can be removed from
the channel or can be shifted inside it depending on the waveguide
application. Figure 7 represents an inverted Π dielectric waveguide
(a), and the cross section of an inverted Π dielectric waveguide inside
a metallic rectangular waveguide (b).

We are interested in solving the scattering electromagnetic
problem inside metallic rectangular waveguides partially filled with
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Figure 8. Multiple discontinuities set in inverted Π dielectric
waveguides connected abruptly.
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Figure 9. (a) Top view and cross section of a periodical configuration
built in inverted Π dielectric waveguides connected abruptly. In all
cases: εr1 = 2.1 (teflon), εr2 = 10 (alumina). Dimensions in mm. (b)
Theoretical and experimental results. Reflection, R, and transmission,
T , coefficients, versus frequency, for the fundamental proper mode.
Basic modes number: 30. Proper modes number in all waveguides: 20.

n inverted Π dielectric waveguides connected in cascade, as it is
shown in Figure 8. As for dielectric posts and transitions, the n
inverted Π dielectric waveguides were located symmetrically inside
the metallic rectangular waveguide (22.86mm × 10.16mm). As an
example, Figure 9 shows the calculated transmission and reflection
coefficients of a sequence of fifteen cascaded inverted Π dielectric
waveguides, together with the actual measurement results from the
fabricated device.

We have analyzed the behavior of shielded inverted Π dielectric
waveguides in cascade as Electromagnetic Band Gaps (EBG)
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Figure 10. (a) Top view and cross section of a dielectric periodical
configuration, in inverted Π dielectric waveguides. In all cases: 23
inverted Π dielectric waveguides in cascade (εr2 = 1 (air) in odd order
waveguides and εr2 = 10 in even order waveguides). Dimensions in
mm. (b) Theoretical results. Reflection, R, and transmission, T ,
coefficients, versus frequency, for the fundamental proper mode. Basic
modes number: 20. Proper modes number in all waveguides: 20.

structures. In all cases we have used a sequence of alumina-air-alumina
discontinuities in the channel as periodical parameter, as shown in
Figure 8. Different periodical configurations were designed and tested.
As an example, Figure 10(a) shows a periodic structure and the cross
section dimensions. In this case, the physical parameters were as
follows: 23 inverted Π dielectric waveguides; conducting walls cross
section dimensions (mm); a = 22.86, b = 10.16; basic modes number:
20; proper modes number: M = N = P = . . . = 20; εr1 = 2.1 (teflon),
εr2 = 10 (alumina) in odd order inverted Π dielectric waveguides
and εr2 = 1 (air) in even order inverted Π dielectric waveguides.
Figure 10(b) presents the moduli of the reflection, R, and transmission,
T , coefficients for the fundamental proper mode. An EBG, from
9.125GHz to 10 GHz, was obtained.

The evolution of the Electromagnetic Band Gaps was studied for
the case of periodical configurations with one missing alumina block.
The sequence of waveguides can now be regarded as a 1-D photonic
structure with a defect.

We have demonstrated the influence of the defect position (defect
waveguide order) on the EBG bandwidth. Figure 11 shows the
reflected, R, and transmitted, T , power surfaces for the fundamental
proper mode, as the defect position varies along the channel in the
periodical configuration shown in Figure 10(a). In order to make
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Figure 11. (a) Reflected and (b) transmitted power surfaces for
the EBG microwave structure, versus frequency and defect waveguide
order, in the frequency band (9.1–10.3)GHz.

the power conservation more evident, we present the moduli of the
reflection, R, and transmission coefficients, T , in the power percentages
form. If the alumina is removed (a defect is created) in waveguides
number 2 or number 4, the EBG is limited to the range between
9.2GHZ and 9.9 GHz. On the other hand, if the defect takes place
in waveguide number 6, the EBG spans from 9.2 GHz to 10 GHz. The
largest bandwidth of the EBG is given by defect waveguide orders 10
and 12 (9.125GHz to 10.3 GHz).

Taking into account the scalable properties of the electromagnetic
field, the procedure was applied at optical frequencies [35, 36]. Firstly,
in order to check the efficiency of the method for finding the
proper modes solutions, we have studied extensively its convergence
characteristics using all physical parameters of planar and channel
optical waveguides. An excellent convergence and good accuracy were
noticed for the propagation constant values of the proper modes. The
good performance of the method to evaluate optical waveguide proper
modes makes possible to use them for analyzing step and gradual
transitions in arbitrary optical waveguides.

We have applied the procedure for analyzing periodical structures
and waveguide photonic crystals in planar optical waveguides with
different lattice constants [36]. The implementation of the pattern
waveguide photonic crystal was carried out connecting abruptly 11
planar optical waveguides (n + 1 = 11 and N = 10), as shown
in Figure 12. The common physical parameters were as follows:
conducting walls cross section dimensions (µm): ap = 25, bp = 60;
basic modes number: 130; proper modes number: M = N = P =
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. . . = 15; maximum index increments: ∆n = 0.01; diffusion depths
(µm): h = 5; wavelength: λ = 1µm; index profile functions of planar
waveguides: exponential; waveguide lengths — lattice constant —
(µm): li (i = 2, 3, 4, . . . , 10) = l. To get the periodic lattice, we use
the substrate refraction index, ns, as lattice periodic parameter, and
the waveguide lengths, l, as lattice constant. All optical waveguides
are strongly monomode. We assign ns = 2.0 for substrate index of
waveguides 1, 3, 5, 7, 9 and 11 (odd order waveguides), while ns = 4.0
is assumed for waveguides 2, 4, 6, 8, 9 and 10 (even order waveguides).
In order to show the power conservation, we present the moduli of the
reflection R and transmission coefficients T in the power percentages
form.

Figure 13 contains the power results in the wavelength interval
(0.93–1.05)µm, for the fundamental proper mode, when lattice

Figure 12. Waveguide photonic crystal in planar optical waveguides.

100

80

60

40

20

0

P
o

w
e

r 
(%

)

100

80

60

40

20

0

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06

λ (µm)

R

T

Photonic window
(On State)

Photonic mirror
(Off State)

Photonic
Band Gap

(a) (b)

0.9

0.8
0.7

0.6
0.5

0.4

0.3

0.2
0.1

0

1

P
o

w
e

r 
(a

.u
.)

0.94 0.96 0.98 1 1.02 1.04

Wavelength (µm)

Transmitted power

Reflected power
Total power

Figure 13. (a) Reflected, R, and transmitted, T , power, versus
wavelength, for the fundamental proper mode when lattice constant
l = 1.08µm. Periodical structure: ten cascade abrupt discontinuities
between planar optical waveguides. (b) Response of the photonic
crystal structure calculated with the BEP module of OlympIOs.
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constant l = 1.08µm. We show the results obtained with our
generalized scattering matrix method in comparison with the results
provided by the Bidirectional Eigenmode Propagation (BEP) module
of the commercial software OlympIOs. We can notice a transparent
behavior for wavelengths in the interval (0.944–0.977)µm. In this
wavelength range all the power is transmitted; so, we denote this
interval as photonic window (on state). However, in the wavelength
interval (0.99–1.01)µm we have an opaque performance and all the
power is reflected; so, the periodical structure shows a Photonic Band
Gap (PBG) in the interval (0.99–1.01)µm and it works as a photonic
mirror (off state) or photonic crystal.

If a local defect is introduced in the PBG structure, an on state can
be introduced in the gap. The defect can be created by modifying the
length or/and the refraction index of the guiding region or the substrate
of one of the waveguides. In any case, the introduction of a local
defect modifies the optical path length and on state can be induced
in the PBG structure. In our case, the local defect was engineered
modifying the length of waveguide number 6, as Figure 14(a) shows.
The performance of the new periodic photonic crystal was extensively
studied by the authors [36].

When only one defect is introduced in the waveguide photonic
crystal, by changing exclusively the refraction index of the substrate
of the central planar waveguide, the device can act as a single channel
refraction index optical sensor. On the other hand, when two defects
are created, we have a double channel refraction index optical sensor.
Naturally, we can introduce the desired number of sensing channels.
Figure 14(b) shows the proposed optical sensors with one channel. The
refraction index of the specimen filling the channel (defect) is sensed by
measuring, simultaneously, the moduli and phase of the reflected and
transmitted optical signal. In this way, each measurement is obtained

(a) (b)

Figure 14. (a) Waveguide photonic crystal with a local defect in
waveguide number 6. (b) Refraction index sensor in planar waveguide
photonic crystals with one channel.
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Figure 15. Moduli of (a) reflection and (b) transmission surfaces,
versus refraction index and wavelength, for the single channel
refraction index optical sensor (vertical axes scaled in an inverted way).

from four magnitudes (two moduli and two phases). Consequently,
another important advantage is the accuracy we can obtain in the
refraction index evaluation.

In order to show, qualitatively, the first results obtained with
the proposed optical sensors, Figures 15(a)–(b) present the moduli
of reflection and transmission surfaces, respectively, obtained for the
single channel refraction index optical sensor shown in Figure 14(b).
The results are given for the Ey

pq (TM) fundamental proper mode. In
this case the length of the defect, located in the central waveguide, was
l6 = 1.5147µm. To demonstrate the excellent power conservation, in
Figures 15(a)–(b), the vertical axis of the reflection and transmission
coefficients were scaled in an inverted way. It can be seen that for a
given refraction index, the transmission shows a maximum (on state)
only for a specific wavelength. Besides, the topography of the reflection
and transmission power surfaces is almost the same. This behavior
justifies the good power conservation, and demonstrates that 95%
of the power travels in the TM fundamental proper mode for the
analyzed structures. Figure 16 shows the evolution of the minimum
reflection values for several refraction indices when l6 = 1.5147µm.
The wavelength position of the minimum provides the refraction index
of the specimen to be measured.

The former results suggest that planar waveguide photonic
crystals could be useful for refraction index sensors design.
Furthermore, refractive index sensors consisting of cascade optical
planar waveguide and defects created by microchannels in the substrate
may have important advantages when electro-optical materials, such
as lithium niobate, are chosen for its manufacture. For example, an
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Figure 16. Reflected power, versus wavelength and using the
refraction index as parameter, for the single channel refraction index
optical sensor when l6 = 1.5147µm.

(a) (b)

Figure 17. Diagram of the proposed (a) sensing section and (b) fluidic
system.

electro-optically driven interferometer at the output of the sensing
section can interact with the light in order to measure changes in
amplitude and/or phase produced by the analyte. Figure 17(a) is a
sketch representing the top view of the proposed sensor.

The diagram includes the sensing area and the reservoirs for
analytes and reference fluids. For simplicity, we have drawn only six
channels that create discontinuities (defects) in the substrate of the
guide: two sensing channels in the center and two reference channels
on each side. The parameter Λ represents the lattice constant. The
analyte flows through the two central channels (two-channel sensor
in this case) while the other two on each side act as a reference.
To provide greater flexibility in the measurements, the four reference
channels are interconnected and can be filled with another liquid. This
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is shown in Figure 17(b), where we can see the sensing area (included
in Figure 17(a)) as well as the rest of the proposed fluidic system.
To allow the channels fill with the fluid that is desired, the prototype
includes two tanks for the analyte and two tanks for reference. Deposits
for the analyte are connected to the central channel (sensing), while
the two reference tanks are connected to the four remaining channels.
It also includes large areas that allow connection of deposits with a
fluid system through holes. The new proposed optical sensor is being
designed and manufactured by the authors.

4. CONCLUSION

The electromagnetic scattering properties of cascade discontinuities
between dielectric waveguides can be obtained by using the generalized
scattering matrix (GSM) concept, together with the generalized
telegraphist equations (GTE) formulism and the modal matching
technique (MMT). This was confirmed by theoretical and experimental
evaluation. Commercial Software was used for comparison. The
application of the method to cascaded dielectric waveguides has
demonstrated the possibility of designing very simple and low cost
microwave devices, such as: power dividers, filters, electromagnetic
band gaps structures and resonators. At optical frequencies, planar
waveguides in cascade conforms another way for light control and
photonic devices design. Waveguide photonic crystals, optical switches,
narrow transmission optical filters, microresonators as well as refractive
index optical sensors can be achieved by means dielectric waveguides
in cascade. A new prototype of multichannel refractive optical sensor
is proposed in this review.

APPENDIX A.

The electric and magnetic fields, ~ea and ~ha, of a normal mode in a
metallic rectangular waveguide, “a”, partially filled with dielectrics,
can be expanded as a series of orthogonal functions which correspond
to the electric and magnetic fields of the TE and TM modes of the
empty rectangular waveguide:

~ea(x, y, z) =
∑∞

i
V(i)(z)~e(i)(x, y) (A1)

~ha(x, y, z) =
∑∞

i
I(i)(z)~h(i)(x, y) (A2)

where V(i)(z) and I(i)(z) are the coefficients of the series and represent
the equivalent voltages and currents of each normal mode, whereas
~e(i)(x, y) and ~h(i)(x, y) represent the electric and magnetic fields of
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TE and TM modes. The subscrip (i) refers to TE and TM empty
rectangular waveguide modes order.

In order to apply the modal matching technique at the
discontinuity between two metallic rectangular waveguides, “a” and
“b”, partially filled with dielectrics, and assuming the two waveguides
have the same metallic dimensions, modes TE and TM fulfill the
following orthogonal relations:∫

a
~ea(l) × ~ha(r) · ~uzdxdy =

∫

a
~eb(l) × ~ha(r) · ~uzdxdy

=
∫

b
~eb(r) × ~ha(l) · ~uzdxdy

=
∫

b
~eb(r) × ~hb(l) · ~uzdxdy = δlr (A3)

where ~uz is the vector of unit magnitude in the z-direction and δlr is
Kroenecker’s delta.

Developing the normal modes of the waveguides “a” and “b” in
their corresponding expressions according to the TE and TM modes,
and substituting in (A3), we obtain:

∫

a
~eal × ~har · ~uzdxdy =

∫

a

∑

i

Vak(i)~ea(i) ×
∑

j

Iar(j)
~ha(j) · ~uzdxdy

=
∑

i

∑
j
Val(i)Iar(j)

∫

a
~ea(i) × ~ha(j)~uz · dxdy

=
∑

i
Val(i)Iar(i) (A4)

∫

a
~ebl × ~har · ~uzdxdy =

∑
i
Vbl(i)Iar(j) (A5)

∫

b
~ebl × ~har · ~uzdxdy =

∑
i
Vbl(i)Iar(j) (A6)

∫

b
~ebl × ~hbl · ~uzdxdy =

∑
i
Vbl(i)Ibr(j) (A7)

where (A5) and (A6) are the coupling integrals of the normal modes
of waveguides “a” and “b”.
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