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Abstract—A new approach to reduce the numerical dispersion of
the six-stages split-step unconditionally-stable finite-difference time-
domain (FDTD) method is presented, which is based on the split-
step scheme and Crank-Nicolson scheme. Firstly, based on the matrix
elements related to spatial derivatives along the x, y, and z coordinate
directions, the matrix derived from the classical Maxwell’s equations
is split into six sub-matrices. Simultaneously, three controlling
parameters are introduced to decrease the numerical dispersion error.
Accordingly, the time step is divided into six sub-steps. Secondly, the
analysis shows that the proposed method is unconditionally stable.
Moreover, the dispersion relation of the proposed method is carried out.
Thirdly, the processes of determination of the controlling parameters
are shown. Furthermore, the dispersion characteristics of the proposed
method are also investigated, and the maximum dispersion error of
the proposed method can be decreased significantly. Finally, numerical
experiments are presented to substantiate the efficiency of the proposed
method.

1. INTRODUCTION

The finite-difference time-domain (FDTD) method [1] has been
proven to be an established numerical technique that provides
accurate predictions of field behaviors for electromagnetic interaction
problems [2–11]. Some enhanced FDTD methods have been
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proposed [12–18]. However, the conventional FDTD method is an
explicit method, and the time step size is constrained by the Courant-
Friedrichs-Lewy (CFL) condition [19], which affects its computational
efficiency when fine meshes are required.

Recently, to overcome the CFL condition on the time step
size of the FDTD method, an unconditionally-stable FDTD method
based on the alternating direction implicit (ADI) technique was
developed [20, 21]. The ADI-FDTD method has second-order accuracy
both in time and space. Nevertheless, it presents large numerical
dispersion error with large time steps. To improve the dispersion
performance, several methods were proposed, such as parameter-
optimized [22, 23], artificial-anisotropy methods [24–26] and the
simplified sampling biorthogonal ADI method [27].

The Crank-Nicolson (CN) scheme is unconditionally-stable and
is believed to have high numerical accuracy [19]. However, spatial
discretization leads to a huge spare irreducible matrix. Directly solving
the matrix by Gaussian elimination or an iterative method is so
CPU intensive that the CN scheme is hardly unstable for practical
problems. CN-based FDTD methods [28–36] use factorization-splitting
and are fractional-step, split-step, or sub-step methods, leading to
simple matrices at each sub-step, usually tri-diagonal if second-order
differencing is used. Particularly, the Crank-Nicolson-Douglas-Gunn
(CNDG) method as two-dimensional (2-D) [28], the Crank-Nicolson
cycle-sweep (CNCS) method in 2-D [29] and as in 3-D [30], and the
Crank-Nicolson approximate-factorization-splitting (CNAFS) method
in 3-D [31] have small anisotropy, and the Crank-Nicolson direct-
splitting (CNDS) method in 3-D [32].

Along the same line, other unconditionally-stable methods such
as split-step [37–47] and locally-one dimensional (LOD) [48–52] FDTD
methods were developed. Specially, the two sub-steps method in [37],
the three sub-steps methods in [38–40], the four sub-steps methods
in [41–44] and six sub-steps methods in [45–47]. The LOD-FDTD
method can be considered as a split-step approach (SS1) with first-
order accuracy in time, which consumes less CPU time than that
of the ADI-FDTD method. Particularly, The LOD-FDTD methods
in 2-D [48, 49], and 3-D LOD-FDTD methods with a three-step
scheme [50] and a two-step scheme [51]. The method in [47] is based
on the split-step scheme and Crank-Nicolson scheme, and denoted
as SSCN6-FDTD herein. The SSCN6-FDTD method has second-
order accuracy both in time and space, and has simpler procedure
formulation than those of the ADI-FDTD method and the LOD-FDTD
method. However, when the size of time step is larger, the numerical
dispersion error of the SSCN6-FDTD method is becoming larger.



Progress In Electromagnetics Research, Vol. 122, 2012 177

To reduce the numerical dispersion error further, an efficient
SSCN6-FDTD method in 3-D domains with controlling parameters is
presented in this paper. Firstly, based on the matrix elements related
to spatial derivatives along the x, y, and z coordinate directions,
the Maxwell’s matrix is split into six sub-matrices. Simultaneously,
three controlling parameters are introduced to decrease the numerical
dispersion error. Accordingly, the time step is divided into six sub-
steps, and the proposed method is denoted by E-SSCN6-FDTD.
Secondly, the proposed method is proven to be unconditionally stable
by using the Fourier method. Furthermore, the dispersion relation
of the proposed method is carried out. Thirdly, the processes of
determination of the controlling parameters are shown. Moreover, the
dispersion characteristics of the proposed method also are investigated,
and the maximum dispersion error of the proposed method is lower
than those of the SSCN6-FDTD method, the CNDS-FDTD method,
the CNAFS-FDTD method, and the LOD-FDTD method. Finally,
numerical experiments are presented, which can be concluded that the
numerical dispersion error of the proposed method can be decreased
significantly.

2. FORMULATION OF THE E-SSCN6-FDTD METHOD

In linear, isotropic, non-dispersive and lossless medium, ε and µ are the
electric permittivity and magnetic permeability, respectively. Then,
the 3-D Maxwell’s equations can be written in a matrix form as

∂~u

∂t
= [M ] ~u (1)

where ~u = [Ex, Ey, Ez,Hx,Hy,Hz]T , and [M ] is the Maxwell’s matrix
as below.

Based on the matrix elements related to spatial derivatives along
the x, y, and z coordinate directions, the Maxwell’s matrix is split into
six sub-matrices, [D1], [E1], [F1], [D2], [E2], and [F2]. Simultaneously,
three controlling parameters of Cx, Cy, and Cz are introduced to
decrease the numerical dispersion error.

[M ] =




0 0 0 0 −1
ε

∂
∂z

1
ε

∂
∂y

0 0 0 1
ε

∂
∂z 0 −1

ε
∂
∂x

0 0 0 −1
ε

∂
∂y

1
ε

∂
∂x 0

0 1
µ

∂
∂z − 1

µ
∂
∂y 0 0 0

− 1
µ

∂
∂z 0 1

µ
∂
∂x 0 0 0

1
µ

∂
∂y − 1

µ
∂
∂x 0 0 0 0




(2)
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[D1]=




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1

ε
∂
∂x 0

0 0 0 0 0 0
0 0 1

µ
∂
∂x 0 0 0

0 0 0 0 0 0




[D2]=




0 0 0 0 0 0
0 0 0 0 0 −1

ε
∂
∂x

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 − 1

µ
∂
∂x 0 0 0 0




[E1]=




0 0 0 0 0 1
ε

∂
∂y

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1
µ

∂
∂y 0 0 0 0 0




[E2]=




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1

ε
∂
∂y 0 0

0 0 − 1
µ

∂
∂y 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0




[F1]=




0 0 0 0 0 0
0 0 0 1

ε
∂
∂z 0 0

0 0 0 0 0 0
0 1

µ
∂
∂z 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0




[F2]=




0 0 0 0 −1
ε

∂
∂z 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

− 1
µ

∂
∂z 0 0 0 0 0

0 0 0 0 0 0




(3)

Then, (1) can be written as
∂~u

∂t
=Cx·[D1]~u+Cy·[E1]~u+Cz ·[F1]~u+Cx·[D2]~u+Cy·[E2]~u+Cz·[F2]~u (4)

By using the split-step scheme [37], (4) is divided into six sub-
equations, from n to n + 1, one time step is divided into six sub-steps
accordingly, n → n + 1/6, n + 1/6 → n + 2/6, n + 2/6 → n + 3/6,
n + 3/6 → n + 4/6, n + 4/6 → n + 5/6, and n + 5/6 → n + 1, by
successively solving

sub-step1 :
∂~u

∂t
=6 · Cx · [D1] ~u n → n + 1/6 (5a)

sub-step2 :
∂~u

∂t
=6 · Cy · [E1] ~u n + 1/6 → n + 2/6 (5b)

sub-step3 :
∂~u

∂t
=6 · Cz · [F1] ~u n + 2/6 → n + 3/6 (5c)

sub-step4 :
∂~u

∂t
=6 · Cx · [D2] ~u n + 3/6 → n + 4/6 (5d)

sub-step5 :
∂~u

∂t
=6 · Cy · [E2] ~u n + 4/6 → n + 5/6 (5e)

sub-step6 :
∂~u

∂t
=6 · Cz · [F2] ~u n + 5/6 → n + 1 (5f)

Furthermore, the right side of the above equations can be approximated
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by using the Crank-Nicolson scheme [28]. Subsequently, six sub-
procedures are generated as follows(

[I]− ∆t

2
· Cx · [D1]

)
~un+1/6=

(
[I] +

∆t

2
· Cx · [D1]

)
~un (6a)

(
[I]− ∆t

2
· Cy · [E1]

)
~un+2/6=

(
[I] +

∆t

2
· Cy · [E1]

)
~un+1/6 (6b)

(
[I]− ∆t

2
· Cz · [F1]

)
~un+3/6=

(
[I] +

∆t

2
· Cz · [F1]

)
~un+2/6 (6c)

(
[I]− ∆t

2
· Cx · [D2]

)
~un+4/6=

(
[I] +

∆t

2
· Cx · [D2]

)
~un+3/6 (6d)

(
[I]− ∆t

2
· Cy · [E2]

)
~un+5/6=

(
[I] +

∆t

2
· Cy · [E2]

)
~un+4/6 (6e)

(
[I]− ∆t

2
· Cz · [F2]

)
~un+1=

(
[I] +

∆t

2
· Cz · [F2]

)
~un+5/6 (6f)

where [I] is a 6 × 6 identity matrix. Without loss of generality, the
updating equations are herein presented for the sub-step 1 only. More
specifically, (6a) can be rewritten as

sub-step1 : En+1/6
z =En

z + Cx · ∆t

2ε
· ∂

∂x

(
Hn+1/6

y + Hn
y

)
(7a)

Hn+1/6
y =Hn

y + Cx · ∆t

2µ
· ∂

∂x

(
En+1/6

z + En
z

)
(7b)

By substituting (7b) into (7a), the following tri-diagonal equations can
be generated[
1+

(Cx∆t)2

2εµ (∆x)2

]
Ez

∣∣∣n+1/6
i,j,k+1/2−

(Cx∆t)2

4εµ (∆x)2
(
Ez

∣∣∣n+1/6
i+1,j,k+1/2+Ez

∣∣∣n+1/6
i−1,j,k+1/2

)

=

[
1− (Cx∆t)2

2εµ(∆x)2

]
Ez

∣∣∣ni,j,k+1/2+
(Cx∆t)2

4εµ(∆x)2
(
Ez

∣∣∣ni+1,j,k+1/2+Ez

∣∣∣ni−1,j,k+1/2

)

+
Cx∆t

ε∆x

(
Hy

∣∣∣ni+1/2,j,k+1/2 −Hy

∣∣∣ni−1/2,j,k+1/2

)
(8)

Moreover, (7b) can be explicitly solved by

Hy

∣∣∣n+1/6
i+1/2,j,k+1/2 = Hy

∣∣∣ni+1/2,j,k+1/2 +
Cx∆t

2µ∆x

(
Ez

∣∣∣n+1/6
i+1,j,k+1/2

−Ez

∣∣∣n+1/6
i,j,k+1/2 + Ez

∣∣∣ni+1,j,k+1/2 − Ez

∣∣∣ni,j,k+1/2

)
(9)

For other sub-steps, field components, equations and computational
processes similar to (8), (9) can be obtained.
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In order to investigate the computational requirements of E-
SSCN6-FDTD method, and compare with other unconditionally
stable FDTD methods, let us determine the flops count taking
into account the number of multiplication/divisions (M/D) and
additions/subtractions (A/S) required for one complete time step [36].
Table 1 lists the number of arithmetic operations and tri-diagonal
matrices for some unconditionally-stable FDTD methods. The count
is based on the right-hand sides of their respective implicit and explicit
equations using central difference operators. For simplicity, the source
terms have been excluded and the numbers of electric and magnetic
field components in all directions have been taken to be the same. It
is also assumed that all multiplicative factors have been computed and
stored.

From Table 1, it is clear that the flops count of the E-SSCN6-
FDTD method has been reduced substantially compared with other
unconditionally-stable FDTD methods. In particular, compared with
the ADI-FDTD [21], the SS2-FDTD [38], the SS4-FDTD [44], the
SS6-FDTD [45], the CNDS-FDTD [32], and the CNAFS-FDTD [31]
methods, the flops count of the E-SSCN6-FDTD method is reduced by
29.4%, 33.3%, 50%, 66.7%, 38.5%, and 20%, respectively. Therefore,
the computational requirement of the E-SSCN6-FDTD method is then
less than those of other unconditionally-stable FDTD methods. Apart
from arithmetic operations, the for-loops overhead incurred in most

Table 1. Number of arithmetic operations and tri-diagonal matrices.

Method FDTD 
ADI-
FDTD 
[21]

LOD-
FDTD
[51]

SS2-
FDTD 
[38]

SS4-
FDTD 
[44]

SS6-
FDTD
[45]

CNDS
 

-FDTD 
[32]

CNAFS 
-FDTD 

[31]

E-
SSCN6
-FDTD

Number of tri- 
diagonal  matrices 0 6 6 9 12 6 9 6 

Implicit 
M/D 0 18 27 54 15 8 

A/S 0 48 36 72 45

Explicit 
M/D 12 18

A/S 12 24 48 24 24 

Total

30 36 72 21

A/S 12 48 96 90 48

M/D
+

A/S
33 72 144 216 117 90 2 

For-loops 6 12 18 36 12

7

1

6

12

69

66

24

24

24

24

24

72 72

108

24

66

27

10

21

72

18

144

12

48

48

36

9 

36

24

6 

18

12

102

21

21

M/D
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programming languages should also be considered (cf. Table 1). Each
for-loop is to perform the entire sweep along x, y, and z directions for
one field component. The number of for-loops of the E-SSCN6-FDTD
method is less than other unconditionally-stable FDTD methods.

Though the E-SSCN6-FDTD method and the SS6-FDTD
method [45] have six sub-steps, there are some differences between
two methods. For the E-SSCN6-FDTD method, at each sub-step,
only one electric field component and one magnetic field component
are calculated, and at one complete time step, all the electromagnetic
field components are calculated for two times. However, for the SS6-
FDTD method, at each sub-step, three electric field components and
three magnetic field components are calculated, and at one complete
time step, all the electromagnetic field components are calculated for
six times. From Table 1, compared to the SS6-FDTD method, the
E-SSCN6-FDTD method has flops counts reduction from 216 to 72,
and has for-loops reduction from 36 to 12.

From Table 1, it can be seen that there are some commonness
between the E-SSCN6-FDTD method and the LOD-FDTD method.
In particular, the flop counts of two methods are 72, and the numbers
of for-loops of two methods are 12. Moreover, for two methods, all
the electromagnetic field components are calculated for two times.
However, there also has the difference between the E-SSCN6-FDTD
method and the LOD-FDTD method. Specially, in the LOD-FDTD
method, at each sub-step, there are three different spatial derivatives
calculated along the x, y, and z directions, and all the electromagnetic
field components are calculated for one time. Nevertheless, in the
E-SSCN6-FDTD method, at each sub-step, there is only one spatial
derivatives along the x, or y, or z direction, and only one electric field
component and one magnetic field component are calculated, which
makes the form of the equations becoming concision, regularity and
symmetry.

3. NUMERICAL STABILITY ANALYSIS

By using the Fourier method, assuming kx, ky, and kz to be the spatial
frequencies along the x, y, and z directions, the field components in
spectral domain at the nth time step can be denoted as

U
∣∣n
I,J,K = Une−j(kxI∆x+kyJ∆y+kzK∆z) (10)

By substituting (10) into (6a)–(6f), the following equation can be
generated

Un+1 = [Λ6] [Λ5] [Λ4] [Λ3] [Λ2] [Λ1] Un = [Λ]Un (11)
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where [Λi] (i = 1 ∼ 6) are the growth matrices of the sub-steps, and
[Λ] is the growth matrix.

∂

∂α
=jPα, Pα = −2

1
∆α

sin
(

1
2
kα∆α

)
, b = ∆t/(2ε), d = ∆t/(2µ),

Aα=1 + bdC2
αP 2

α, Bα = 1− bdC2
αP 2

α, α = x, y, z

[Λ] =




ByBz

AyAz
0 4CxCzbdPxPz

AxAz
0

4CxCybdPxPy

AxAy

BxBz
AxAz

0 2jCzbPzBx

AxAz

0 4CyCzbdPyPz

AyAz

BxBy

AxAy

−2jCybPyBz

AyAz

0 2jCzdPzBy

AyAz

−2jCydPyBx

AxAy

ByBz

AyAz

−2jCzdPzBy

AzAy
0 2jCxdPxBz

AzAx
0

2jCydPyBx

AxAy

−2jCxdPxBz

AxAz
0 4CxpbdPxPz

AxAz

−2jCzbPzBx

AxAz

2jCybPyBz

AzAy

0 −2jCxbPxBy

AxAy

2jCxbPxBy

AxAy
0

4CxCybdPxPy

AxAy
0

BxBz
AxAz

4CyCzbdPyPz

AyAz

0 BxBy

AxAy




(12)

[Λ1]=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 Bx

Ax
0 2jCxbPx

Ax
0

0 0 0 1 0 0
0 0 2jCxdPx

Ax
0 Bx

Ax
0

0 0 0 0 0 1




[Λ2]=




By

Ay
0 0 0 0 2jCybPy

Ay

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

2jCydPy

Ay
0 0 0 0 By

Ay




[Λ3]=




1 0 0 0 0 0
0 Bz

Az
0 2jCzbPz

Az
0 0

0 0 1 0 0 0
0 2jCzdPz

Az
0 Bz

Az
0 0

0 0 0 0 1 0
0 0 0 0 0 1




[Λ4]=




1 0 0 0 0 0
0 Bx

Ax
0 0 0 −2jCxbPx

Ax

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 −2jCxdPx

Ax
0 0 0 Bx

Ax




(13)
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[Λ5]=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 By

Ay

−2jCybPy

Ay
0 0

0 0 −2jCydPy

Ay

By

Ay
0 0

0 0 0 0 1 0
0 0 0 0 0 1




[Λ6]=




Bz
Az

0 0 0 −2jCzbPz

Az
0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

−2jCzdPz

Az
0 0 0 Bz

Az
0

0 0 0 0 0 1




By using Maple 9.0, the eigenvalues of [Λ] can be found, as

λ1 = λ2 = 1, λ3 = λ5 = λ∗4 = λ∗6 = ξ + j
√

1− ξ2 (14)

where

ξ=
(
1− bd

(
C2

xP 2
x +C2

yP 2
y +C2

zP 2
z

)
−b2d2

(
C2

xC2
yP 2

xP 2
y +C2

yC2
zP 2

y P 2
z

+C2
xC2

zP 2
xP 2

z

)
+b3d3C2

xC2
yC2

zP 2
xP 2

y P 2
z

)
/

(
1+bd

(
C2

xP 2
x +C2

yP 2
y +C2

z P 2
z

)

+b2d2
(
C2

xC2
yP 2

xP
2
y+C2

yC2
zP 2

yP
2
z+C2

xC2
zP 2

xP 2
z

)
+b3d3C2

xC2
yC2

zP
2
xP

2
yP

2
z

)
(15)

Since |λ1| = |λ2| = |λ3| = |λ4| = |λ5| = |λ6| = 1, we can conclude that
the E-SSCN6-FDTD method is unconditionally stable.

4. NUMERICAL DISPERSION ANALYSIS

Assume the field to be a monochromatic wave with angular frequency ω

En
α = Eαejω∆tn, Hn

α = Hαejω∆tn, α = x, y, z (16)

Then, (11) can be expressed as
(
ejω∆t[I]− [Λ]

)
Un = 0 (17)

where Un is related to the initial field vector U0 and defined by

Un = U◦ejω∆tn (18)

For a nontrivial solution of (17), the determinant of the coefficient
matrix should be zero as follows

det
(
ejω∆t[I]− [Λ]

)
= 0 (19)

With reference to the eigenvalues of [Λ] above, the dispersion
relationship of the proposed scheme can be deduced in (20).

tan2(ω∆t/2) = (1− ξ)/(1 + ξ) (20)
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5. CONTROLLING PARAMETERS AND DISCUSSIONS
ON NUMERICAL DISPERSION PERFORMANCES

In this section, the processes of determination of the controlling
parameters are shown first, and then the dispersion characteristics
of the proposed method are investigated based on our generalized
results. Assume that a wave propagating at angle φ and θ is in the
spherical coordinate system. Then, kx = k sin θ cosφ, ky = k sin θ sinφ,
kz = k cos θ. By substituting them into the dispersion relation (20), the
numerical phase velocity ṽp = ω/k̃ can be solved numerically, where k̃
is the numerical wave number. Subsequently, the normalized numerical
phase velocity error (NNPVE) is defined as |ṽp/v − 1| × 100%, where
ν is the speed of light in the medium. Note that v is used as reference
to find out the NNPVE. For clarity, CFLN is used: it is defined as
the ratio between the time step taken and the maximum CFL limit
of the FDTD method. In addition, the cell per wavelength (CPW):
λ/∆x, where λ is the wavelength with no numerical anisotropy. For
simplicity, uniform cells are considered here (∆x = ∆y = ∆z).

5.1. Determination of Controlling Parameters

Our strategy is to optimize the controlling parameters such that the
normalized numerical phase velocity A = ṽp/v closes to 1 in all
propagation directions. The processes of controlling parameters of the
E-SSCN6-FDTD method are shown as follows.

(a) Determination of the initial controlling parameter values Cx0,
Cy0, and Cz0.

Firstly, assume A0 = 1 along three axial directions. In the x
direction, let θ = 90◦, φ = 0◦, kx = k, ky = 0, kz = 0. Then,
Px = −2× sin(k∆x/2)/∆x = −2× sin(π/CPW)/∆x, Py = 0, Pz = 0,
and the (20) can be simplified as

tan2(ω∆t) = bdC2
xP 2

x (21)

and A0 = ṽp

v = CPW
√

3
πCFLN a tan(−Cx0

√
bdPx) = 1. Then, we can obtain

Cx0 =
√

3 tan[1·πCFLN/(CPW
√

3)]
CFLN·sin(π/CPW) .

In the y direction, θ = 90◦, φ = 90◦, kx = 0, ky = k, kz = 0. Then
Px = 0, Py = −2× sin(k∆y/2)/∆y = −2× sin(π/CPW)/∆y, Pz = 0,

and we can obtain Cy0 =
√

3 tan[1·πCFLN/(CPW
√

3)]
CFLN·sin(π/CPW) .

In the z direction, θ = 0◦, kx = 0, ky = 0, kz = k, Px = 0, Py = 0,
Pz = −2×sin(k∆z/2)/∆z = −2×sin(π/CPW)/∆z, and we can obtain
Cz0 =

√
3 tan[1·πCFLN(CPW

√
3)]

CFLN·sin(π/CPW) .
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(b) By sweeping the wave propagation angle θ and φ from 0◦ to
90◦, the maximum value Amax at θm and φm can be generated.

(c) The maximum deviation of A from 1 is Q = (Amax − 1).
(d) Setting A = 1 − Q/2 along axial directions, which can be

ensured that the corrected normalized phase velocity has its minimum
in all propagation directions.

(e) The corrected controlling parameter values Cx, Cy, and Cz are
obtained, as shown in (22).

Cx = Cy = Cz =

√
3 tan

[
AπCFLN

/(
CPW

√
3
)]

CFLN · sin (π/CPW)
(22)

When CFLN = 5 and CPW = 20, the processes of controlling
parameters of the E-SSCN6-FDTD method are shown as in Table 2.
From Table 2, it can be observed that the values of Cx, Cy, and Cz are
equal because uniform cells are used.

5.2. Numerical Dispersion Characteristics

In this subsection, to verify the superiority of the E-SSCN6-
FDTD method, the numerical dispersion characteristics of the E-
SSCN6-FDTD method are investigated, and compared with other
unconditionally stable FDTD methods, i.e., the SSCN6-FDTD
method, the CNDS-FDTD method, the CNAFS-FDTD method, and
the LOD-FDTD method. Before the descriptions, two notations are
introduced for clarity. The maximum dispersion error is defined as
max [|ṽp(θ, φ)/v − 1| × 100%|θ=0◦∼90◦

φ=0◦∼90◦ ], and the anisotropic error can
be defined as[
maxṽp(θ,φ)|θ=0◦∼90◦

φ=0◦∼90◦−min ṽp(θ,φ)|θ=0◦∼90◦
φ=0◦∼90◦

]
/minṽp(θ,φ)|θ=0◦∼90◦

φ=0◦∼90◦×100%.

Figure 1 shows the normalized numerical phase velocity errors
(NNPVEs) versus wave propagation angle φ with CFLN = 5, CPW =
20, θ = 45◦ and 90◦ for five FDTD methods. As can be seen from Fig. 1,

Table 2. The processes of controlling parameters of the E-SSCN6-
FDTD method with CFLN = 5, CPW = 20.

E-SSCN6-FDTD

the Initial value A0 1

The initial controlling parameter value Cx0 = Cy0 = Cz0 1.079120

Maximum value Amax 1.035861

The corrected value A 0.982070

The corrected controlling parameter value Cx = Cy = Cz 1.056928
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(a) (b)

Figure 1. Normalized numerical phase velocity errors (NNPVEs)
versus wave propagation angle φ with CFLN = 5 and CPW = 20
for five FDTD methods. (a) θ = 45◦. (b) θ = 90◦.

the NNPVE of the E-SSCN6-FDTD method is lower than those of the
SSCN6-FDTD method, the CNDS-FDTD method, the LOD-FDTD
method, and the CNAFS-FDTD method. Specifically, for θ = 45◦,
φ = 45◦, the NNPVEs of the SSCN6-FDTD method, the LOD-FDTD
method and the CNDS-FDTD method are 3.7%, and the NNPVE of
the CNAFS-FDTD method is 6.8%. However, the NNPVE of the E-
SSCN6-FDTD method is 1.4%, which is lower than other four FDTD
methods.

Figure 2 shows the NNPVEs versus φ and θ with CFLN = 5 and
CPW = 20 for five FDTD methods. From Fig. 2, the NNPVE of the E-
SSCN6-FDTD method is lower than those of other four FDTD methods
for arbitrary φ and θ. In particular, the maximum NNPVE of the
E-SSCN6-FDTD method is 3%, whereas the maximum NNPVEs of
the SSCN6-FDTD method, the CNDS-FDTD method, and the LOD-
FDTD method are 6.5%.

Figure 3 shows the NNPVEs versus wave propagation angle φ
with θ = 45◦, CPW = 20 and CFLN = 1, 3, 5 for two SSCN6-
FDTD methods. As can be seen from Fig. 3, the NNPVEs of two
SSCN6-FDTD methods increase as CFLN increases. However, the
increase of the NNPVE of the E-SSCN6-FDTD method is much less
pronounced than that of the SSCN6-FDTD method. For instance, with
CFLN = 5 and φ = 45◦, the NNPVE of the E-SSCN6-FDTD method
is reduced by more than 64% in comparison with the SSCN6-FDTD
method. Furthermore, the NNPVE of the E-SSCN6-FDTD method
with CFLN = 5 is also less than that of the SSCN6-FDTD method
with CFLN = 3.

Figure 4 shows the maximum dispersion errors versus CFLN
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Figure 2. NNPVEs versus φ and
θ with CFLN = 5 and CPW = 20
for five FDTD methods.

Figure 3. NNPVEs versus wave
propagation angle φ with θ = 45◦,
CPW = 20 and CFLN = 1, 3, 5
for two SSCN6-FDTD methods.

(a) (b)

Figure 4. Maximum dispersion errors versus CFLN for five FDTD
methods. (a) CPW = 20. (b) CPW = 50.

with CPW = 20 and CPW = 50 for five FDTD methods. As can
be seen from Fig. 4, the maximum dispersion errors of five FDTD
methods increase as CFLN increases. However, the increase of the
maximum dispersion error of the E-SSCN6-FDTD method is much
less pronounced than those of other FDTD methods. For instance,
with CFLN = 10 and CPW = 50, the maximum dispersion errors of
the SSCN6-FDTD method, the CNDS-FDTD method, and the LOD-
FDTD methods are 4.13%, and the maximum dispersion error of the
CNAFS-FDTD method is 4.35%. However, the maximum dispersion
error of the E-SSCN6-FDTD method is 1.1%, which is lower than those
of other four FDTD methods. On the other hand, with CFLN = 5
and CPW = 50, the maximum dispersion errors of the SSCN6-FDTD
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method, the CNDS-FDTD method, the LOD-FDTD method, and the
CNAFS-FDTD method are 1.14%, which are similar to the E-SSCN6-
FDTD method with CFLN = 10 and CPW = 50. Consequently, it
is concluded that the E-SSCN6-FDTD method with the larger CFLN
value leads to the same level of accuracy as other four FDTD methods
with the smaller CFLN value. Such an improvement of the accuracy
leads to other advantages, such as saving of computation time and
higher computation efficiency.

Figure 5 shows the maximum dispersion errors versus CPW with
CFLN = 5 and CFLN = 10 for five FDTD methods. From Fig. 5,
the maximum dispersion errors of five FDTD methods decrease as
CPW increases. For the same CFLN and CPW values, the maximum
dispersion error of the E-SSCN6-FDTD method is lower than those
of other four FDTD methods. Moreover, other four FDTD methods
have the similar maximum dispersion errors. In particular, from
Fig. 5(b), when CPW = 20, the maximum dispersion error of the
E-SSCN6-FDTD method is 4.5%, which is similar to the maximum
dispersion errors of other four FDTD methods with CPW = 40.
Therefore, it is concluded that the E-SSCN6-FDTD method with the
coarsest mesh leads to the same level of accuracy as other four FDTD
methods with the finest mesh, leads to other advantages, such as higher
computational efficiency and lower memory requirement.

Figure 6 shows the anisotropic errors versus CFLN for five FDTD
methods with CPW = 20 and CPW = 50. From Fig. 6, the
anisotropic errors of five FDTD methods increase as CFLN increases.
In particular, the anisotropic error of the CNAFS-FDTD method is
lowest among five FDTD methods, and when CPW = 20, there is

(a) (b)

Figure 5. Maximum dispersion error versus CPW for five FDTD
methods. (a) CFLN = 5. (b) CFLN = 10.
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(a) (b)

Figure 6. Anisotropic errors versus CFLN for five FDTD methods.
(a) CPW= 20. (b) CPW = 50.

(a) (b)

Figure 7. Anisotropic errors versus CPW for five FDTD methods.
(a) CFLN= 5. (b) CFLN = 10.

a CFLN value making the anisotropic error is zero. On the other
hand, the E-SSCN6-FDTD method, the SSCN6-FDTD method, the
CNDS-FDTD method, and the LOD-FDTD method have the similar
anisotropic errors.

Figure 7 shows the anisotropic errors versus CPW for five FDTD
methods with CFLN = 5 and CFLN = 10 for five FDTD methods. As
can be seen from Fig. 7, the anisotropic errors of five FDTD methods
decrease as CPW increases. The E-SSCN6-FDTD method, the SSCN6-
FDTD method, the CNDS-FDTD method, and the LOD-FDTD
method have similar anisotropic errors. Moreover, the anisotropic error
of the CNAFS-FDTD method is less than those of other four FDTD
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methods, which is very pronounced in Fig. 7. Therefore, it is concluded
that among the five FDTD methods, the CNAFS-FDTD method has
the lowest anisotropic error.

6. NUMERICAL RESULTS

In order to verify the property of the proposed method, the SSCN6-
FDTD method and the E-SSCN6-FDTD method are used to simulate
a cavity of 9 mm × 6mm × 15 mm. In addition, the cavity is
filled with air and terminated with perfect electric conducting (PEC)
boundaries. Moreover, a sinusoidal modulated Gaussian pulse of
exp[−(t− t0)2/T 2]× sin [2πf0(t− t0)] is used as the excitation source,
where T = 30 ps, t0 = 3 × T , f0 = 20 GHz. The mesh size is chosen
as ∆x = ∆y = ∆z = 0.60mm with 15 samples per wavelength at the
highest frequency of the excitation source, leading to a mesh number of
15×10×25. The CFLN value is 5, and the time step number is 20000.
The total simulation time is selected to be 103.48 ns. The simulations
are performed on a computer of Pentium IV with 2 GB RAM, and the
computer program is developed with C++.

Table 3 shows the comparisons of results for two SSCN6-FDTD
methods with CFLN = 5. In addition, the controlling parameters
are optimized for three resonant modes, respectively. From Table 3,
the relative errors of three resonant frequencies for the SSCN6-
FDTD method are 2.9171%, 6.1502%, and 6.3436%, respectively.
Nevertheless, the relative errors of three resonant frequencies for
the E-SSCN6-FDTD method are 0.0669%, 0.9136%, and 0.2796%,
respectively.

Figure 8 shows the relative errors of resonant frequencies for
three modes versus CFLN for two SSCN6-FDTD methods. As can
be seen from Fig. 8, for three modes, the relative errors of the SSCN6-

Table 3. Comparisons of results for two SSCN6-FDTD methods with
CFLN = 5.

Resonant mode Cx = Cy = Cz
E-SSCN6

-FDTD

Relative

error (%)

SSCN6

-FDTD

Relative

error (%)

Mode1

(TE101: 19.437 GHz)
1.032947 19.45 0.0669 18.87 2.9171

Mode2

(TE011: 26.926GHz)
1.063480 26.68 0.9136 25.27 6.1502

Mode3

(TM111: 30.046GHz)
1.080693 30.13 0.2796 28.14 6.3436
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Figure 8. Relative errors of resonant frequencies for three modes
versus CFLN for two SSCN6-FDTD methods.

FDTD method increase as CFLN increases. However, the increase of
the relative errors of the E-SSCN6-FDTD method is less pronounced
than that of the SSCN6-FDTD method. Specifically, for CFLN = 5,
the relative errors for three modes of the E-SSCN6-FDTD method is
also lower than 1%. Therefore, the relative errors of the E-SSCN6-
FDTD method are lower than those of the SSCN6-FDTD method. In
addition, the SSCN6-FDTD method requires the CPU time of 60 s and
the memory requirement of 0.4892 MB, whereas the E-SSCN6-FDTD
method requires the CPU time of 62 s and the memory requirement
of 0.5126 MB. Consequently, the increasing in the CPU time and the
memory requirement of the E-SSCN6-FDTD method can be 3.3% and
4.8% in comparisons with the SSCN6-FDTD method. The reason for
the phenomenon is that adding the controlling parameters for the E-
SSCN6-FDTD method, it is necessary for extra CPU time and storage.
However, the increasing of the CPU time and storage are very little
compared to decreasing of the relative errors. Consequently, the better
accuracy and efficiency of the proposed method are achieved.

7. CONCLUSION

An efficient three-dimensional unconditionally-stable FDTD method
based on the split-step scheme has been proposed, which has low
numerical dispersion. In the proposed method, symmetric operator
and uniform splitting have been adopted to split Maxwell’s matrix
into six sub-matrices, and accordingly, six sub-steps are presented.
Simultaneously, three controlling parameters have been introduced
to decrease the numerical dispersion error, and the dispersion
characteristics of the proposed method have also been investigated.
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Specifically, the NNPVE and maximum NNPVE of the E-SSCN6-
FDTD method are lower than those of the SSCN6-FDTD method.
Furthermore, numerical results have been presented. The relative
errors of the E-SSCN6-FDTD method can be lower than those of
the SSCN6-FDTD method. Therefore, the better efficiency of the E-
SSCN6-FDTD method has been achieved.
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