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Abstract—Reconfigurable antenna arrays are often capable of
radiating multiple patterns by modifying the excitation phases of the
elements. In this paper a method based on Firefly Algorithm (FA) has
been proposed to obtain dual radiation pattern from a concentric ring
array of isotropic elements, by finding out two different combinations
of states for the switches, which are assumed to be connected with the
rings of the array, along with optimum set of 4-bit radial amplitude and
5-bit radial phase distributions of the array elements for the specific
switch combinations. The optimum excitations of the array elements
in terms of discrete amplitudes and discrete phase, and the different
switch combinations for the specific excitations are computed using
Firefly Algorithm. To illustrate the effectiveness of Firefly Algorithm,
the two beam pairs have been computed by the same procedure from
the same array, using Particle Swarm Optimization (PSO) algorithm,
without changing their design criteria. Results clearly show the
superiority of the Firefly Algorithm over Particle Swarm Optimization
to handle the proposed problem.

1. INTRODUCTION

Reconfigurable antenna arrays received considerable interest in recent
times because of their ability to radiate multiple patterns from a
single antenna array, which are often required in communication and
radar related applications. Generally multiple radiation patterns are
obtained by switching between the excitation phases distributions of
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the elements while sharing common amplitude distributions. Several
methods of generating multiple patterns from a single antenna arrays
appeared in the literature [1–11].

Bucci et al. [1] proposed the method of projection to synthesize
reconfigurable array antennas with asymmetrical pencil and flat-
top beam patterns using common amplitude and varying phase
distributions. Design of phase-differentiated multiple pattern antenna
arrays based on simulated annealing algorithm have been described
by Diaz et al. [2]. Durr et al. proposed a phase only pattern
synthesis method to generate multiple radiations of pre-fixed amplitude
distribution with modified Woodward-Lawson technique [3]. The
design of a phase-differentiated reconfigurable array [4] using particle
swarm optimization in angle domain has been described by Gies
and Rahmat-Samii. Synthesis of continuous phase-only reconfigurable
array was described in [5]. Mahanti et al. [6] synthesized fully digital
controlled reconfigurable linear array antennas while maintaining
a Fixed Dynamic Range Ratio. Vaitheeswaran obtained multiple
radiation patterns from a linear antenna array based on finding an
optimum set of element-perturbed position in a constrained position
range using generalized generation gap steady state genetic algorithm
(G3-GA) [7]. Dual radiation patterns from a concentric ring array
have been reported in [8–10]. In [8], three different beam-pairs —
pencil/pencil, pencil/flat-top and flat-top/flat-top has been achieved
by modifying the 5-bit discrete radial phase distribution of the array
elements while sharing a common 4-bit radial amplitude distribution
among the elements using Gravitational Search Algorithm (GSA).
Discrete phase only reconfigurable antenna array to generate dual
beam by finding out an optimum set of discrete phase of the array
elements using differential evolution algorithm has been reported
in [11].

In this paper, we proposed a technique to generate dual radiation
patterns from a concentric ring array [12–24] with desired design
specifications, based on finding the two optimum combinations of
the states of the switches, which are assumed to be connected with
the rings of the array, along with an optimum set of 4-bit radial
amplitude and 5-bit radial phase distributions of the array elements.
The proposed method has been applied to generate two different beam
pair: a pencil/pencil beam-pair and a pencil/flat-top beam-pair in
the vertical plane with specified values of side lobe level (SLL), first
null beamwidth (FNBW), half-power beamwidth (HPBW) and ripple.
The optimum values of discrete radial amplitudes, discrete radial
phases and the optimum switching combinations required to generate
the above mention beam-pairs, are computed using Firefly Algorithm
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(FA) [25–27]. To illustrate the effectiveness of Firefly Algorithm, the
two beam pairs have been separately generated by the same method
form the same array using Particle Swarm Optimization (PSO) [27–
29] algorithm, without changing their design criteria. Results clearly
show the effectiveness of FA over PSO to compute the two different
beam-pairs using the proposed method.

2. PROBLEM FORMULATION

In this problem a concentric ring array of isotropic elements have been
considered. Two different radiation patterns are obtained from the
single array under two different combinations of state of the switches,
connected with the rings of the array. The optimum combinations
of state of the switches and optimum discrete radial amplitude and
radial phase of the array elements for the specific switch combinations,
generates dual radiation pattern in the vertical plane. The two
patterns share common amplitudes and phase distributions of the array
elements and are differ only in the two different states of the switches.
The state of a particular switch indicates the states of all the elements
in a particular ring of the array associated with that switch. The “off”
state of a particular switch is represented by making the excitation
amplitude and phase both equals to ‘zero’ to all the elements of a ring
associated with the switch. Similarly the “on” state of a switch is
represented by making the excitation amplitude and phase of all the
elements of a ring, associated with the switch, equals to the optimum
values of discrete amplitude and discrete phase assigned for the ring.

The states of the switches are found out in terms of binary words.
A ‘zero’ in the binary word reflects the “off” state and a ‘one’ reflects
the “on” state. All the radial amplitudes are varied in the range of
0 ≤ Im ≤ 1 in steps of 1/24 of a 4-bit digital attenuators and the
radial phases are varied in the range of −180◦ ≤ ϕ ≤ 180◦ in steps of
360◦/25 or 11.25◦ of a 5-bit digital phase shifters.

The proposed method has been applied to generate two different
beam pairs from a single concentric ring array of isotropic antennas.
Two different cases comprising a pencil/pencil beam pair and a
pencil/flat-top beam pair have been considered.

The free space far field pattern of the concentric ring array [15–18]
as shown in Figure 1 on the x-y plane can be expressed as:

E(θ, ϕ) =
M∑

m=1

Nm∑

n=1

Imej[krm sin θ cos(ϕ−ϕmn)+φm] (1)

Normalized absolute power pattern P (θ, ϕ) in dB can be expressed as
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Figure 1. Concentric ring array of isotropic antennas in X-Y plane.

follows:

P (θ, ϕ) = 10 log
10

[ |E(θ, ϕ)|
|E(θ, ϕ)|max

]2

= 20 log
10

[ |E(θ, ϕ)|
|E(θ, ϕ)|max

]
(2)

where, M = number of concentric rings, Nm = number of isotropic
elements in m-th ring, Im = excitation amplitude of elements on
m-th circular ring, dm = interelement arc spacing of m-th circle,
rm = Nmdm/2π is the radius of the m-th ring, ϕmn = 2nπ/Nm is
the angular position of mnth element with 1 ≤ n ≤ Nm, θ, ϕ =
polar, azimuth angle, λ = wave length, k = wave number = 2π/λ, j =
complex number, φm = excitation phase of elements on m-th ring.

The fitness functions for the two beam pairs of case I and case II
have been defined as follows:

Fitness1 =

3∑
j=1

kj

(
P

(p1)
j,o − P

(p1)
j,d

)2

H(T1) +

3∑
j=1

wj

(
P

(p2)
j,o − P

(p2)
j,d

)2

H(T2) (3)

Fitness2 =

3∑
j=1

kj

(
P

(p1)
j,o − P

(p1)
j,d

)2

H(T1) +

4∑
j=1

wj

(
P

(p2)
j,o − P

(p2)
j,d

)2

H(T2) (4)

where Fitness1 represents the fitness function for the pencil/pencil
beam-pair, i.e., for case I and Fitness2 is for the pencil/flat-top beam-
pair, i.e., for case II. The superscript p1 is meant for the design
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specification of the pattern 1 and the superscript p2 is meant for the
design specification of the pattern 2 for both the cases.

Pj,o and, Pj,d represent respectively the obtained and desired
values of the parameters for both the cases. The fourth term of second
summation in Equation (4) is the ripple parameters for the flat-top
beam of second case. The desired tolerance level of the ripple for
the flat-top (sector) beam pattern of pencil/flat-top beam-pair in the
coverage region −12◦ ≤ θ ≤ 12◦ is kept at 0.1 dB from the peak value
of 0 dB.

H(T1) and H(T2) are Heaviside step functions defined as follows:

T1 =
(
P

(p1)
j,o − P

(p1)
j,d

)
(5)

T2 =
(
P

(p2)
j,o − P

(p2)
j,d

)
(6)

H(T1) =
{

0, if T1 < 0,
1, if T1 ≥ 0

(7)

H(T2) =
{

0, if T2 < 0,

1, if T2 ≥ 0
(8)

The weighting factors associated with each terms in Equation (3)
have been made equals to ‘one’ i.e., kj = wj = 1 for all values of
j. In Equation (4) the weighting factors associated with the first
summation have been made equals to ‘one’ i.e., kj = 1, for all values
of j. The weighting factors associated with the second summation in
Equation (4) has been defined as follows:

wj =
{

20 , for j = 4,
1 , otherwise (9)

For optimal synthesis of dual-beam concentric ring array the fitness
functions of Equation (3) and Equation (4) have to be minimized based
on the proposed method.

3. ALGORITHM DETAILS AND PARAMETRIC SETUP

This section describes the Firefly algorithm (FA) and the parametric
setups for both FA and PSO [27–29] to obtain dual radiation pattern
from the concentric ring array for both the cases.

3.1. Firefly Algorithm

Firefly algorithm is a swarm based optimization algorithm developed
by Yang [25]. The algorithm relates the flashing characteristics of
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the fireflies with the objective function to be optimized. The idea of
the algorithm was developed from the study of social behavior and
the bioluminescent communication of fireflies [25–27]. The algorithm
considered glowing fireflies as agents and they moved around the search
space for finding out an optimum solution of a given problem. At
a particular instant, each agent i.e., firefly is characterized by two
parameters: its location (x) in the d-dimensional search space and
its light intensity or brightness (I). The location of a firefly at a
particular instant reflects a solution of an objective function, which
is being optimized, and its brightness denotes the quality of that
solution. Depending upon the types of problem, the intensity of
flashing light from a firefly is determined by the fitness evolution of
the objective function. In maximization problem, brightness is assume
simply proportional to the value of the objective function [25–27] and
in case of minimization problem, it is taken as inverse of the value
of objective function. Each firefly is attracted towards every other
“brighter” firefly in the population [25–27]. The location and the
brightness of the fireflies are updated in the successive iterations of
the algorithm. A fixed maximum number of iterations specify the
termination condition of the algorithm and at the end of maximum
iteration, the location of the brightest firefly in population gives the
optimum solution of the problem and its brightness reflects the quality
of the solution. The algorithm can be summarized as below:

Step 1: Generate initial locations of the fireflies:
Initialize the locations of n-number fireflies randomly in the d-

dimensional search space within the search bound as below:

xi = (xi1, xi2, . . . , xid) for i = 1, 2, . . . , n (10)

Step 2: Compute the brightness of the fireflies:
Compute the brightness (Ii) of each firefly at current generation

by fitness evolution at their current location.
for maximization problem,

Ii ∝ f (xi) (11a)

for minimization problem,

Ii ∝ 1/f (xi) (11b)

Step 3: Rank the fireflies and compute current global best:
Rank the fireflies according to their brightness at current

generation. Assign the location of the brightest firefly in the population
as current global best (g

best
) and the corresponding brightness as best

fitness value at current generation.
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Step 4: Update the location of the fireflies through their
movement:

Move each firefly towards the “brighter” firefly [25–27] in the
population at current generation and updates their locations for the
next iteration of the algorithm depending upon the attractiveness
between the “brighter” one and the moving firefly.

The movement of firefly i attracted towards another more
attractive (brighter) firefly j in d-dimensional search space is computed
as [25–27]:

xi = xi + β0e
−γr2

ij (xi − xj) + αεi (12)

where the product of β0 and e−γr2
ij in Equation (12) denotes the

attractiveness between the two fireflies i and j. γ is the light absorption
coefficient in a given medium. rij is the Cartesian distance between
the two fireflies i and j at xi and xj , and is computed as [25–27]:

rij = ‖xi − xj‖ =

√√√√
d∑

k=1

(xi,k − xj,k)
2 (13)

Firefly algorithm does not allow the movement of the brightest firefly
to any other direction at current generation. The algorithm holds
the location of the brightest firefly at current generation, and rest of
the fireflies changes there locations according to Equation (12). In this
manner the algorithm gradually updates the global best (g

best
) solution

in the successive iterations of the algorithm.
β0 is the attractiveness at r = 0. The third term Equation (12) is

for introducing some randomization where α being the randomization
parameter and εi is a vector of random numbers drawn from a Gaussian
distribution or uniform distribution [25–27].

Step 5: Repeat from steps 2 to 4 until iteration reaches its
maximum limit. Return the location of the best firefly (g

best
) as the

global solution and the corresponding brightness as the global fitness
value of the objective function using firefly algorithm.

3.2. Details of Parametric Setup

A concentric ring array of ten rings is considered. The number of
elements in each ring are taken as multiple of 7, i.e., 7m, where m is
the ring number. The inter-element distance dm in each is considered
as 0.5λ. The radius of the m-th ring of the array is determined from
the expression rm = Nmdm/2π. From the expression of rm it can be
seen that, for Nm = 7m and dm = 0.5λ, all the rings are separated
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from each other by a minimum distance of 0.5λ which is helpful to
avoid the effect of mutual coupling.

As the design problem is based on finding out the two optimum
combinations of the state of the switches along with an optimum set
of 4-bit radial amplitude and an optimum set of 5-bit radial phase for
the array, the individual of the population for both FA and PSO are
considered as follows:

P = [S1 S2 . . . S2M I1 I2 . . . IM φ1 φ2 . . . φM ] (14)

The limits of the variables are defined as follows:

0 ≤ Sm ≤ 1, for m = 1, 2, . . . , 2M (15)

0 ≤ Im ≤ 1, for m = 1, 2, . . . ,M (16)

−π ≤ φm ≤ π, for m = 1, 2, . . . ,M (17)

where, M is the number of rings of the array, considered as 10.
The two combinations of the state of the switches are obtained by

rounding off the Sm, and the 4-bit radial amplitudes and 5-bit radial
phases are obtained by quantizing the amplitudes and phases to their
significant levels. The other parametric setups of the FA and PSO,
for the proposed problem are set based on the guidelines provided
in [25–29] and are given in Table 1. The desired specification of the
parameters Pj,d, required for obtaining dual radiation patterns for both
the cases are given in Table 2 and Table 3, respectively.
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Figure 2. Dual radiation pattern
of pencil/pencil beam pair (case
I) computed using FA (shown in
ϕ = 0◦ plane).
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Figure 3. Dual radiation pattern
of pencil/pencil beam pair (case
I) computed using PSO (shown in
ϕ = 0◦ plane).
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Figure 4. Convergences of FA
and PSO for the minimization of
the fitness function of case I.
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Figure 5. Dual radiation pattern
of pencil/flat-top beam pair (case
II) computed using FA (shown in
ϕ = 0◦ plane).

Table 1. Parametric setup of the FA and PSO.

FA PSO

Parameters Value Parameters Value

number of

fireflies
35 Swarm size 35

β0 0.20 C1 2.0

γ 0.25 C2 2.0

α 1
Time-varying inertia

weight (w)

Decreases linearly

from 0.9 to 0.4

−−− −−−

vd,max

(maximum allowed

velocity for each

particle on dth

dimension)

0.9rd

(rd is the difference

between the

maximum and

minimum possible

values of decision

variables on dth

dimension)

Search space

dimension
40

Search space

dimension
40

Choice

of initial

population

random

Choice

of initial

population

random

Termination

condition

A maximum

iteration

of 1000

Termination

condition

A maximum

iteration

of 1000
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Table 2. Desired and obtained results for the first case (pencil/pencil
beam pair) computed using FA and PSO.

Design parameters
 

FA  

Pencil 

beam 1  

Pencil 

beam 2  

Pencil 

beam 1  

Pencil 

beam 2

SLL 

(dB) 

Desired 

Obtained -22.7574 -24.4177 -21.7951

HPBW 

(degree) 

Desired 7.0000 

Obtained 6.0000  

FNBW 

(degree) 

Desired 12.0000  

Obtained 14.8000   

5.8000

16.0000 12.0000

15.600014.4000

6.2000

PSO

5.0000

-24.000 -24.000-28.0000 -28.000

-23.5566

5.0000 7.0000

6.0000

16.0000

16.4000

0 0

Table 3. Desired and obtained results for the second case (pencil/flat-
top beam pair) computed using FA and PSO.

Pencil 

beam  

Flat - top 

beam

 Pencil 

beam 

Flat-top 

beam 

SLL 

(dB) 

Desired -22.0000 -20.0000 -22.0000 -20.0000  

Obtained -20.5647 -17.0880 -17.8248 -15.3343 

HPBW 

(degree) 

Desired 9.0000 26.0000 9.0000  26.0000 

Obtained 6.0000 29.2000 5.0000 30.2000 

FNBW 

(degree) 

Desired 18.0000 50.0000 18.0000 50.0000 

Obtained 13.8000 46.6000 11.0000  45 

Ripple 

(dB) 

( ) 

Desired ---- 0.1000 ---- 0.1000 

Obtained ---- 1.0419 ---- 0.8190 

Design parameters
 FA  PSO  

^__ o o
12 ^_ 12θ
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4. SIMULATION RESULTS

The fitness functions for both the cases are minimized individually
using FA and PSO based on the proposed method for the optimal
synthesis of the dual radiation pattern of pencil/pencil and pencil/flat-
top beam pairs. The results presented in this section are the best set
of results (in terms of lower fitness value) obtained from 20 different
run of each of the algorithm for each individual case. All patterns are
obtained in ϕ = 0◦ plane.

The design specifications of the reconfigurable array of first case
and its corresponding obtained results using FA and PSO are shown
in Table 2. Similarly for the second case, the design specifications and
its corresponding results obtained using FA and PSO are shown in
Table 3.

From Table 2, it can be seen that the obtained values of SLL
for pencil beam 1 and pencil beam 2 for the pencil/pencil beam pair,

Table 4. Optimum discrete radial amplitudes, discrete radial phases
and the two combinations of the state of the switches computed using
FA for generating dual radiation pattern of pencil/pencil beam-pair
(case I).

Ring Number 

Optimum 

normalized 

amplitude      

(4-bit) 

Optimum 

Phase (5-bit) 

(degree) 

Switches state 

for pencil 

beam1 

Switches state 

for pencil 

beam2 

1 0.5625 45.0000 1  1

2 0.5625 56.2500  1  1

3 0.7500 45.0000  1  1

4 0.6875 22.5000 1  1

5 0.8125 45.0000  1  1

6 0.5625 45.0000  0  1

7 0.6875 33.7500  1  0

8 0.5000 33.7500  1  1

9 0.4375 90.0000  0 0

10 0.2500 45.0000  1  1

1 " "

0 " "

on

off

 

  
  

 
1 " "

0 " "

on

off

 

  
  

 

8
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Table 5. Optimum discrete radial amplitudes, discrete radial phases
and the two combinations of the state of the switches computed using
PSO for generating dual radiation pattern of pencil/pencil beam-pair
(case I).

Ring Number 

Optimum 

normalized 

amplitude      

(4-bit) 

Optimum 

Phase (5-bit) 

(degree)  

Switches state 

for pencil 

beam1 

Switches state 

for pencil 

beam2 

1 0.3125 45.0000  0  0  

2 0.5625 -22.5000 1  1  

3 0.5625 -22.5000 1  1  

4 0.5000 -56.2500  1 1  

5 0.5625 -33.7500  1  1  

6 0.3750 -45.0000 0 1  

7
0.4375 -33.7500 1  0

 

8 0.4375 -33.7500  1  1  

9 0.3125 33.7500 0  0  

10 0.1875 -33.7500 1  1  

1 " "

0 " "

on

off

 

  
  

 
1 " "

0 " "

on

off

 

   

computed using FA are much better than those computed using PSO.
The other obtained parameters, computed using FA and PSO for the
first case are quite comparable.

The two optimum combinations of the state of the switches along
with optimum discrete radial amplitude and optimum discrete radial
phase distributions of the array elements for generating dual radiation
pattern of pencil/pencil beam pair (case I) using FA and PSO are
shown in Table 4 and Table 5, respectively.

The normalized power patterns for the first case, computed
individually using FA and PSO are shown in Figure 2 and Figure 3,
respectively.

The convergence characteristics of the FA and PSO for the first
case (pencil/pencil beam pair) is shown in Figure 4 in terms of best
fitness value versus generations for the best run of each algorithm (best
out of 20 different runs). From the magnifying portion of the graph, it
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can be seen that the performance of FA over PSO is much better for
the minimization of the fitness function of ‘case I’.

From Table 3 it can be seen that the obtained value of ripple
(absolute value) for the flat-top beam of ‘case II’ , computed using FA,
in the region −12◦ ≤ θ ≤ 12◦ is 1.0419 dB, whereas ripple computed
using PSO for the flat-top beam of ‘case II’ in the same region is
0.8190 dB . The other specified parameters of the pencil/flat-top beam
pair (case II) computed using FA is significantly better than those
computed using PSO.

The optimum combinations of state of the switches and optimum
discrete radial amplitude and radial phase of the array elements for
generating dual radiation pattern of pencil/flat-top beam pair (case II)
using FA and PSO are shown in Table 6 and Table 7, respectively.

The normalized power patterns for the second case, computed
individually using FA and PSO are shown in Figure 5 and Figure 6,
respectively.

The convergence characteristic of FA and PSO for the second case
(pencil/flat-top beam pair) is shown in Figure 7 in terms of best fitness
value versus generations for the best run of each algorithm (best out of
20 different runs). The zooming portion of Figure 7 clearly indicates

Table 6. Optimum discrete radial amplitudes, discrete radial phases
and the two combinations of the state of the switches computed using
FA for generating dual radiation pattern of pencil/flat-top beam-pair
(case II).

Ring Number 

Optimum 
normalized 
amplitude      

(4-bit) 

Optimum 
Phase (5-bit)  

(degree) 

Switches state 
for pencil beam

1 " "

0 " "

on

off

 

  
  

 

Switches state 
for flat-top 

beam 

1 " "

0 " "

on

off

 

  
  

 

1 1.0000 -33.7500 1 1

2 0.5000 -11.2500 1  1  

3 0.1250 -11.2500 0 1 

4
 1.0000 11.2500 1  0 

5
 0.1250 146.2500 0  1 

6 0.4375 -45.0000 1  0 

7
 0.3750 11.2500 1  0  

8 0.4375 -11.2500 1  0

9
 0.2500 22.5000 1

 0

10 0.2500 112.5000 0  
0
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Table 7. Optimum discrete radial amplitudes, discrete radial phases
and the two combinations of the state of the switches computed using
PSO for generating dual radiation pattern of pencil/flat-top beam-pair
(case II).

Ring Number 

Optimum 
normalized 
amplitude      

(4-bit) 

Optimum 
Phase (5-bit)  

(degree) 

Switches state 
for pencil beam 

1 " "

0 " "

on

off

 

  
  

 

Switches state
for flat-top 

beam 

1 " "

0 " "

on

off

 

   

1 0.8750  11.2500 1 1 

2 0.3125 -22.5000 1 1 

3 0.1250  -33.7500 0 1 

4 0.8125  101.2500 0 0 

5 0.1250 -146.2500 0 1 

6 0.6250 11.2500 1 0 

7 0.3750 101.2500 0 0 

8 0.2500 -22.5000 1 0 

9 0.2500 56.2500 1 0 

10 0.3750 -45.0000 1 0 

Table 8. Comparative performance of the FA and PSO.

Different

Cases
Algorithms

Best

performance

in terms of

fitness value

(out of 20

fitness values)

Mean

fitness

value

Standard

Deviation

of the

fitness

values

Case I
FA 23.3771 23.6427 0.1473

PSO 31.1654 32.1574 0.4576

Case II
FA 31.4815 31.9932 0.1663

PSO 53.7415 54.3325 0.4211

the superiority of FA over PSO for minimizing the fitness function of
‘case II’.

Table 8 shows the comparative performance of the two algorithms.
The lower mean fitness values of FA with respect to PSO over all
the cases prove FA as the best performing algorithm for the proposed
problem.



Progress In Electromagnetics Research B, Vol. 36, 2012 127

in degreesθ

N
o

rm
al

iz
ed

 P
o

w
er

 P
at

te
rn

s 
in

 d
B

Figure 6. Dual radiation pat-
tern of pencil/flat-top beam pair
(case II) computed using PSO
(shown in ϕ = 0◦ plane).

Generations

B
e
s
t 

F
it

n
e
s
s

Figure 7. Convergences of FA
and PSO for the minimization of
the fitness function of case II.

Table 9. P -value obtained using Wilcoxon’s two-sided rank sum test
for the comparison pairs.

Different Cases Comparison pair P-value

Case I FA/PSO 6.7956e-008

Case II FA/PSO 6.7860e-008

Table 9 shows the P -values obtained through Wilcoxon’s rank sum
test [30–32] between the FA and PSO for two different cases of design
considerations. All the P -values are less than 0.05 (5% significant
level) which is a strong proof against null hypothesis indicating that
better final fitness value obtained by the best algorithm is statistically
significant and has not occurred by chance.

5. CONCLUSIONS

A new method of generating dual radiation pattern from a concentric
ring array by modifying the state of the switches, which are assumed
to be connected with the rings of the array is presented. The optimum
amplitudes and phases of the array elements are strictly dependent
on the state of the switches. Two different types of beam pairs: a
pencil/pencil beam pair and a pencil/flat-top beam pair are generated
in the vertical plane based on the proposed method. The method is
much simpler than the phase only synthesis of dual radiation pattern,
because it doesn’t required to compute two different set of phase
distribution of the array elements, modifying which will produce the
two different patterns. The number of switches considered in this
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method is significantly less and the array is excited in terms of a 4-
bit radial amplitude distribution and 5-bit radial phase distribution
among the elements. This leads to simple feed network design and less
computational complexity.

Based on the proposed method, two fitness functions are
formulated for generating dual radiation pattern of pencil/pencil and
pencil/flat-top beam pairs. The two fitness functions are minimized
individually using FA and PSO for optimal synthesis of the two beam
pairs. The comparative performance of FA and PSO clearly shows
the superiority of FA over PSO in terms of finding optimum solutions
for the desired beam patterns. The quality of the solutions produced
individually using FA and PSO for the two different cases of design
considerations are analyzed statistically and the superiority of FA is
proven over PSO for the proposed problem.

The design method can be used directly in practice to synthesize
reconfigurable concentric ring isotropic antenna arrays with discrete
amplitudes, discrete phases and the control over beams by the
modification of the state of the switches. It can also be used for
synthesizing other array configurations.
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