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Abstract—The adaptive sliding-mode observer has been widely used
to estimate the rotor flux and rotor speed in inverter-fed sensorless
induction motor drives. However, the technique requires setting a
priori the sliding-mode observer constants and also knowledge of
the induction motor parameters. This particular aspect can cause
significant errors in the estimation of the rotor speed used in sensorless
control schemes. Changes in the induction machine parameters due
to temperature or different saturation levels will affect the dynamic
operation of the observer despite its adaptive nature. In this context,
a sensitivity study of the adaptive sliding-mode observer is presented
and discussed in this paper. Various experiments are performed on
a sensorless indirect vector-controlled induction motor drive under a
variety of conditions to verify the observer robustness.

1. INTRODUCTION

Several applications of the simple adaptive sliding-mode observer [1]
or its improvements for sensorless induction motor drives have been
developed in the literature in the last years. References [2–18] resume
some of the research proposed in the last years, together with other
techniques as, for example, using high gain observers [19, 20]. However,
the influence of the constants and motor parameters deviation on the
adaptive observer performance has been little considered. It is in this
context that this paper presents the constants and motor parameters
sensitivity study and several experiments of the adaptive sliding-mode
observer in a sensorless induction motor drive.
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2. INDUCTION MOTOR MODEL

The induction motor model with the stator currents and rotor flux as
state variables can be written in the stationary-coordinate system by

d

dt

[
is
ψr

]
= A

[
is
ψr

]
+ B

[
us

0

]
, (1)

where is corresponds to DQ components of stator currents, us is the
vector of DQ components of stator voltages, and ψr is the vector of
DQ components of rotor flux, all defined as

is =
[

iDs

iQs

]
, us =

[
uDs

uQs

]
, ψr =

[
ψDr

ψQr

]
. (2)

Matrices A and B are given by

A =
[

A11 A12

A21 A22

]
, B =

[
B1

0

]
, (3)

where
A11= −ηI, A12=β

(
τ−1
r I−pωJ

)
,

A21=τ−1
r MI, A22=τ−1

r I−pωJ, B1=
1

σLs
I

(4)

and

σ = 1− M2

LsLr
, β =

M

σLsLr
, η =

M2Rr + L2
rRs

σLsL2
r

, τr=
Lr

Rr
,

I =
[

1 0
0 1

]
, J =

[
0 −1
1 0

]
,

(5)

where M is the mutual inductance coefficient, Ls and Lr are
respectively the stator and rotor inductance coefficients, Rs and Rr

are respectively the stator and rotor phase resistances, ω being the
motor speed, and p being the number of pole pairs. Using (2) to (5)
in (1) yields

diDs

dt
= (−η) iDs +

(
βτ−1

r

)
ψDr + (βpω) ψQr +

(
1

σLs

)
uDs, (6a)

diQs

dt
= (−η) iQs− (βpω) ψDr+

(
βτ−1

r

)
ψQr+

(
1

σLs

)
uQs, (6b)

dψDr
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=

(
τ−1
r M

)
iDs−τ−1

r ψDr − (pω) ψQr, (6c)

dψQr

dt
=

(
τ−1
r M

)
iQs + (pω) ψDr−τ−1

r ψQr, (6d)
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which is the induction motor model in DQ coordinates in stationary-
coordinate system. The electromagnetic torque is given by

Te =
3
2

pM

Lr
(ψDrψQs − ψQrψDs) . (7)

3. THE ADAPTIVE SLIDING-MODE OBSERVER:
REVIEW

3.1. Rotor Flux Estimation

The adaptive observer can be expressed by (8) where x̂ is the
vector composed by DQ components of estimated stator current and
estimated rotor flux (9), K is a gain matrix defined by (10) and (11).
Currents ι̂Ds and ι̂Qs are estimated and compared with those ones
measured to produce an error variable for the sliding observer estimate
the rotor flux components and thus the rotor speed. This is why the
sliding error variable is used to guide the observer.

dx̂
dt

= Ax̂+Bus+K sgn
(
Îs−is

)
(8)

x̂ =
[

Îs

ψ̂r

]
=




ι̂Ds

ι̂Qs

ψ̂Dr

ψ̂Qr


 (9)

K =
[

K1

−LK1

]
(10)

K1 =
[ −k1 0

0 −k2

]
L =

[
l11 l12

l21 l22

]
(11)

Developing (8), it is written as in (12).

d

dt
Îs = A11Îs+A12ψ̂r+B1us+K1sgn

(
Îs−is

)
(12a)

dψ̂r

dt
= A21Îs + A22ψ̂r − LK1sgn

(
Îs − is

)
(12b)

The matrix K1 values are set by trial-and-error to optimize the
observer performance. To obtain the coefficients of matrix L, the
following expressions are defined [20]:

x = (q − 1) ε +
γ

τrε
,

y =
γω

ε
,

(13)
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with q and γ being constants assigned experimentally with ε defined
as:

ε =
σLsLr

M
. (14)

The matrix L is thus calculated as in (15).

l11 = −x

l12 = y

l21 = −y

l22 = −x

(15)

Expanding vectors Îs =
[
ι̂Ds, ι̂Qs

]T and ψ̂r =
[
ψ̂Dr, ψ̂Qr

]T
, as

well as the matrices A11 , A12, A21, A22, K1, LK1 gives the set
of differential equations for stator currents and rotor flux indicated
in (16). The system has as input variables the voltages uDs and uQs,
currents iDs and iQs and the rotor speed measured ω or estimated
ω̂. The variables to be estimated are the components of the stator
current in stationary reference frame, ι̂Ds and ι̂Qs and the rotor flux
components in the same reference, ψ̂Dr and ψ̂Qr

dι̂Ds

dt
=−ηι̂Ds+

β

τr
ψ̂Dr+βpωψ̂Qr+

1
σLs

uDs−k1sgn(ι̂Ds−iDs) (16a)

dι̂Qs

dt
=−ηι̂Qs−βpωψ̂Dr+

β

τr
ψ̂Qr+

1
σLs

uQs−k2sgn(ι̂Qs−iQs) (16b)

dψ̂Dr

dt
=

M

τr
ι̂Ds− 1

τr
ψ̂Dr−pωψ̂Qr+l11k1sgn (ι̂Ds−iDs)

+l12k2sgn(ι̂Qs−iQs) (16c)

dψ̂Qr

dt
=

M

τr
ι̂Qs+pωψ̂Dr− 1

τr
ψ̂Qr+l21k1sgn (ι̂Ds−iDs)

+l22k2sgn(ι̂Qs−iQs) (16d)

3.2. Rotor Speed Estimation

Consider the error Equation (17) and the Lyapunov function (18)
where eψ is the matrix [eDψ eQψ ]T (Appendix A) and function W
must be such as to ensure convergence of the rotor speed estimation
according to the theory of Lyapunov stability.

deψ

dt
= −ΛK1sgn

(
Îs − is

)
(17)

V = eT
ψeψ + W (18)
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The derivative of Lyapunov function (18) is given by
d

dt
V =

d

dt

(
eT

ψ

)
eψ + eT

ψ

d

dt
(eψ) +

dW

dt
. (19)

Defining a variable z as in (20), substituting Equations (17) and
(20) in (19), and after performing the derivatives the result is given by
(21).

z = −K1sgn
(
Îs − is

)
(20)

d

dt
V = zTΛTA−1

12 z+zTΛTA−1
12

∆ωr

ε
Jψr +

dW

dt
(21)

The derivative of Lyapunov function V with respect to time can
be expressed as:

d

dt
V =

d

dt
V1 +

d

dt
V2 (22)

Therefore, equating expressions (21) and (22) gives{
d
dtV1 = zTΛTA−1

12 z,
d
dtV2 = zTΛTA−1

12
∆ω
ε Jψr + dW

dt .
(23)

According to the theory of Lyapunov stability, to be ensured
stability, equation (22) must be negative definite. For that, conditions
(24) and (25) must be imposed

d

dt
V1 < 0 (24)

d

dt
V2 = 0 (25)

In order to achieve the first condition (24), we must establish the
equality of (26) where constant γ must have a positive value. Using
(26) provided (24) results in (27). This equation will always be negative
definite since it is always imposed positive values for γ

ΛT = −γA12 , γ > 0 (26)
d

dt
V1 = −zTγz (27)

Substituting (26) in the second equation of (23), gives
d

dt
V2 = −γzT∆ω

ε
Jψr +

dW

dt
. (28)

Applying the condition (25) in (28) we obtain the result expressed
by (29).

dW

dt
= γzT ∆ω

ε
Jψr (29)
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Thus, from (29), function W can be chosen equal to (30), in which
parameter µ should also have a positive value

W =
∆ω

2µε
, µ > 0 (30)

Deriving (30) with respect to time, yields

dW

dt
=

2∆ω

2µε

dω

dt
(31)

Developing (29) using (20), we obtain

dW

dt
=γ [k11sgn (ι̂Ds−iDs) k22sgn (ι̂Qs−iQs)]

∆ω

ε

[
0 −1
1 0

] [
ψ̂Dr

ψ̂Qr

]
.

(32)
Now rewriting (32), gives

dW

dt
= γ

∆ω

ε

[
k111sgn (ι̂Ds−iQs) ψ̂Qr − k222sgn (ι̂Qs−iQs) ψ̂Dr

]
. (33)

Finally, equalizing (31) and (33), we obtain the equation of the
rotor speed estimator defined by

dω̂

dt
= µγ

[
k11sgn (ι̂Ds − iDs) ψ̂Qr − k22sgn(ι̂Qs − iQs)ψ̂Dr

]
(34)

According to Equations (26) and (30), positive parameters µ and
γ in (34) have to be chosen in order to optimize the performance of the
rotor speed estimator. At this time, there is no way to attribute their
value using an analytical equation. Therefore, their values must be
attributed by trial-and-error, being tuned for a stable and fast sliding
observer. Their influence is distinct because, while parameter µ only
directly influences the progress of the estimated speed, parameter γ
directly affects not only the estimated speed, but also the stator current
and rotor flux estimates, as parameter γ is included in matrix L. Notice
that, in general, the increase of these parameters results in a faster
transient response of the observer. However, this increase reduces the
robustness of the observer when in stationary regime, showing some
oscillations in the estimated speed as will be discussed in the next
section.

4. IMPLEMENTATION OF THE ADAPTIVE
SLIDING-MODE OBSERVER: EXPERIMENTAL
RESULTS

The experimental setup used for our sensitivity study is shown in
Fig. 1(a). It consists in an electrical drive system with a 370 W cage
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Figure 1. (a) DSP-based induction motor drive system used to
verify the parameter sensitivity of the modified adaptive sliding-mode
observer. The experimental setup consists in an induction motor,
an IGBT inverter, a DC generator used as loading machine, and a
DSP (TMS320F28035) board. (b) Block diagram of the sliding-mode
observer implemented in the DSP.

induction motor (parameters listed in Table 1), an IGBT inverter
controlled by a Texas Instruments DSP TMS320F28035 using a
SVPWM (Space Vector PWM) algorithm, and a DC generator used
as motor load. The braking resistance is used by the induction motor
drive when braking. The IGBT inverter inverts the electric power
direction and this is dissipated in the braking resistor to decrease the
motor speed. The induction motor is equipped with a speed sensor
(incremental encoder) and also has two current sensors (Hall Effect
sensors). Fig. 1(b) shows in a block diagram the observer structure,
which was implemented in the DSP.
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Table 1. Parameters of the 370W one-pole Pair 50-Hz induction
motor.

Rated power 370 W

Rated voltage 400 V

Rated torque 1.3 Nm

Rated speed 2820 rpm

Rated current 1.7A

Magnetizing inductance M 1.46H

Stator inductance Ls 1.48H

Rotor inductance Lr 1.48 H

Stator resistance Rs 16.1Ω

Rotor resistance Rr 24.6Ω

Total moment of inertia 0.00035 kgm

The drive system topology consists in an indirect vector speed
control of the induction motor. Generally, this control works best for
drives that use a speed sensor to measure the rotor speed. In sensorless
mode, the speed information is not available by direct measurement
and in our case it must be estimated by the modified sliding-mode
observer. The scheme of the implemented sensorless induction motor
control used in this research is shown in Fig. 2. The controller and
observer were all programmed in the DSP board together with the
SVPWM current control for the IGBT inverter. The influence of
constants values and the motor parameters deviation in the adaptive
observer performance was extensively tested using this experimental
setup.

4.1. Stator Currents and Rotor Flux Estimation

In this section, results concerning the estimation of the components of
the stator currents (ι̂Ds, ι̂Qs) and rotor flux (ψ̂Dr, ψ̂Qr) are presented
both in steady-state and in transient regime. In this experiment,
it was not used any speed sensor with the induction motor drive.
The observer uses the reference voltages uDs and uQs, employed in
the indirect field oriented control, and uses the currents iDs and iQs

obtained from the transformation abc/DQ of the measured stator
currents ia and ib.
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Figure 2. Block diagram of sensorless indirect vector speed control of
the induction motor.
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î

Time [s]

Is
 –

 D
 c

o
m

p
o
n
e
n
t 
(m

e
a
s
u
re

d
/e

s
ti
m

a
te

d
) 

[A
]

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Time [s]

Is
 –

 Q
 c

o
m

p
o

n
e

n
t 

(m
e

a
s
u

re
d

/e
s
ti
m

a
te

d
) 

[A
]

Qsi

Qs
î

Figure 3. (a) The D components of the measured iDs and estimated
îDs stator currents. (b) The Q components of the measured iQs and
estimated ι̂Qs stator currents.

4.1.1. Stator Currents

Figure 3(a) shows the estimated current ι̂Ds. Fig. 3(b) shows the
estimated current ι̂Qs. As can be verified in Figs. 3(a) and 3(b) the
estimated currents using the observer follow the measured one with
low significant error. All results were obtained in low speed values,
with a reference speed of 90 rpm following to 30 rpm.

Figure 4(a) shows the measured current iDs and the estimated
current ι̂Ds when the rotor speed is equal to 450 rpm. The current
components iQs and ι̂Qs are not shown since they have similar trends.
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Figure 4. Measured current iDs and estimated current ι̂Ds for a (a)
rotor speed equal to 450 rpm and (b) for a speed equal to 150 rpm.

At last Fig. 4(b) shows for a higher rotor speed equal to 1500 rpm the
measured iDs and the estimated current ι̂Ds. Both results show the
good performance of the implemented observer in a wide speed range.

4.1.2. Rotor Flux

The experimental results regarding the estimation of rotor flux DQ
components were obtained for a low speed value of 30 rpm (Fig. 5(a)),
an average speed of 450 rpm (Fig. 5(b)), and a high speed of 1500 rpm
(Fig. 5(c)). We verify in all three results that the DQ estimated rotor
flux components have equal amplitudes and a dephasing angle of 90◦
as expected. Furthermore, each component has a frequency related to
the rotor speed.

4.2. Performance of the Observer When in the Sensorless
Indirect Field Oriented Controller

This section presents the performance of the indirect field oriented
control without using the speed sensor, but using the adaptive observer
and its estimated rotor speed. Results were obtained for various speed
reference profiles. Because the evolution of the real speed was very near
to the estimated one, figures only show the estimated rotor speed.

Figure 6(a) shows the speed reference ωref which is characterized
by a ramp speed from 0 to +750 rpm in 5 seconds, and then for
a constant speed equal to +750 rpm. This figure also presents the
evolution of the estimated speed ω̂. From the results obtained, it
appears that for the first 2 seconds the speed controller works to bring
the estimated speed to the reference one. Here is also found that
the delay was due to the convergence process inherent to the speed
observer. In the following instants, the estimated speed follows the
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Figure 5. Rotor flux estimated components ψ̂Dr and ψ̂Qr for a speed
equal to (a) 30 rpm, (b) 450 rpm, and (c) 1500 rpm, using the modified
observer.

speed reference with very good approximation, showing an average
error of about +3% to reach the steadystate. Follow, the average error
stays significantly lower in +1%.

A second test was carried out but being opposite to that anterior.
It uses now a reference speed ramp with a negative slope and a steady-
state speed equal to −750 rpm, as shown in Fig. 6(b). The evolution
of the estimated speed is similar to the anterior results in Fig. 6(a).

Figure 6(c) shows the results obtained when a pyramid type
reference is applied to the speed controller. After the initial
seconds that are associated with the control system and the observer
convergence, the error between the reference and estimated speed
decreased to a value around 2%. This confirms the good performance
of the sensorless speed control implemented

An interesting test was performed which required a motor
acceleration from 0 to −750 rpm, maintaining this speed during 2
seconds, and finally braking to 0 rpm. Fig. 6(d) shows the speed
reference signal and the evolution obtained by the estimated speed.
During acceleration and deceleration, the error shows an average
value of +3%. However, during the two seconds of steady state, the
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Figure 6. Indirect field oriented control without speed sensor but
using the speed estimated by the modified observer. (a) Speed
reference ωref in ramp with positive slope and the estimated speed
ω̂. (b) Speed reference ωref in ramp with negative slope and the
estimated speed ω̂. (c) Speed reference ωref in pyramid form and
estimated speed ω̂. (d) Reference speed ωref accelerates from 0 rpm
to −750 rpm, maintained for 2 seconds and then slows up again at
0 rpm, and estimated speed ω̂.

error drops significantly to a mean value less than +1%, showing the
excellent performance of indirect field-oriented speed sensorless.

5. PARAMETER SENSITIVITY OF THE ADAPTIVE
OBSERVER

In order to identify the adaptive sliding-mode observer parameters
that have the most impact on its performance, a parameter sensitivity
analysis was performed. Experimental results in this section analyze
the sensitivity to the observer constants and also motor parameters
variation.
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5.1. Observer Sensitivity Under its Constants

The set of parameters of the observer, whose values were assigned,
is listed in Table 2. Since most parameters are assigned by trial-and-
error, it is important to check the sensitivity of each parameter in order
to determine which ones are the most significant and also defining what
should be the first parameter to have assigned a value.

Figure 7(a) shows the results for parameter µ. Note that this
parameter directly influences the evolution of estimated speed ω̂, as can
be seen from Eq. (34). The results in Fig. 7(a) show that this parameter
affects the convergence time of the estimated speed to the measured
one. Taking as reference the results obtained with ∆µ = 0, it appears
that when parameter µ has its value increased by 50% (∆µ = +50%)
the evolution of estimated speed to the measured one becomes more
fast. However, we observe that in steady-state, the estimated speed
started to show significant fluctuations around the value of measured
speed. In the opposite condition, where parameter µ had its value
reduced by 50% (∆µ = −50%), the convergence time became greater,
as shown in Fig. 7(a). However, the estimated speed started to show
a steadystate without significant fluctuations

Figure 7(b) shows the variation of parameter γ, which is also
directly used in Eq. (34) to obtain the estimated speed. The results
are similar to those presented with parameter µ, also showing the great
sensitivity of the estimator for parameter γ.

The last parameters tested were k1, k2, included in the diagonal

Table 2. Constants used in the adaptive observer.

k1 0.0216

k2 0.0216

l11 −0.48537

l22 −0.48537

l12 0.0459

l21 −0.0459

µ 3.396× 106

γ 0.0019

ε 1.45997H

q 0.65
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matrix equations K1 and K1m present in observer Equation (12).
Fig. 7(c) shows the results when the parameters change. For a variation
of −50% (∆k1 = ∆k2 = −50%), the observer dynamics becomes more
slow in its convergence to the measured speed, with a small oscillatory
behavior in its steady-state after reaching the measured speed. For an
opposite variation of +50% (∆k1 = ∆k1m = ∆k2 = ∆k2m = +50%),
the observer dynamics becomes faster, acquiring however a significant
oscillatory behavior after reaching the measured speed, as shown in
Fig. 7(c).

For parameters l11, l22, l12, l21 of matrix L in (12), which are
include in the equations for estimating the rotor flux, and parameter q,
the tests performed with both positive and negative variations of these
parameters led to the conclusion that a variation of the same does not
significantly affect the dynamics of the observer. For this reason the
results were not included.
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Figure 7. (a) Parameter µ. The measured speed ω (black) and
estimated ω̂ (color with different levels of gray) for the following
changes in the value of µ ∆µ = 0, ∆µ = +50%, and ∆µ = −50%.
(b) Parameter γ. The measured speed ω (black) and estimated ω̂
(color with different levels of gray) for the following changes in the
value of γ ∆γ = 0, ∆γ = +50%, e ∆γ = −50%. (c) Parameters k11,
and k22, from matrix equations K1. The measured speed ω (black)
and estimated ω̂ (color with different levels of gray) for the following
changes: (∆k11 = ∆k22 = +50%).
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Figure 8. (a) Rotor resistance Rr variation. The measured speed
ω (black) and estimated ω̂ (color with different gray levels) for the
following Rr increase: ∆Rr = 0, ∆Rr = +25%, e ∆Rr = +50%.
(b) Induction rotor coefficient Lr variation. The measured speed
ω (black) and estimated ω̂ (color with different gray levels) for the
following Lr decrease: ∆Lr = 0, ∆Lr = −10%, e ∆Lr = −25%.
(c) Rotor resistance Rs variation. The measured speed ω (black)
and estimated ω̂ (color with different gray levels) for the following
Rs increase: ∆Rs = 0, ∆Rs = +10%, e ∆Rs = +20%.

5.2. Observer Sensitivity Under Motor Parameters Variation

This section evaluates the performance of the observer under changes
in the induction motor parameters. Experimental results are shown
for variations in the values of rotor resistance Rr, rotor inductance Lr,
and the stator resistance Rs.

For rotor resistance, its variation was only contemplated for an
increase of its value caused by a possible temperature augmentation.
Fig. 8(a) shows the experimental curves of the estimated speed. The
results show that as the rotor resistance increases, the convergence
of the observer to measured speed becomes slower. Moreover, in
steady-state, the estimator behaves increasingly oscillatory for a rotor
resistance increase.

To study the behavior of the observer for an Lr variation, it was
considered only a reduction of its value since it is associated with the
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motor operating with magnetic saturation. There were established two
decreases in this parameter: −10% and −25% of its initial value. The
curves of the estimated speed in Fig. 8(b) show not only a considerable
decrease in the convergence time of the observer for decreasing of the
rotor induction coefficient, but also an excessively oscillatory behavior
around the measured speed.

Next, we analyzed the observer sensitivity when there was an
increase in the value of the stator resistance Rs. We considered two
increases: +10% and +20%. Fig. 8(c) shows the results. In general,
one can say that the observer is insensitive to a stator resistance
variation, either in their time of convergence as in steady-state.

6. CONCLUSION

Parameter variations in an induction motor drive under sensorless
operation based on the adaptive sliding-mode observer induce flux
deviations from the command value and oscillations during dynamic
operation. More significant is the observer sensitivity to the values
attributed by the user to the constants used by the observer. Based
on the experimental verification of the observer parameter sensitivity,
automatic tuning methods can be applied to change the observer
constants and adapt it to different speed and also acceleration levels.

APPENDIX A.

Defining ∆ω = ω̂−ω, and rewriting it as ω̂ = ω+∆ω, it is easily verified
that Â = A + ∆A, which ∆A arises due to the difference between
estimated and measured speed. This new matrix is then constructed
as ∆A = Â − A. Observing the elements of A, matrices A11 and
A21 do not depend on ω and, since its elements are all constants,
we conclude that these are equal to Â11 and Â21, respectively, since
∆A11= ∆A21= 0.

Matrix Â12 is decomposed as:

Â12 = β

[
τ−1
r pω̂
−pω̂ τ−1

r

]
= β

[
τ−1
r p(ω + ∆ω)

−p(ω + ∆ω) τ−1
r

]

= β

[
τ−1
r pω
−pω τ−1

r

]
− β

[
0 −p∆ω

p∆ω 0

]
, (A1)

concluding that, as expected, Â12 = A12+∆A12, where

∆A12 = −β

[
0 −p∆ω

p∆ω 0

]
= −βp∆ωJ. (A2)
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Matrix Â22 can be also decomposed as

Â22 =
[ −τ−1

r pω̂
−pω̂ −τ−1

r

]
=

[ −τ−1
r p(ω + ∆ω)

−p (ω + ∆ω) −τ−1
r

]

=
[ −τ−1

r pω
−pω −τ−1

r

]
+

[
0 p∆ω

−p∆ω 0

]
, (A3)

where Â22 = A22 + ∆A22 and thus ∆A22 yields

∆A22 =
[

0 p∆ω
−p∆ω 0

]
= −p∆ωJ (A4)

At last, the matrix ∆A becomes

∆A =
[

∆A11 ∆A12

∆A21 ∆A22

]
=

[
0 −βp∆ωJ
0 −p∆ωJ

]

=




0 0 0 βp∆ω
0 0 −βp∆ω 0
0 0 0 p∆ω
0 0 −p∆ω 0


 (A5)

Subtracting (6) from (12) results in
d

dt
Îs− d

dt
is=A11

(
Îs−is

)
+Â12ψ̂r−A12ψr+K1sgn

(
Îs−is

)
, (A6)

d

dt
ψ̂r− d

dt
ψr=A21

(
Îs−is

)
+Â22ψ̂r−A22ψr+K2sgn

(
Îs−is

)
. (A7)

Defining the stator current and rotor flux errors as
ei = Îs − is (A8)

eψ = ψ̂r −ψr (A9)
and using them in (A6) and (A7), results in the following derivative
error equations:

d

dt
ei=A11ei+A12eψ+∆A11Îs+∆A12ψ̂r+K1sgn

(
Îs−is

)
, (A10)

d

dt
eψ =A21ei + Â22ψ̂r −A22ψr + K2sgn

(
Îs − is

)
. (A11)

To implement the sliding-mode dynamics, we have the conditions
in (31).

ei =
d

dt
ei = 0 (A12)

Using this condition in (A10) and (A11), results in

0 = A12eψ + ∆A11Îs + ∆A12ψ̂r + K1sgn
(
Îs − is

)
(A13)

d

dt
eψ = A22eψ + ∆A21Îs + ∆A22ψ̂r + K2sgn

(
Îs − is

)
(A14)
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Since ∆A11= ∆A21= 0, and using (A2) and (A4) in (A13) and (A14)
yields

0 = A12eψ + β∆ωJψ̂r + K1sgn
(
Îs − is

)
(A15)

d

dt
eψ = A22eψ −∆ωJψ̂r + K2sgn

(
Îs − is

)
(A16)

Now, (A15) and (A16) can be rewritten using DQ coordinates as
[

0
0

]
= β

[
τ−1
r pω
−pω τ−1

r

] [
eDψ

eQψ

]
+β

[
0 −p∆ω

p∆ω 0

] [
ψ̂Dr

ψ̂Qr

]

+K1sgn
(
Îs − is

)
(A17)

d

dt

[
eDψ

eQψ

]
=

[ −τ−1
r −pω

pω −τ−1
r

] [
eDψ

eQψ

]
−

[
0 −p∆ω

p∆ω 0

] [
ψ̂Dr

ψ̂Qr

]

+K2sgn
(
Îs − is

)
(A18)

Expanding (A17) and (A18) gives

0=βτ−1
r eDψ+βpωeQψ−βp∆ωψ̂Qr + k11sgn (ι̂Ds−iDs) , (A19)

0=−βpωeDψ+βτ−1
r eQψ+βp∆ωψ̂Dr+k11sgn (ι̂Qs−iQs) (A20)

deDψ

dt
=−τ−1

r eDψ − pωeDψ + p∆ωψ̂Qr + k22sgn (ι̂Ds − iDs) , (A21)

deQψ

dt
=pωeDψ−τ−1

r eQψ−p∆ωψ̂Dr+k22sgn (ι̂Qs−iQs) . (A22)

Dividing expressions (A19) and (A20) by β, and summing them
with (A21) and (A22) yields

deDψ

dt
=

(
k11

β
+ k22

)
sgn (ι̂Ds − iDs) , (A23)

deQψ

dt
=

(
k11

β
+ k22

)
sgn (ι̂Qs − iQs) . (A24)

Therefore, one verifies that (A23) and (A24) can be rewritten as

d

d

[
eDψ

eQψ

]
=

(
K1

β
+ K2

)
sgn

(
Îs − is

)
. (A25)

Since K2 = −LK1, (A25) can be written as

d

d

[
eDψ

eQψ

]
=

(
I
β
−L

)
K1sgn

(
Îs−is

)
. (A26)
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Doing Λ = L − I
β and remembering that eψ=

[
eDψ

eQψ

]
in (45), the

rotor flux error equation becomes given by
deψ

dt
= −ΛK1sgn

(
Îs − is

)
. (A27)
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