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Abstract—Many algorithms exploiting the signal cyclostationarity
have been shown to be effective in performing antenna array
beamforming. However, these algorithms can not provide a unique
weight vector for simultaneously extracting multiple signals of interest
(SOIs) with distinct cycle frequencies (DCFs). They also suffer
from severe performance degradation in the presence of a cycle
frequency error (CFE). To simultaneously accommodate multiple SOIs
with DCFs and alleviate the effects of cycle leakage due to finite
data samples, we propose a cyclic sample matrix inversion (C-SMI)
beamformer. To make the C-SMI beamformer robust against CFE,
we present a novel objective function which is optimized by using a
steepest-descent based algorithm to find the appropriate estimates of
the true DCFs. The simulation results show the effectiveness of the
robust C-SMI beamformer.

1. INTRODUCTION

For conventional adaptive array beamforming, we require the priori
information of either the impinging direction or the waveform of the
desired signal to adapt the weights [l, 2]. A steered-beam beamformer
is taught by the actual direction vector of the desired signal and
forced to make a constant response in the desired signal direction.
Hence, its performance is very sensitive to the accuracy of the steering
vector. However, the true direction vector of the desired signal may
not be exactly known in some applications, e.g., the application in land
mobile-cellular radio systems. Hence, we often encounter the problem
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of mismatch between the real direction vector of the desired signal and
the steering vector. The effectiveness of a steered-beam beamformer
can be destroyed even if a small mismatch arises [2, 17–20].

In contrast, adaptive beamforming utilizing signal cyclostation-
arity has been developed due to two main reasons. Based on the
cyclostationary property, we can solve the problem of blind adaptive
beamforming, i.e., an adaptive beamformer can automatically preserve
the desired signal while cancelling noise and interference without any
priori information about the desired signal direction [3]. Moreover,
cyclostationarity is a statistical property possessed by most of practi-
cal man-made communication signals [4, 5]. Another cyclic adaptive
beamforming (CAB) algorithm and two more complicated CAB-based
algorithms, namely, the constrained CAB (C-CAB) and the robust
CAB (R-CAB), were also proposed in [6] to enhance the performance
of the CAB algorithm. However, these three algorithms are eigenvalue
problems and work for extracting either one signal of interest (SOI)
or multiple SOIs with the same cycle frequency. For multiple SOIs
having distinct cycle frequencies (DCFs), they treat each SOI as a
single signal. It has been shown in [6] that the least-squares spectral
self-coherence restoral (LS-SCORE) and C-CAB algorithms have the
same asymptotical maximum output signal-to-interference plus noise
ratio (SINR) performance as the number of data snapshots approaches
infinite. Among these blind beamforming techniques, the LS-SCORE
approach [3] has been extensively considered [7] because of its sim-
plicity in avoiding the computationally expensive eigen-decomposition
or singular-value decomposition (SVD) in implementation. The priori
information that the original LS-SCORE approach requires to work is
only the cycle frequency of the SOI. Hence, its performance is sensi-
tive to the accuracy of the presumed cycle frequency. However, the
actual cycle frequency of the SOI may not be known exactly in some
applications due, for example, to the phenomenon of Doppler shift.
The research work in [8, 9] has presented an analytical formula that
demonstrates the behavior of the performance degradation due to cycle
frequency error (CFE) for the LS-SCORE approach. The output SINR
of an adaptive blind beamformer using the LS-SCORE approach dete-
riorates like a sinc function as the number of data snapshots increases.
Robust approaches based on the LS-SCORE algorithm were then pre-
sented in [8, 9] for estimating the true cycle frequency. Recently, three
robust algorithms based on the CAB algorithm of [6] were developed
in [10] to deal with CFE. The subspace constrained CAB (SC-CAB)
algorithm simply projects the CAB weight vector onto the signal-plus-
interference subspace to alleviate the steering vector error due to CFE.
The robust SC-CAB algorithm is a combination of the SC-CAB algo-
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rithm and the robust idea based on optimization of worst-case perfor-
mance [11]. A convex second-order cone optimization problem with
an optimal value of the diagonal loading factor must be solved under
the uncertainty of the SC-CAB weight vector. The structured steer-
ing vector (SSV) algorithm estimates the direction vector of the SOI
from the SC-CAB weight vector. Then it finds the SSV weight vector
by minimizing the array output power with a distortionless constraint
towards the estimated SOI’s direction vector. These three robust algo-
rithms work for extracting either only one SOI or multiple SOIs with
the same cycle frequency. Besides these three CAB-based robust al-
gorithms are still eigenvalue problems, they cannot provide a unique
weight vector for simultaneously receiving multiple SOIs with DCFs.

In this paper, we consider adaptive blind beamforming under
multiple SOIs with DCFs. To simultaneously accommodate multiple
SOIs with DCFs and alleviate the effects of cycle leakage due to finite
data samples, a cyclic sample matrix inversion (C-SMI) beamformer
which is developed based on the conventional SMI beamformer with
the exploitation of signal cyclostationarity and diagonal loading. To
make the C-SMI beamformer robust against CFE, we present a novel
objective function to formulate an optimization problem. The true
DCFs can be estimated by solving the optimization problem through
a steepest-descent based iterative algorithm with the exploitation of
signal cyclostationarity. The C-SMI beamformer with the iterative
algorithm effectively provides a weight vector for simultaneously
extracting multiple SOIs with DCFs against CFE.

This paper is organized as follows. In Section 2, we briefly
describe the original LS-SCORE algorithm of [3]. The C-SMI
beamformer for adaptive blind beamforming under multiple SOIs with
DCFs is presented in Section 3. We present the theoretical work
for alleviating the performance degradation caused by the CFE in
Section 4. The convergence analysis of the proposed approach is
presented in Section 5. Several computer simulation examples for
confirming the effectiveness of the proposed approach are provided in
Section 6. Finally, we conclude the paper in Section 7.

2. CONVENTIONAL ADAPTIVE BEAMFORMING
USING CYCLOSTATIONARITY

2.1. Signal Cyclostationarity

Cyclostationarity is a statistical property possessed by most of
practical man-made communication signals. A signal r (t) with
cyclostationarity has the property that its cyclic correlation function
(CCF) and cyclic conjugate correlation function (CCCF) given by the
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following infinite time averages

Rrr(α, τ) =
〈
r(t)r∗(t− τ)e−j2παt

〉
∞

and Rrr∗(α, τ) =
〈
r(t)r(t− τ)e−j2παt

〉
∞ (1)

respectively, are not equal to zero at some time delay τ and
cycle frequency α, where the superscript “*” denotes the complex
conjugate. It has been shown in [9] that many modulated signals
exhibit cyclostationarity with cycle frequency equal to twice the carrier
frequency or multiples of the baud rate or combinations of these. For
the data vector x (t) received by an antenna array with N isotropic
sensor elements, the associated cyclic correlation matrix (CCM) and
cyclic conjugate correlation matrix (CCCM) are given by

Rxx(α, τ) =
〈
x(t)xH(t− τ)e−j2παt

〉
∞

and Rxx∗(α, τ) =
〈
x(t)xT (t− τ)e−j2παt

〉
∞ , (2)

respectively, where the superscripts “H” and “T” denote the conjugate
transpose and the complex conjugate, respectively.

2.2. Conventional Adaptive Beamforming Using Signal
Cyclostationarity

Consider an adaptive beamformer using an M -element antenna array
excited by a signal of interest (SOI), J interferers, and spatially white
noise. The received data vector x (t) is given by

x(t) = s(t)a(θd) +
J∑

j=1

sj(t)a(θj) + n(t) = s(t)a(θd) + i(t), (3)

where s(t) and sj (t) denotes the waveforms of the SOI and the jth
interferer, a (θd) and a (θj) the direction vectors of the SOI with
direction angle θd and the jth interferer with direction angle θj , and
n(t) the noise vector, respectively. The array output is given by
y(t) = wHx(t), where w denotes the weight vector of the beamformer.
Assume that s(t) is cyclostationary and has a cycle frequency α, but
i (t) is not cyclostationary at α and is temporally uncorrelated with
s(t). According to the original LS-SCORE algorithm of [3], a cost
function is defined as follows:

G(w; c) =
〈
|y(t)− r(t)|2

〉
T

, (4)

where the reference signal r (t) is given by

r(t) = cHx∗(t− τ)ej2παt (5)
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and < · >T denotes the average over the time interval [0,T ]. c is a
fixed control vector. The optimal weight vector wls minimizing (4) is
given by [3]

wls = R̂−1
xx r̂xr(α), (6)

where R̂xx =
〈
x(t)xH(t)

〉
T and r̂xr(α) = 〈x(t)r∗(t)〉T are the sample

correlation matrix of x (t) and the sample cross-correlation vector of
x (t) and r (t) computed over [0,T ], respectively. For any control vector
c as long as cHa(θd) 6= 0, it is shown in [3] that (6) converges to the
solution of conventional adaptive beamforming based on the maximum
output SINR criterion as T approaches infinite.

3. ADAPTIVE BLIND BEAMFORMING WITH
MULTIPLE CYCLE FREQUENCIES

Assume that there are D uncorrected SOIs with direction angles θd

and DCFs αd, d = 1, 2, . . ., D and J interferers. The received data
vector x (t) becomes

x(t)=
D∑

d=1

sd(t)a(θd)+
D+J∑

j=D+1

sj(t)a(θj)+n(t)=
D∑

d=1

sd(t)a(θd)+i(t). (7)

To accommodate the D SOIs, we use the following reference signal

r(α1, α2, . . . , αD; t) =
D∑

d=1

ej2παdtcHx∗(t− τ). (8)

Let the interferers and noise do not have the cycle fre-
quencies equal to αd, d = 1, 2, . . ., D. It is shown
in Appendix A that the corresponding r̂xr(α1, α2, . . . , αD) =
〈x(t)r∗(α1, α2, . . . , αD; t)〉T approaches rxr (α1, α2, . . ., αD) =
D∑

d=1

{trace{Rxx(αd, 0)}ρsds∗d(αd, 0) / {Mρsdsd
(αd, 0)}}a(θd) as T ap-

proaches infinity, where ρsdsd
(αd, 0) and ρsds∗d (αd, 0) denote the cyclic

correlation coefficient (CCC) and cyclic conjugate correlation coeffi-
cient (CCCC) of sd (t) computed at τ = 0, respectively. As a result,
r̂xr (α1, α2, . . . , αD) can be used as a weight vector to retrieve the D
SOIs. However, the effects of cycle leakage due to finite data sam-
ples as shown by [8, 9] will be significant if we directly set the beam-
former’s weight vector equal to r̂xr(α1, α2, . . . , αD). To alleviate the
effects of cycle leakage, we propose an approach based on the results
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of Appendix A. First, the CCC and CCCC of sd (t) are given as fol-
lows [12, 13] :

ρsdsd
(αd, τ) =

Rsdsd
(αd, τ)

rsdsd

and ρsds∗d(αd, τ) =
Rsds∗d(αd, τ)

rsdsd

, (9)

respectively, where rsdsd
denotes the average power of sd (t). For a

given cyclostationary signal sd (t), its ρsdsd
(αd, τ)and ρsds∗d(αd, τ) can

be computed in advance. Using (9) and (A4), we obtain the average
power of sd (t) as follows:

rsdsd
=

trace {Rxx(αd, τ)}
Mρsdsd

(αd, τ)
. (10)

Moreover, the CCCF Rsds∗d (αd, τ) of sd (t) can be obtained from (9)
and (10) as follows:

Rsds∗d(αd, τ) = ρsds∗d(αd, τ)× trace {Rxx(αd, τ)}
Mρsdsd

(αd, τ)
. (11)

Therefore, the correlation matrix Rss due to the D uncorrected SOIs
can be expressed as

Rss = E

{(
D∑

d=1

sd(t) a(θd)

)(
D∑

d=1

sd(t) a(θd)

)H}

=
D∑

d=1

rsdsd
a(θd)a(θd)H . (12)

Based on (A6) of Appendix A, we can obtain a (θd) as follows:

a(θd) = ρsdsd
(αd, 0)Mrxr(αd)

/
{trace{Rxx(αd,0)}ρsds∗d(αd, 0)}. (13)

Therefore, we note from (13) that r̂xr(αd) can be viewed as a consistent
estimate of a (θd). In case of finite data samples, we can set the
estimate â (θd) of a (θd) equal to the normalized version of r̂xr(αd), i.e.,
â(θd) = r̂xr(αd)/(r̂xr(1)

√
M), where r̂xr(1) denotes the first element

of r̂xr(αd). Substituting (13) into (12) yields

Rss =
D∑

d=1

trace {Rxx(αd, 0)}
Mρsdsd

(αd, 0)
{ρsdsd

(αd, 0)Mrxr(αd)

/{trace{Rxx(αd, 0)}ρsds∗d(αd, 0)}} × {ρsdsd
(αd, 0)Mrxr(αd)

/{trace{Rxx(αd, 0)}ρsds∗d(αd, 0)}}H . (14)
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The correlation matrix Rii due to the interference plus noise can be
obtained as follows:

Rii = Rxx −Rss

= E{x(t)x(t)H} −
D∑

d=1

trace {Rxx(αd, 0)}
Mρsdsd

(αd, 0)
{ρsdsd

(αd, 0)Mrxr(αd)

/{trace{Rxx(αd,0)}ρsds∗d(αd, 0)}} × {ρsdsd
(αd, 0)Mrxr(αd)

/{trace{Rxx(αd,0)}ρsds∗d(αd, 0)}}H . (15)

The above procedure proposed for obtaining Rii does not need to solve
any eigenvalue problem. In contrast, the R-CAB algorithm [6] based
on the C-CAB algorithm does need to solve an eigenvalue problem for
computing Rii.

To compute an efficient weight vector wnew for simultaneously
receiving multiple cyclostationary signals with DCFs, we combine the
sample matrix inversion (SMI) beamformer [1] with the exploitation of
signal cyclostationarity and the diagonal loading (DL) [14] as follows:

ŵnew = (R̂ii + κI)−1r̂xr(α1, α2, . . . , αD), (16)

where R̂ii denotes the sample version of Rii computed by taking
the data samples over the time interval [0,T ], I the M × M
identity matrix, and ŵnew the sample version of wnew = (Rii +
κI)−1rxr(α1, α2, . . . , αD). We term the beamformer with the weight
vector of (16) as the cyclic SMI (C-SMI) beamformer. Since the noise
eigenvalues associated with R̂ii show random variation due to the
finite sample data, the noise eigenvectors affect the SMI beamformer’s
response in a manner determined by the variation of the corresponding
random eigenvalues. As a result, a conventional SMI beamformer
suffers from the addition of randomly weighted noise eigenvectors and
hence higher sidelobe level in its adaptive beam pattern. Adding the
loading factor κ in (16) is to add the loading level to all the eigenvalues
associated with R̂ii and hence produces a bias in the noise eigenvalues
to reduce their random variation. To enhance the performance of the
C-SMI beamformer, the loading factor κ is usually chosen according to
the power level of the SOIs. According to our simulation experience, it
is appropriate to set κ to a large value so that κI dominates the term
(R̂ii +κI) when the D SOIs are strong. In contrast, κ is set to a small
value so that R̂ii dominates when the D SOIs are weak. Hence, an
appropriate choice for κ is given by

κ = trace
{
R̂ss

}
, (17)
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where R̂ss denotes the sample version of Rss computed over the time
interval [0,T ]. Recently, an ad-hoc way developed for conventional
standard Capon beamformer to determine the loading factor level was
presented in [16].

To make a comparison between the proposed C-SMI beamformer
and the LS-SCORE beamformer for simultaneously receiving multiple
cyclostationary signals with DCFs, we modify the original LS-SCORE
weight vector of (6) by replacing the r̂xr(α) with r̂xr(α1, α2, . . . , αD),
i.e., the weight vector is set to wls = R̂−1

xx r̂xr(α1, α2, . . . , αD).

4. ROBUST BLIND BEAMFORMING AGAINST CFE

Here, we present a robust approach for performing blind beamforming
against CFE. First, consider the concept for conventional linearly
constrained minimum variance (LCMV) beamforming with main-
beam constraint [1]. The optimum weight vector ŵLCMV is obtained
by minimizing the array output power subject to the steered-beam
constraint as follows:

Minimize ŵH
LCMVR̂xxŵLCMV Subject to ŵLCMVa(θd) = 1, (18)

where θd is the SOI’s direction angle. It is easy to show that the
minimum value of ŵH

LCMVR̂xxŵLCMV corresponding to the optimum
solution of ŵLCMV is equal to the inverse of a (θd)HR̂−1

xxa (θd). Using
this result and (A6) of Appendix A, we propose an objective function
Q (α̂1, α̂2, . . . , α̂D) for the considered problem as follows:

Q(α̂1, α̂2, . . . , α̂D) = r̂xr(α̂1, α̂2, . . . , α̂D)HR̂−1
xx r̂xr(α̂1, α̂2, . . . , α̂D),(19)

where α̂1, α̂2, . . ., and α̂D represent the estimates of α1, α2, . . . ,
and αD, respectively. Clearly, this objective function reaches its
maximum when the estimates α̂1, α̂2, . . . , α̂D are equal to the actual
α1, α2, . . . , αD, respectively. To find the appropriate estimates for
the DCFs α1, α2, . . . , αD, we formulate the following optimization
problem:

Maximize
α̂1,α̂2,....,α̂D

r̂xr(α̂1, α̂2, . . . , α̂D)HR̂−1
xx r̂xr(α̂1, α̂2, . . . , α̂D), (20)

To solve (20), we adapt the method of steepest descent by taking the
derivatives of the objective function Q (α̂1, α̂2, . . . , α̂D) with respect to
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α̂1, α̂2, . . . , α̂D. The derivatives are given by

∇̂
αd

Q(α̂1, α̂2, . . . , α̂D) =
∂Q(α̂1, α̂2, . . . , α̂D)

∂α̂d

=
∂r̂xr(α̂1, α̂2, . . . , α̂D)HR̂−1

xx r̂xr(α̂1, α̂2, . . . , α̂D)
∂α̂d

=
∂r̂xr(α̂1, α̂2, . . . , α̂D)H

∂α̂d
R̂−1

xx r̂xr(α̂1, α̂2, . . . , α̂D)

+r̂xr(α̂1, α̂2, . . . , α̂D)HR̂−1
xx

∂r̂xr(α̂1, α̂2, . . . , α̂D)
∂α̂d

= 2× real

{
r̂xr(α̂1, α̂2, . . . , α̂D)HR̂−1

xx

∂r̂xr(α̂1, α̂2, . . . , α̂D)
∂α̂d

}

= 2× real
{
r̂xr(α̂1, α̂2, . . . , α̂D)HR̂−1

xx r̂xud
(α̂d)

}
, (21)

for d = 1, 2, . . . , D, where
r̂xud

(α̂d) = ∂ 〈x(t)r∗(α̂1, α̂2, . . . , α̂D; t)〉T /∂α̂d

=
〈
x(t)xT (t)ce−j2πα̂dt(−j2πt)

〉
T

. (22)

Since the objective function Q (α̂1, α̂2, . . . , α̂D) reaches the maximum
at α1, α2, . . . , αD, it should be approximately a concave function in
an appropriate neighborhood of α1, α2, . . . , αD. Accordingly, the
updated value of the estimate for the cycle frequency αd at the time
instant ti+1 can be computed by using the following recursive formula:

α̂d(ti+1) = α̂d(ti) + νd(ti) ∇̂
αd

Q(α̂1, α̂2, . . . , α̂D)|
α̂1 = α̂1(ti), α̂2 = α̂2(ti), . . . , α̂D = α̂D(ti), (23)

for d = 1, 2, . . . ,D, where νd (ti) is a positive real-valued parameter
referred to as the step-size parameter. Examining the derivatives given
by (21), we set the step-size parameter equal to

νd(ti) =
1∥∥∥

〈
x(t)xT (t)e−j2πα̂d(ti)t(−j2πt)

〉
ti

∥∥∥
pd

(24)

for d = 1, 2, . . . , D, to ensure the convergence of the steepest-descent
based algorithm used by (23), where ||B|| denotes the maximum
singular value of the matrix B. As shown in the next section, pd is a
positive real value which must be appropriately determined to ensure
the convergence. The updated weight vector at the time instant ti+1

is obtained by substituting (23) into (16) and given by

ŵnew(ti+1)=
(
R̂ii(ti+1)+κI

)−1
r̂xr

(
α̂1(ti+1), α̂2(ti+1), . . . , α̂D(ti+1)

)
, (25)
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where R̂ii(ti+1) denotes the sample version of Rii computed in the
time interval [0, ti+1] with ti+1 = (i + 1)Ts and the sampling period =
Ts.

5. CONVERGENCE OF THE PROPOSED APPROACH

From (19), we can obtain the following expression after some algebraic
manipulations

Q(α̂1(ti), α̂2(ti), . . . , α̂D(ti)) = r̂xr(α̂1(ti), α̂2(ti), . . . , α̂D(ti))HR̂−1
xx(ti)

r̂xr(α̂1(ti),α̂2(ti), . . . , α̂D(ti))=
1
i2

i−1∑

l=0

i−1∑

k=0

D∑

u=1

D∑

v=1

{
cHx∗(l)xT (k)c

}

×
{
xH(l)R̂−1

xx(ti)x(k)
}

ej2π(lα̂u−kα̂v)Ts , (26)

where we add the time index ti to indicate that the objective function is
computed at the time instant ti. From (7), the term xH(l)R̂−1

xx(ti)x(k)
can be approximated as follows:

xH(l)R̂−1
xx(ti)x(k) ≈

D∑

d=1

s∗d(l)sd(k)
{
a(θd)HR̂−1

xx(ti)a(θd)
}

+
D+J∑

j=D+1

s∗j (l)sj(k)
{
a(θj)HR̂−1

xx(ti)a(θj)
}

+ noise-related terms. (27)

(27) is obtained due to a(θd)HR̂−1
xx(ti)a(θj)≈ 0 and a(θj)HR̂−1

xx(ti)a(θj̄)≈ 0
as the number i of data snapshots approaches infinity, j, j̄ = D +
1, 2, . . . , D + J and j 6= j̄. The term cHx∗(l)xT (k)c can be expressed
as follows:

cHx∗(l)xT (k)c = cH

{
D∑

d=1

sd(l) a(θd) +
J∑

j=1

sj(l) a(θj) + n(l)

}∗

{
D∑

d=1

sd(k) a(θd) +
D+J∑

j=D+1

sj(k) a(θj) + n(k)

}T

c

=
D∑

d=1

s∗d(l)sd(k)
{
cH a∗(θd)aT (θd)c

}
+

D+J∑

j=D+1

s∗j (l)sj(k)

{
cH a∗(θj)aT (θj)c

}
+ {cH n∗(l)nT (k)c}+ cross terms. (28)

We have from (27) and (28) that
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{
cHx∗(l)xT (k)c

}{
xH(l)R̂−1

xx(ti)x(k)
}

≈
D∑

d=1

s∗d(l)s
∗
d(l)sd(k)sd(k)

{
a(θd)HR̂−1

xx(ti)a(θd)
}{

cH a∗(θd)aT (θd)c
}

+
D+J∑

j=D+1

s∗j (l)s
∗
j (l)sj(k)sj(k)

{
a(θj)HR̂−1

xx(ti)a(θj)
}{

cH a∗(θj)aT (θj)c
}

+the cross terms including noise and interference. (29)

As the number i of data snapshots approaches infinity, we
substitute (29) into (26) and perform some necessary algebraic
manipulations to obtain

Q(α̂1(ti), α̂2(ti), . . . , α̂D(ti)) = r̂xr(α̂1(ti), α̂2(ti), . . . , α̂D(ti))HR̂−1
xx(ti)

r̂xr(α̂1(ti), α̂2(ti), . . . , α̂D(ti)) ≈
D∑

d=0

{
D∑

u=1

D∑

v=1

1
i2

i−1∑

l=0

i−1∑

k=0

{
sd(l)sd(l)

e−j2πlα̂uTs

}∗
×

{
sd(k)sd(k)e−j2πkα̂vTs

}}
×

{
a(θd)HR̂−1

xx(ti)a(θd)
}

×
{
cHa∗(θd)aT(θd)c

}
+

D+J∑

j=D+1

{
D∑

u=1

D∑

v=1

1
i2

i−1∑

l=0

i−1∑

k=0

{
sj(l)sj(l)e−j2πlα̂uTs

}∗

×
{
sj(k)sj(k)e−j2πkα̂vTs

}}
×

{
a(θj)HR̂−1

xx(ti)a(θj)
}
×

{
cHa∗(θj)aT (θj)c

}

=
D∑

d=1

[{
D∑

u=1

D∑

v=1

R̂sds∗d(α̂u, 0)∗R̂sds∗d(α̂v, 0)

}
×

{
a(θd)HR̂−1

xx(ti)a(θd)
}

×
{
cHa∗(θd)aT(θd)c

}}]
+

D+J∑

j=D+1

[{
D∑

u=1

D∑

v=1

R̂sjs∗j (α̂u, 0)∗R̂sjs∗j (α̂v, 0)

}

×
{
a(θj)HR̂−1

xx(ti)a(θj)
}
×

{
cH a∗(θj)aT (θj)c

}}]
. (30)

The cross terms disappear in (30) because of the stationarity of
n (t) and the assumed uncorrelation among sd (t), sj(t), and n(t).
From (30), we can rewrite (21) as
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∇̂
αd

Q(α̂1(ti), α̂2(ti), . . . , α̂D(ti)) =
∂Q(α̂1(ti),α̂2(ti), . . . , α̂D(ti))

∂α̂d

≈
D∑

d=1

[[
∂

{
D∑

u=1

D∑

v=1

R̂sdsd∗(α̂u, 0)∗R̂sdsd∗(α̂v, 0)

}
/∂α̂d

]

×
{
a(θd)HR̂−1

xx(ti)a(θd)
}
×

{
cH a∗(θd)aT (θd)c

}]

+
J∑

j=1

[[
∂

{
D∑

u=1

D∑

v=1

R̂sjs∗j (α̂u, 0)∗R̂sjs∗j (α̂v, 0)

}
/∂α̂d

]

×
{
a(θj)HR̂−1

xx(ti)a(θj)
}
×

{
cH a∗(θj)aT (θj)c

}]
. (31)

Consider BPSK signals. We set

sd(t) = Ade
j(παdt+Φsd

(t)) and sj(t) = Aje
j(παjt+Φsj (t)), (32)

where Ad and Aj are the constant amplitudes, and Φsd
(t) and Φsj (t)

are the random phases equal to ±(π/2) for d = 1, 2, . . . , D and
j = D + 1, . . . , D + J , respectively. Accordingly, we have

R̂sds∗d(α̂u, 0) = −A2
d sinc((α̂u − αd)T )

and R̂sjs∗j (α̂u, 0) = −A2
j sinc((α̂u − αj)T ). (33)

Based on (32), it can be shown that

∂

{
D∑

u=1

D∑

v=1

R̂sds∗d(α̂u, 0)∗R̂sds∗d(α̂v, 0)

}
/∂α̂d

= A4
d





D∑

v=1

∂sinc((α̂d − αd)T )
∂α̂d

sinc((α̂v − αd)T )+

D∑

u=1

∂sinc((α̂d − αd)T )
∂α̂d

sinc((α̂u − αd)T )




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and

∂

{
D∑

u=1

D∑

v=1

R̂sjs∗j (α̂u, 0)∗R̂sjs∗j (α̂v, 0)

}
/∂α̂d

= A4
j





D∑

v=1

∂sinc((α̂d − αj)T )
∂α̂d

sinc((α̂v − αj)T )+

D∑

u=1

∂sinc((α̂d − αj)T )
∂α̂d

sinc((α̂u − αj)T )





. (34)

Let α̂d = αd + ∆αd and α̂d − αq = ∆αdq. It is appropriate to
consider the case where the interval T = iTs is so large that all the
terms sinc (∆αdqT ) are negligible for all d 6= q. Therefore, we can
approximate (34) as follows:

∂

{
D∑

u=1

D∑

v=1

R̂sds∗d(α̂u, 0)∗R̂sds∗d(α̂v, 0)

}
/∂α̂d|α̂d=α̂d(i)

= 2A4
d

∂sinc(∆αdiTs)
∂∆αd

|∆αd=∆αd(i)sinc(∆αd(i)iTs)

=2
π∆αd(i)iTs cos(π∆αd(i)iTs)−sin(π∆αd(i)iTs)

π∆α2
d(i)iTs

A4
dsinc(∆αd(i)iTs)

and ∂

{
D∑

u=1

D∑

v=1

R̂sjs∗j(α̂u, 0)∗R̂sjs∗j(α̂v, 0)

}
/∂α̂d≈0 (35)

if we can make sure that the following condition given by

|∆αd(i){iTs}| ≤ 1
2

(36)

is satisfied, where ∆αd(i) = α̂d(i)−αd denotes the estimation error of
αd at the time instant T = iTs. As a result, (31) becomes

∇̂
αd

Q(α̂1(ti),α̂2(ti), . . . , α̂D(ti)) =
∂Q(α̂1(ti),α̂2(ti), . . . , α̂D(ti))

∂α̂d

≈
D∑

d=1

[[
2
π∆αd(i)iTs cos(π∆αd(i)iTs)− sin(π∆αd(i)iTs)

π∆α2
d(i)iTs

A4
d

sinc(∆αd(i)iTs)

]
×

{
a(θd)HR̂−1

xx(ti)a(θd)
}
×

{
cHa∗(θd)aT(θd)c

}]
(37)
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and the term
〈
x(t)xT (t)e−j2πα̂d(ti)t(−j2πt)

〉
ti

of (24) becomes

〈
x(t)xT (t)e−j2πα̂d(ti)t(−j2πt)

〉
ti
≈

D∑

d=1

A2
de
−jπ∆αd(i)iTs

π∆α2
d(i)iTs

×
{

sin(π∆αd(i)iTs)− π∆αd(i)iTs cos(π∆αd(i)iTs)
+ jπ∆αd(i)iTs sin(π∆αd(i)iTs)

}
a(θd)a(θd)T . (38)

We note that the maximum singular value of (38) is approximately
equal to

M2A2
d

π∆α2
d(i)iTs

∣∣∣∣
sin(π∆αd(i)iTs)− π∆αd(i)iTs cos(π∆αd(i)iTs)
+ jπ∆αd(i)iTs sin(π∆αd(i)iTs)

∣∣∣∣ . (39)

Therefore, the step-size parameter of (24) is approximately given by

νd(ti) =
1∥∥∥

〈
x(t)xT (t)e−j2πα̂d(ti)t(−j2πt)

〉
ti

∥∥∥
pd

≈
{

M2A2
d

π∆α2
d(i)iTs

∣∣∣∣
sin(π∆αd(i)iTs)−π∆αd(i)iTscos(π∆αd(i)iTs)
+jπ∆αd(i)iTssin(π∆αd(i)iTs)

∣∣∣∣
}−pd

. (40)

Next, we consider the objective function shown by (30). After
substituting (33) into (30), we have

Q(α̂1(ti), α̂2(ti), . . . , α̂D(ti)) = r̂xr(α̂1(ti), α̂2(ti), . . . , α̂D(ti))HR̂−1
xx(ti)

r̂xr(α̂1(ti), α̂2(ti), . . . , α̂D(ti)) =
D∑

d=1

[{
D∑

u=1

D∑

v=1

A4
dsinc((α̂u − αd)T )

sinc((α̂v − αd)T )

}
×

{
a(θd)HR̂−1

xx(ti)a(θd)
}
×

{
cH a∗(θd)aT (θd)c

}}]

+
D+J∑

j=D+1

[{
D∑

u=1

D∑

v=1

A4
j sinc((α̂u − αj)T )sinc((α̂v − αj)T )

}

×
{
a(θj)HR̂−1

xx(ti)a(θj)
}
×

{
cH a∗(θj)aT (θj)c

}}]
. (41)

Again, we can approximate (41) as follows:

Q(α̂1(ti), α̂2(ti), . . . , α̂D(ti)) = r̂xr(α̂1(ti), α̂2(ti), . . . , α̂D(ti))HR̂−1
xx(ti)

r̂xr(α̂1(ti), α̂2(ti), . . . , α̂D(ti)) ≈
D∑

d=1

{
A4

dsinc2(∆αdT )
}
×

{
a(θd)H

R̂−1
xx(ti)a(θd)

}
×

{
cHa∗(θd)aT (θd)c

}}
(42)
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when the interval T = iTs is so large that all the terms sinc (∆αdqT )
are negligible for all d 6= q.

From the update formula of (23), we have that
∆αd(ti+1) = ∆αd(ti) + νd(ti) ∇̂

αd

Q(α̂1, α̂2, . . . , α̂D)|
α̂1 = α̂1(ti), α̂2 = α̂2(ti), . . . , α̂D = α̂D(ti) (43)

and
∆αd(i + 1)(i + 1)Ts ≈



∆αd(i) + 2M−2pdA4−2pd
s

{
a(θd)HR̂−1

xx (ti)a(θd)
}

×
{
cHa(θd)∗a(θd)Tc

}

× sinc(∆αd(i)iTs)

×π∆αd(i)iTs cos(π∆αd(i)iTs)−sin(π∆αd(i)iTs)(
π∆α2

d(i)iTs

)1−pd

× |sin(π∆αd(i)iTs)− π∆αd(i)iTs cos(π∆αd(i)iTs)

+jπ∆αd(i)iTs sin(π∆αd(i)iTs)|−pd





(i + 1)Ts. (44)

Setting ∆αd(i)(iTs) to the extreme value 1/2 and performing
some necessary algebraic manipulations, we have the following
approximation

∆αd(i + 1)(i + 1)Ts ≈ 1
2

+
1
2i
− Ω× i + 1

ipd−1
, (45)

where Ω =
{

24−2pdπpd−2M−2pdA4−2pd
s {a(θd)HR̂−1

xx (ti)a(θd)}
×{cHa(θd)∗a(θd)Tc}T 2−pd

s

}
×

(
1 + π2

4

)−pd/2
. Ω is always non-negative and approximately indepen-

dent of i by neglecting the finite sample effect. Under the condition
|∆αd(i){iTs}| ≤ 1

2 of (36), we have that

−1 ≤ 1
2(i− 1)

− Ω
i

(i− 1)pd−1
≤ 0. (46)

Equation (46) leads to that

(i− 1)pd−2

2i
≤ Ω ≤ (2i− 1)(i− 1)pd−2

2i
. (47)

Based on (36), we have to ensure that |∆αd(i + 1)(i + 1)Ts| ≤ 1
2.

From (47), we obtain
1
2i
− (2i− 1)(i + 1)

2ipd(i− 1)2−pd
≤ 1

2i
− Ω

i + 1
ipd−1

≤ 1
2i
− i + 1

2ipd(i− 1)2−pd
. (48)
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Hence, setting 1 ≤ pd ≤ 2 leads to

1
2i
− i + 1

2ipd(i− 1)2−pd
=

1
2i

[
1−

(
i + 1

i

)pd−1 (
i + 1
i− 1

)2−pd
]
≤ 0

and 1
2i −

(2i−1)(i+1)

2ipd (i−1)2−pd
> −1 if pd = 2 and < −1 if pd = 1. Therefore,

there exists some pd between 1 and 2 such that |∆αd(i+1)(i+1)Ts| ≤ 1
2

for d = 1, 2, . . . , D. Following the similar procedure, we can prove
that the conclusion is also valid for substituting the other extreme
value −1/2 for ∆αd(i)(iTs) into (44) and performing some necessary
algebraic manipulations.

6. COMPUTER SIMULATION EXAMPLES

Here, we present several simulation examples for showing the
effectiveness of the proposed approach. For all simulation examples,
the inter-element spacing = λ/2, where λ is the wavelength of the
BPSK SOIs with rectangular pulse shape and baud rate = 5/11. The
interferers are also rectangular pulse shaped BPSK signals with baud
rate = 5/11. The noise received by the arrays is spatially white. The
sampling interval for obtaining data snapshots is set to 0.1. The vector
c for the original LS-SCORE algorithm and the proposed approach
is fixed to c = [1, 0, 0, . . . , 0]T . The time delay τ is set to 0. All
the simulation results are obtained by averaging 50 independent runs.
The first received 110 data snapshots are used for computing all the
initial sample correlation matrices. The values of the parameters qd

used by the robust approach of [9] and the parameters pd used by the
proposed approach for d = 1, 2, . . . , D are appropriately determined
by experiment. The SINR at the array output is computed as follows:

SINR =
ŵH

newR̂ssŵnew

ŵH
newR̂iiŵnew

, (49)

where R̂ss and R̂ii are the sample versions of Rss and Rii, respectively.
Rss and Rii are computed according to (14) and (15), respectively.
ŵnew is computed by (16).

Example 1 : We use a uniform linear array (ULA) with M = 12
and multiple SOIs. Two SOIs have cycle frequencies α1 = 2 and
α2 = 2.8, direction angles θ1 = 5◦ and θ2 = 60◦, and signal-to-
noise ratio (SNR) equal to 2 dB and 3 dB, respectively, while two
interferers have cycle frequencies α3 = 4.6 and α4 = 7.8, direction
angles θ3 = 30◦ and θ4 = 40◦, and interference-to-noise ratio (INR)
equal to 10 dB. The CFEs for the two SOIs are set to ∆α1 =
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0.02 and ∆α2 = −0.02. Figure 1 plots the array beam patterns
with 2530 data snapshots obtained by using the original LS-SCORE
algorithm [3] with and without CFE, the robust approach of [9] with
the parameters q1 = q2 = 1.5, and the proposed approach with and
without CFE, respectively. The parameters p1 and p2 are set to 1.32
and 1.3, respectively for the proposed approach. The array output
SINRs are −12.776, 10.532, 7.949, 12.736, and 12.949 dB, respectively.
Figure 2 depicts the array output SINR versus the number of data
snapshots. Figure 3 demonstrates the array output SINR versus
the CFE. The CFE sequences of ∆α1 and ∆α2 are [0.01, 0.02, . . . ,
0.06] and [−0.01, −0.02, . . . , −0.06], respectively. We note that the
proposed approach is effective in dealing with the CFE problem and
provides the performance better than that of using the original LS-
SCORE algorithm without CFE.

Example 2 : We use a ULA with M = 18 and multiple SOIs. Three
SOIs have cycle frequencies α1 = 2, α2 = 2.8, and α3 = 9.4, direction
angles θ1 = −15◦, θ2 = 15◦, and θ3 = 75◦, and SNR equal to 5 dB,
while two interferers have cycle frequencies α3 = 4.6 and α4 = 7.8,
direction angles θ3 = 40◦ and θ4 = 50◦, and INR equal to 15 dB. The
CFEs for the SOIs are set to ∆α1 = ∆α2 = ∆α3 = 0.02. Figure 4
plots the array beam patterns with 2530 data snapshots obtained by
using the original LS-SCORE algorithm [3] with and without CFE,
the robust approach of [9] with the parameters q1 = q2 = q3 = 1.8,
and the proposed approach with and without CFE, respectively. The
parameters p1, p2, and p3 are all set to 1.32 for the proposed approach.
The array output SINRs are −16.236, 8.625, 3.141, 16.957, and
17.057 dB, respectively. Figure 5 depicts the array output SINR versus
the number of data snapshots. Figure 6 shows the array output SINR
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Figure 1. The array beam
patterns for Example 1.
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Figure 3. The array output
SINR versus CFE for Example 1.

-80 -60 -40 -20 0 20 40 60 80
-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

Angle in Degree

P
ow

e
r
 G

ai
n

 i
n

 d
B

LS-SCORE without CFE

LS-SCORE with CFE

Method of [9] with CFE

Proposed Method without CFE

Proposed Method with CFE

Figure 4. The array beam
patterns for Example 2.
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Figure 5. The array output
SINR versus the number of data
snapshots for Example 2.
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Figure 6. The array output
SINR versus CFE for Example 2.

versus the CFE. The CFE sequences of ∆α1, ∆α2, and ∆α3 are all set
to [0.01, 0.02, . . . , 0.06]. Again, we note that the proposed approach
is effective in dealing with the CFE in this case.

Example 3 : We use a two-dimensional (2-D) uniform circular
array (UCA) with M = 12 and multiple SOIs. Two SOIs have cycle
frequencies α1 = 2 and α2 = 2.8, elevation angles θ1 = 10◦ and
θ2 = 55◦, azimuth angles φ1 = 20◦ and φ2 = 90◦, and SNRs equal to
5 dB, respectively, while two interferers have cycle frequencies α3 = 4.6
and α4 = 7.8, elevation angles θ3 = 35◦ and θ4 = 80◦, azimuth angles
φ3 = 80◦ and φ4 = 70◦, and INR equal to 10 dB. The CFEs for the
two SOIs are set to ∆α1 = 0.02 and ∆α2 = −0.02. Figure 7 depicts
the array output SINR versus the number of data snapshots obtained
by using the original LS-SCORE algorithm [3] with and without CFE,
the robust approach of [9] with the parameters q1 = q2 = 1.5, and
the proposed approach with and without CFE, respectively. Both of
the parameters p1 and p2 are set to 1.3 for the proposed approach.
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Figure 7. The array output
SINR versus the number of data
snapshots for Example 3.
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Figure 8. The array output
SINR versus CFE for Example 3.

The array output SINRs obtained at the number of snapshots equal to
2530 are −13.424, 12.540, 10.274, 14.368, and 14.385 dB, respectively.
Figure 8 shows the array output SINR versus the CFE. The CFE
sequences of ∆α1 and ∆α2 are [0.01, 0.02, . . . , 0.06] and [−0.01, −0.02,
. . ., −0.06], respectively. We note that the proposed approach works
well in dealing with the 2-D UCA blind beamforming under the CFE.

As to the selection of the parameters p1, p2, and p3, they
are determined according to the convergence constraint presented in
Section 5 and the beamforming performance of the antenna array.
According to our experience, the parameters p1, p2, and p3 are first
set to 1.5 to satisfy the convergence constraint 1 ≤ pd ≤ 2, d = 1, 2, 3.
Then, we adjust the parameters p1, p2, and p3 by adding 0.02 to or
subtracting 0.02 from 1.5. This procedure continues until a satisfactory
beamforming performance is obtained.

7. CONCLUSION

This paper has presented an approach for blind adaptive array
beamforming in the presence of cycle frequency error (CFE). Based on
the exploitation of signal cyclostationarity and diagonal loading, we
have developed a cyclic sample matrix inversion (C-SMI) beamformer
for simultaneously extracting multiple desired signals with distinct
cycle frequencies. The C-SMI beamformer shows the capability
against the effects of cycle leakage due to finite data samples. An
iterative algorithm with the exploitation of signal cyclostationarity for
optimizing a novel objective function has been presented to make the
C-SMI beamformer robust against CFE. The convergence property
regarding the iterative algorithm has been investigated. Simulation
results have confirmed the effectiveness of the theoretical work. A
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further research work on the extension of the proposed approach to
deal with random cycle frequency mismatch as discussed in [15] is
currently under investigation.

APPENDIX A.

From (7) and (8), the cross-correlation vector of x (t) and r(t) is
computed over [0,T ] as follows:

r̂xr(α1, α2, . . . , αD) =
〈
x(t)r∗(t)

〉
T

=

〈(
D∑

d=1
sd(t)a(θd) + i(t)

)(
D∑

d=1

ej2παdtcHx∗(t− τ)

)∗〉

T

. (A1)

As T approaches infinity, it follows from the proof of [7] that (A1) can
be approximated by

lim
T→∞

r̂xr(α1, α2, . . . , αD) = lim
T→∞

〈x(t)r∗(t)〉T = rxr(α1, α2, . . . , αD)

= 〈x(t)r∗(t)〉∞ =
D∑

d=1

kdRsds∗d(αd, τ)a(θd) =
D∑

d=1

Sda(θd), (A2)

where kd = aT (θd)ce−jπαdτ , Rsds∗d(αd, τ) =
〈
sd(t)sd(t− τ)e−j2παdt

〉
∞,

and Sd = kdRsds∗d(αd, τ). From (A2), we note that the parameter Sd,
for d = 1, 2, . . . , D, can be obtained as follows. From (2), the CCM
Rxx(αd, τ) is given by
Rxx(αd, τ)=

〈
x(t)xH(t−τ)e−j2παdt

〉
∞=Rsdsd

(αd, τ)a(θd)aH(θd). (A3)
Hence, we have
trace{Rxx(αd, τ)} = Rsdsd

(αd, τ)aH(θd)a(θd) = MRsdsd
(αd, τ). (A4)

Accordingly, the CCF Rsdsd
(αd, τ) of sd (t) can be obtained from

(A4) as follows: Rsdsd
(αd, τ) = trace{Rxx(αd, τ)}/M . Next, setting

the M × 1 control vector to c = [1 0 0 . . . 0]T and τ = 0, we have
kd = aT (θd)ce−jπτ = 1 since the first array sensor is the reference. As
a result, Sd is given by
Sd =Rsds∗d(αd, 0)={ρsds∗d(αd, 0)trace{Rxx(αd, 0)}}/{Mρsdsd

(αd, 0)},(A5)
for d = 1, 2, . . . , D. It follows that (A2) can be rewritten as
rxr(α1, α2, . . . , αD) = lim

T→∞
r̂xr(α1, α2, . . . , αD) = lim

T→∞
〈x(t)r∗(t)〉T

=
D∑

d=1

Sda(θd) =
D∑

d=1

{ρsds∗d(αd, 0)trace

{Rxx(αd,0)}}a(θd)/{Mρsdsd
(αd, 0)}. (A6)
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