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Abstract—In this work, we consider a waveguide composed of two
periodic, perfectly conducting, one-dimensional rough surfaces. This
periodic system has a band structure similar in some aspects to a
one-dimensional photonic crystal. However, our system has some
additional interesting features. We calculate the band structure and
the reflectivity of a corresponding finite waveguide. We found that
the variation of the roughness amplitude and the relative phases
allow to control at a certain degree the band structure of the
system. Particularly, wide gaps can be obtained. It is even possible
to obtain discrete modes for some frequency range and then the
periodic waveguide acts as an unimodal filter. The system considered
constitutes itself a photonic crystal whose band structure corresponds
in many ways to a conventional photonic crystal but using just a
single material. The key properties of this system are that it really
constitutes a waveguide whose optical response is similar to that of a
one-dimensional photonic crystal.

1. INTRODUCTION

The study of the interaction of electromagnetic waves with corrugated
surfaces and resonators with corrugated walls of metals and perfect
electric conductors (PEC) has been the subject of some studies during
the past years [1–5], given their importance in the design of antennas
and rectangular waveguides for macroscopic systems [6–8].
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During the last years, the study of nanostructured metals has
given place to new research fields such as that of left handed
materials [9]. It has also been shown theoretically and experimentally
that nanostructured metals consisting on PEC with periodic two-
dimensional arrays of holes, can support surface modes that are
exclusively associated to the structure of the system [10–14].

Another field of structured materials that has recently arisen is
related to photonic crystals. These systems that constitute periodic
arrays of different materials with a unit cell of dimension on the order
of the wavelength, have the potential to develop a new technology
of integrated optical circuits [15]. A particular system that is
closely related to the system proposed in this work was considered
by Maradudin and McGurn [16]. They studied a truncated two-
dimensional photonic crystal between two PEC surfaces of infinite
extent separated by a given distance, and determined the band
structure of this system by using a plane wave expansion. They found
that the curves representing the characteristic modes get flatter when
such distance is small, and in a similar way as happens with the system
we are proposing, it is possible to get discrete modes at low frequencies,
that is, when the cavity becomes narrow.

The geometry of the system proposed in this work, has been
considered to constitute some billiard systems to study their quantum
and classical transport properties [17, 18]. It is worth to mention that
under certain conditions such systems can become chaotic.

In present work, we propose a nanostructured periodic waveguide
with PEC corrugated walls. In the theory section we introduce an
integral method to calculate the band structure of our system based
on the ideas outlined elsewhere [19]. The integral method is also
used to calculate the propagation of the electromagnetic field across a
finite length waveguide [20]. In Section 3, we obtain numerical results
by varying the geometric parameters of the walls of the corrugated
waveguide to determine the optical response of the system. In
Section 4, we present our conclusions.

2. THEORY

We consider a waveguide composed of two periodic, perfectly
conducting, rough surfaces. The medium between the corrugated
surfaces is vacuum (or any dielectric material). The system is sketched
in Fig. 1.

We consider that the periodic profiles have a period P , the average
width of the waveguide is given by b, and the surface profiles can be
represented by the harmonic functions b/2 + A1 cos (2πx/P ) (upper
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Figure 1. Graphic descrip-
tion of the waveguide between
corrugated perfect conductor
walls. The Γ contours define
the unit cell of the system with
periodicity in the x-direction.

∆φ = 0.0 ∆φ = π /2 ∆φ = π

A

b

(a) (b) (c)

Figure 2. Unit cell profiles for
different phase differences that will be
considered in the examples.

profile) and −b/2 + A2 cos (2πx/P −∆φ) (lower profile), where A1

and A2 represent the amplitudes and ∆φ stands for a phase difference
between both profiles. The phase difference plays an important role in
the optical response of our system. In Fig. 2, we show the unit cells
for the phase differences ∆φ = 0 (Fig. 2(a)), ∆φ = π/2 (Fig. 2(b)),
and ∆φ = π (Fig. 2(c)) respectively.

Let us consider the problem of finding the band structure of the
system. We use an integral method that can be formulated by following
the same ideas developed elsewhere [19, 21, 22]. This problem can
be studied using the scalar theory by considering two complementary
polarization states given the symmetry of our physical system along
the z-direction. We are interested in the response of the system when
the only component of the electric field, E, is parallel to the direction
of symmetry, that is in the case of TE polarization.

We assumed that the electric field E is time harmonic E (r, t) =
Ψ (r) e−iωt. Under this consideration it is well-known that the function
Ψ (r) satisfies the Helmholtz equation

∇2Ψ(r) +
(ω

c

)2
Ψ (r) = 0, (1)

where ω is the frequency of the electromagnetic wave, c is the speed of
light in vacuum and r =xı̂ + ŷ is independent of z.

The periodicity in the x-direction is another symmetry condition
that is considered. Due to this property and the form of the differential
equation Eq. (1) the Bloch theorem can be applied for the x-direction.
In this way the following expression can be derived

Ψ (x− P, y) = exp (−ikP )Ψ (x, y) , (2)
where k is the one-dimensional Bloch vector.
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To determine the band structure we have to find the dispersion
relation ω = ω (k). With this in mind, let us consider a Green’s
function for a bidimensional geometry that can be used to solve the
Helmholtz equation. The Green’s function considered is G(r, r′) =
iπH

(1)
0 (k |r− r′|), where H

(1)
0 (%) is the Hankel function of the first

kind and zero order. Considering the geometry of the unit cell shown
in Fig. 1 and applying the two-dimensional second Green’s theorem for
the functions Ψ and G we obtain the expression

1
4π

∮

Γ

[
G(r, r′)

∂Ψ(r′)
∂n′

− ∂G(r, r′)
∂n′

Ψ(r′)
]

ds′ = θ (r)Ψ(r), (3)

being θ (r) = 1 if r is inside the unit cell and θ (r) = 0 otherwise. ds′
is the differential arc’s length, n′ is the outward normal vector to Γ,
and the observation point r is infinitesimally separated of contour Γ
outer to the unit cell. The geometry of the problem is described by
representing the points along the contour Γ with Cartesian coordinates
X (s′), Y (s′) as parametric functions of the arc’s length s′ and their
derivatives X ′ (s′), Y ′ (s′), X ′′ (s′) and Y ′′ (s′), up to second order.

To solve numerically Eq. (3), we divide the curve Γ in four
segments Γ1, Γ2, Γ3 and Γ4 (Fig. 1) and take a sampling Xn = X (sn),
Yn = Y (sn) along the each curve. The corresponding number of
points along the curves are N1, N2, N3 and N4 respectively and we
call N = N1 +N2 +N3 +N4 to the total number of points. It is worth
mentioning that the points (Xn, Yn) on Γ3 must be corresponding
to those on Γ4 (Xn − P, Yn) , in this way N3 = N4. Besides these
considerations, we take into account the boundary condition at the
PEC surfaces (with curves Γ1 and Γ2). In this way, Eq. (3) can
be represented numerically in terms of a homogeneous system of N
algebraic equations as follows:

N1∑

n=1

Lmn(1)Φn(1) +
N2∑

n=1

Lmn(2)Φn(2) +
N3∑

n=1

Lmn(3)Φn(3)

−
N3∑

n=1

Nmn(3)Ψn(3) +
N4∑

n=1

Lmn(4)Φn(4) −
N4∑

n=1

Nmn(4)Ψn(4) = 0,(4)

for m = 1, 2, . . . , N . In the Eq. (4) the source functions Ψn(3) and Φn(j)
represent numerically the field Ψ and its normal derivative, besides,
the subscripts n (j), j = 1, 2, 3, 4 denote the n-th point along the Γj

contour. The matrix element Lmn(j) and Nmn(j) are given by [19, 21]

Lmn(j) = i
∆s

4
H

(1)
0

(ω

c
dmn

)
(1− δmn) + i

∆s

4
H

(1)
0

(
ω

c

∆s

2e

)
δmn, (5)
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and

Nmn(j) = i
∆s

4
ω

c
H

(1)
1

(ω

c
dmn

) Dmn

dmn
(1− δmn) +

(
1
2

+
∆s

4π
D′

n

)
δmn,

(6)
where

dmn =
√

(Xm −Xn)2 + (Ym − Yn)2, (7)

Dmn = −Y ′
n (Xm −Xn) + X ′

n (Ym − Yn) , (8)
D′

n = X ′
nY ′′

n −X ′′
nY ′

n. (9)

H
(1)
1 (%) is the Hankel’s function of first kind and first order. The

function δ
(j)
mn represents the Kronecker’s delta and ∆s is the arc’s length

between two consecutive points of a given curve. In Eqs. (8) and (9),
we have defined X ′

n = X ′ (s)|s=sn
, X ′′

n = X ′′ (s)|s=sn
, and so forth.

For simplicity we have omitted the contour index (j) but it must be
implicitly understood that n = n(j) wherever it appears in Eqs. (5)–
(9).

By applying Eq. (2), we obtain the equations Ψ(4)
n =

exp (−ikP )Ψ(3)
n , and Φ(4)

n = − exp (−ikP )Φ(3)
n . The minus sign

appearing in last equation results because the normals to corresponding
points at Γ3 and Γ4 have opposite directions. With these equations we
have
N1∑

n=1

Lmn(1)Φn(1)+
N2∑

n=1

Lmn(2)Φn(2) +
N3∑

n=1

(
Lmn(3)−exp (−ikP ) Lmn(4)

)

×Φn(3) −
N3∑

n=1

(
Nmn(3) + exp (−ikP ) Nmn(4)

)
Ψn(3) = 0, (10)

with m = 1, 2, . . . , N . Eq. (10) constitutes a linear system that has an
associated representative matrix, Mmn, that depends on the frequency
ω and the Bloch vector k. Since the equation system is homogeneous,
a nontrivial solution can be obtained if the determinant of such matrix
is zero. If we define the function

D (k, ω) = ln (|det (M)|) . (11)
Numerically this function presents local minimum points that will

give us the numeric dispersion relation ω = ω (k) that determines the
band structure.

In the dispersion relation of the system that we are considering,
the one-dimensional Bloch vector is present in view of the periodicity
in a certain direction. We wonder at this point how we could recognize
when a physical system is a photonic crystal?
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To answer this question, let us consider the following: the photonic
crystal’s response is determined by the existence of a dispersion
relation that is a function of a Bloch vector, regardless of the specific
configuration of our physical system. In this sense our waveguide with
periodic roughness acts as a photonic crystal.

In addition to the above, we can observe that the electromagnetic
radiation is transmitted through the waveguide in a bounded region
and then, our system has a dual role: one as a photonic crystal and
the other as a waveguide.

A wide variety of waveguides and optical fibers that also function
as photonic crystals are presented in the book of Joannopoulos [24]. In
all these cases the photonic crystals are made by introducing periodic
variation of the dielectric function.

In contrast, in the system we are proposing, the response of a
1D photonic crystal is achieved without considering of such variation.
Instead we introduce a structure on the surfaces of a hollow metallic
waveguide that indeed has the optical response of a photonic crystal.

We started from the idea of an infinite length system, which has a
dispersion relation similar to that of some well known photonic crystals.
The waveguide of finite length can be considered as a truncated
photonic crystal, when the number of periods is properly chosen.

The idea of using rough surfaces to fabricate photonic crystals
is particularly relevant when one considers the existence of a well-
developed technology for manufacturing surfaces with a given profile,
see reference [25].

In order to calculate the field distribution within a unit cell for
a resonant mode at a given point (k, ω), we consider the following
two step procedure: In the first step we find numerically the source
functions by solving the homogeneous equations system by using the
SVD (singular value decomposition). In the second step we substitute
these functions (numerical version of Eq. (3)) to obtain the field Ψ(r)
at any point within the unit cell.

To model the system we assume an infinite periodic waveguide
in the x-direction. The band structure associated to this waveguide
resembles those obtained for a one-dimensional photonic crystal [23].
In this work, we are particularly interested in the band gaps. In
practice a waveguide will have a finite length, so we will verify the
existence of band gaps by modeling the reflectivity with the integral
method in very much the same as we do with truncated photonic
crystals [19, 21].

Let us consider the problem of calculating the reflectance of
a finite length waveguide that is illuminated with an incident field
Einc (r, t) = Ψinc (r) e−iωt as sketched in Fig. 3. In this case the Green’s
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integral theorem for the region R0 takes the form

Ψ(r) = Ψinc(r) +
1
4π

∫

Γ1

G
(
r, r′

) ∂Ψ(r′)
∂n′

ds′ − 1
4π

∫

Γ2

∂G(r, r′)
∂n′

Ψ(r′)ds′,

(12)
where Γ1 and Γ2 are curves corresponding to the perfect conductor
surfaces and n′ is the outward normal vector.

To determine numerically the field and its normal derivative
involved in last equation we solve the non homogeneous system of
algebraic equations. Details of the numerical method can be found in
Refs. [20, 26–28].

To treat the problem with the numerical method given above,
some considerations must be made. Since the size of the system is
finite, to avoid edge effects we illuminate it with a tapered Gaussian
beam whose intercept with the plane of the channel has a half-width
g. This parameter must be smaller than the total length of the system
Ly = 2l + b, but much larger than the width of the aperture b (see
Fig. 3).

With these considerations, the incident field can be expressed in
terms of its angular spectrum A(q, k‖)

Ψinc(x, y) =

ω/c∫

−ω/c

dq

2π
A(q, k‖) exp{i [qx− α0(q)y]}, (13)

where α0(q) = [(ω/c)2 − q2]1/2 with <e α0(q) > 0 and =mα0(q) > 0.
In this work, we choose

A(q, k‖) =
√

πg exp
{−g2(q − k‖)2/4

}
, (14)

where the parameter k‖ = (ω/c) sin θ0, being θ0 the angle of incidence
(see Fig. 3).

With this incident field we can find that the total power crossing
the area LxLz is:

Pinc(k‖) = Lz

√
π

2
g α0(k‖)

c2

8πω
,

where we have assumed that (ω/c)g À 1.
Therefore, using the plane-wave expansion [26] to calculate the

z-component of the Poynting vector, we find the following expression
for the total scattered power

Psc

(
k‖

)
= Lz

c2

8πω

ω/c∫

−ω/c

dq

2π
α0(q)|S(q, k‖)|2 .
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Figure 3. Schematic description of the tunnel of width b and length d
with corrugated surfaces is illuminated by a Gaussian beam in region 0.
Regions 1 and 2 constitute the perfect conductor. The 1/e half-width
of the modulus of the incident Gaussian beam projected on the plane
x = 0 is g. The angles of incidence θ0 and scattering θs for reflection
are also shown.

Then, reflectance is given by

R
(
k‖

)
=

Psc(k‖)
Pinc(k‖)

=
1

F(k‖)

ω/c∫

−ω/c

dq

2π
α0(q)

∣∣S(q, k‖)
∣∣2 , (15)

where

F (
k‖

)
=

√
π

2
g α0

(
k‖

)
, (16)

and

S
(
q|k‖

)
= − i

2α0(q)

2∑

j=1

[∫

Γj

F exp {−i [qx + α0(q)y]} ds

]
. (17)

For propagating waves, we can identify the components of the wave
vector as q = ω/c sin θs and α0(q) = ω/c cos θs, where θs is the
scattering angle (see Fig. 3).

3. RESULTS

In this section, we present a numerical study of the proposed system.
To start this study we consider a waveguide with flat walls. This

system indeed has band structure that can be calculated analytically.
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To validate the numerical method presented in the previous section,
we compare the analytical results with those obtained numerically.

The waveguide (with flat walls) has a width b and infinite length.
This system has an arbitrary period. The dispersion relation in this
case is given by [17]

ω (k) = c

√(
k+

2πn

P

)2

+
(mπ

b

)2
, n = ±1,±2, . . . and m = 1, 2, . . .

(18)
The dispersion relation given by this equation is similar to that of a

photonic crystal slab, where the finite thickness in the y-direction gives
rise to a different behavior of that presented by the infinite system.
When we compare this system with the case of one-dimensional
photonic crystals. Let us consider the following analysis by using this
equation. The right hand side of Eq. (18) has two terms inside the
square root symbol. The first one represents the band structure in
the first Brillouin zone. This term depends on a single component of
the Bloch vector and an integer. The second term is present because
the system is finite in the y-direction, and depends on the integer m.
In this case, the frequency depends on a continuous variable and two
discrete variables.

A one-dimensional photonic crystal has a dispersion relation that
depends only on a continuous variable (Bloch vector) and a discrete
variable, this is because there is no restriction in the y-direction.
Therefore the band structures that we show in this work are more
complex than the structures that typically arise in the one-dimensional
case, and some of our results resemble the band structures of two-
dimensional photonic crystals. However, in the case of two-dimensional
photonic crystals the frequency depends on two continuous variables
(the two components of the Bloch vector) and two discrete variables.
This leads to different physical phenomena that can not be present in
our system since we have a Bloch vector with one component instead
of two.

In Fig. 4, we show the band structure in terms of the reduced
frequency ωn = (P/2π) (ω/c) and k within the first Brillouin zone
−π/P ≤ k ≤ π/P , with P = 2π, determined with our numerical
method. In this case b = 3 (arbitrary units). The band structure
analytically determined by using Eq. (18) is overlapped to the first
one showing an excellent agreement.

The reason for the modes to appear overlapped giving a more
complex band structure (compared to those associated with a 1DPC)
results from the constraint of the system in the y-direction which is
related to the integer m that appears in Eq. (18). This features
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Figure 4. Band structure of a tunnel with flat walls. Comparison of
analytical (circles) and numerical modeling (dots).

resemble those appearing in the band structure associated to two-
dimensional photonic crystals where the dispersion relation depends
on a Bloch wave vector with two components.

The variation of amplitude and phase difference of the roughness
leads notable changes in the band structure as will be shown below.
In Fig. 5(a), we present the band structure of a waveguide with the
parameters b = 3, P = 2π, A1 = A2 = A = 0.1b and ∆φ = 0
under TE polarization. Since the frequency range for large wavelengths
and relatively small amplitudes of roughness are being considered, we
observe few changes in the band structure compared to that produced
by waveguides with flat walls (Fig. 4). Narrow complete gaps appear
in the structure, even though it is not clear in the figure.

We can obtain important changes in the band structure by
introducing a simple change of phase difference ∆φ = π/2 as shown
in Fig. 5(b). Particularly, in this figure is very important to observe
the widening of gaps. Moreover, it is important to notice that the
band structures shown have a certain similarity to those associated
with two-dimensional photonic crystals rather than those present in
one-dimensional systems. Despite the system under study needs only
one component of the Bloch wave vector to be described, the given
boundary conditions along the y-axis work out more complex band
structures than that obtained in the study of 1DPC which are not
restricted in such direction.

The influence of the amplitude of the surface roughness in the
band structure is shown in Figs. 6(a) and 6(b). In this case, the
amplitude was A = 0.2b and we considered two phase differences
∆φ = 0 and ∆φ = π/2, respectively. It is worth noticing that in
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Figure 5. Band structure of the tunnel with a width b = 3 and
periodic amplitudes A = 0.1b with a phase difference (a) ∆φ = 0 and
(b) ∆φ = π

2 under TE polarized illumination.
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Figure 6. Band structure of the tunnel with a width b = 3 and
periodic amplitudes A = 0.2b with a phase difference (a) ∆φ = 0 and
(b) ∆φ = π

2 under TE polarized illumination.

this case it is also possible to widen the gaps. It is obvious that the
major changes on the band structure are due to appreciable changes
in the roughness amplitudes and phase differences, as can be seen in
Fig. 6(b). Despite the effects of varying the phase difference or the
amplitudes are almost the same, we will discuss below why could be
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Figure 7. Band structure of the tunnel with a width b = 3 and
periodic amplitudes A = 0.1b with a phase difference ∆φ = 0 under
TM polarized illumination.

more practical to manipulate the phase difference.
Under TM polarization the simulation shows analogous results.

Varying the parameters of the waveguide results in a widening (or
narrowing) of gaps. In Fig. 7, we show an example of a band structure
under TM polarization. The parameters considered were those of the
example given in Fig. 5(a).

In previous results, we assumed an infinite length waveguide.
However, the waveguides we can analyze experimentally are of finite
length. So, we would like to see if the gaps in the band structure of the
ideal waveguide (infinite in length) appear in the case of a waveguide
of finite length. Let us consider a finite length waveguide (see Fig. 3)
with d = 20π (only 10 periods), l = 10π with the parameters: b = 3,
P = 2π, A = 0.2b, ∆φ = π/2. In Fig. 8, we show the reflectance of
the system under TE polarization when a Gaussian beam of a half-
width g = 11.2 illuminates the waveguide under normal and oblique
incidence θ0 = 0◦ (solid line) θ0 = 20◦ (dashed line) respectively. It is
worth observing that in both cases the reflectance is quite high in the
regions quoted by the extrema of the dispersion curves (Fig. 6(b)), so,
these are complete gaps. Some few periods are needed to get a high
reflectance response corresponding to the frequency regions of gaps. It
is important to observe that the numerical methods used to determine
the band structure and the reflectance are independent, although they
have in common the use of the Green’s theorem. This means that both
methods validate between them, at least for the presented simulations.
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Figure 8. Reflectance of the tunnel illuminated with a Gaussian
beam. The thickness of the tunnel is b = 3 with a phase difference
∆φ = π

2 in corrugated surfaces and the 1/e half-width of the projection
of the beam on the left side of the tunnel is g = 11.2. The solid curve
corresponds to normal incidence θ0 = 0◦, the dashed curve to oblique
incidence θ0 = 20◦.

3.1. Discrete Modes

Numerical simulations show that for a given phase difference in general
an increase on the roughness amplitude widens the gaps. This fact
implies that the mode curves become flatter, so, the modes can be
associated to discrete frequencies since only discrete modes are allowed
inside the waveguides. This effect will start from low frequencies, so,
we refer to discrete modes for a given interval of frequencies. This
is shown in Fig. 9 which was obtained using the parameters of the
example given in Fig. 6(b) with A = 0.3b. The presence of discrete
states (Fig. 9) is confirmed by the reflectance results as shown in
Fig. 10, where we observe a narrow drop on the reflectance around
the frequency corresponding to the second mode.

One of the most important factors for the presence of discrete
states in our system is that the surfaces are assumed to be perfect
conductors. Although in the case of real conductors such states do
not appear. However, for a conductor with a high conductivity we
can choose the system parameters so that some allowed bands are very
narrow.

The intensity of the electric field within a unit cell is shown in
Figs. 11(a) and 11(b), for a system with the same parameters of
previous system for the frequencies ωn = 1.100 and ωn = 1.467,
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Figure 9. Band structure of the tunnel with a width b = 3 and
periodic amplitudes A = 0.3b with a phase difference ∆φ = π

2 under
TE polarized illumination.
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Figure 11. Scattered field belongs to a cell with the same parameters
of previous system for the frequencies (a) ωn = 1.100 and (b) ωn =
1.467.

respectively. The Fig. 11(a) corresponds to the first discrete state
that appears in the band structure of Fig. 9. To observe this state, it
would be necessary to increase the resolution of this graph.

To corroborate the presence of discrete modes that can propagate
through the finite waveguide, we calculated the intensity of the electric
field within the waveguide under normal incidence (see Fig. 12). In
Fig. 12, we show the scattered field associated to a waveguide of length
d = 20π, for the frequency ωn = 1.467.

Figure 13 was obtained by considering the parameters ∆φ = π,
b = 3, and A = 0.4b. In this case, the discrete modes become more
evident. In this figure, the bands seem to be horizontal lines (discrete
modes), however, if we use a higher resolution such bands should
have some curvature. Actually the meaning of discrete states since
a numerical point of view is relative to a given resolution.

The existence of these states can be understood by taking
into account various arguments. For relatively high amplitudes the
waveguide is almost closed, so, the transmission of the electromagnetic
wave through the waveguide is very weak. In fact, the transmittance
for all these states is quite low. By considering that the mode
is an electromagnetic field that must satisfy some given boundary
conditions, those that correspond to long wavelengths (low frequencies)
find more difficulty in coupling to the waveguide. This is the reason
why discrete states appear mostly in the lower part of the band
structure. Recalling that in solid state physics it is possible to represent
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with a phase difference ∆φ = π
under TE polarized illumination.

a band structure as a function of the lattice parameter. When this
parameter is large, the atoms are far away from each other, so, the
interaction is weak. The energy bands become very thin resulting
in discrete states of isolated atoms. We believe that in the case of
waveguides, when the unit cells gradually tend to close, the existence of
modes is dependent on each isolated cell appearing then these discrete
modes.

Our interest in this work, is to propose a system based on this
waveguide with a periodic roughness on its surfaces in such a way
that the band structure and the reflectance can be manipulated in an
interesting way for practical purposes. This system can be set up to
work in the optical spectrum with existing technology. If the device is
on the microscopic scale, it would be desirable to show the presence
of band gaps even in the case that we have a finite corrugated section
of the waveguide, despite the smooth walls of the waveguide extend
over a large length in the scale of millimeters. In Fig. 14, we show
the reflectance obtained for a long waveguide, as sketched in the inset
of Fig. 14. The total length of the smooth part of the waveguide
is s = 20π with the parameters used to model the system shown in
Fig. 10.

It is important to notice the good agreement of the high reflectance
regions within the gap regions. This result makes evident that it is
possible to carry out this system to practical purposes.
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Figure 14. Reflectance of a tunnel with flat walls of length s = 20π
(solid line) and only a short section with corrugated surfaces of length
d = 20π (dashed line). Results compared with the reflectance of the
system given in Fig. 10 under normal incidence.

We mentioned that it is more practical to manipulate the phase
difference rather than the amplitude of the roughness. This comment
would apply to a manufactured device consisting of two periodic
surfaces. Obviously is impractical to be changing the morphology of
surfaces, if we want to obtain modifications to the band structure.
In contrast, to change the phase difference the device could have a
mechanism to allow the relative translation between the surfaces in
the direction of the periodicity. This mechanism could be like to the
micrometer drive in a Michelson interferometer.

4. CONCLUSION

We have applied an integral numerical method to analyze the optical
response of a corrugated periodic waveguide with perfect electric
conductor walls. With this method we determined the band structure
and the reflectance of this system.

The band structure of this waveguide resembles that associated to
one-dimensional photonic crystals, with some interesting features that
allow to manipulate the band structure, particularly the gaps width
by just changing the phase difference or the amplitude of the surface
profiles. This properties present some interest since a technological
point of view.

We have found also that as the waveguide becomes narrow and
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narrow the modes get the properties of discrete modes in very much
the same as happens with atoms in isolated state.

Despite the band structure of the proposed system is similar
in some features to those associated to a one-dimensional photonic
crystal, it presents a more complex and interesting band structure that
results from the constraint of the system in the y-direction.
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states in structured perfect-conductor surfaces,” Phys. Rev. Lett.,
Vol. 95, 233901, 2005.

13. Qiu, M., “Photonic band structures for surface waves on
structured metal surfaces,” Opt. Express, Vol. 13, No. 19, 7583–
7588, 2005.

14. Oh, S. S., S.-G. Lee, J.-E. Kim, and H. Y. Park, “Self-
collimation phenomena of surface waves in structured perfect
electric conductors and metal surfaces,” Opt. Express, Vol. 15,
No. 3, 1205–1210, 2007.

15. Inoue, K. and K. Ohkata, Photonic Crystals, Springer, Germany,
2004.

16. Maradudin, A. A. and A. R. McGurn, “Photonic band structure
of a truncated, two-dimensional, periodic dielectric medium,” J.
Opt. Soc. Am. B , Vol. 10, No. 2, 307–313, 1993.

17. Luna-Acosta, G. A., K. Na, L. E. Reichl, and A. Krokhin, “Band
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