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Abstract—Radome has strong effects on the radiation performances
of the antenna in millimeter wave band. In this paper, the aperture
integration-surface integration (AI-SI) method is adopted to analyze
the electrically large antenna-radome system. The fast multipole
method (FMM) is proposed to accelerate the aperture integration and
inner surface integration in the AI-SI method. An electrically large
antenna-radome system at W band is analyzed and measured. The
radiation patterns of the system calculated using the AI-SI method
with and without the fast multipole acceleration and the measured
patterns are compared. The calculated patterns agree very well with
each other, and both have the same agreement with the experimental
results. However, the computational time of the proposed analysis with
the fast multipole acceleration is reduced significantly.

1. INTRODUCTION

A dielectric radome is placed in front of the antenna to protect the
system from various environments. However, the presence of the
radome always affects the radiation properties of the enclosed antenna,
such as distorting the radiation pattern. Therefore, an accurate
analysis of the antenna-radome system is important.

Many methods have been used to analyze the antenna-radome
system, such as the full wave method [1–3], the high frequency
method [4–7], and the hybrid method [8–10]. As the sizes of the
antenna-radome system in millimeter wave band are always electrically
large, the efficiency of the full wave methods, such as method of
moment (MoM) [1] and the finite element method (FEM) [2], are
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very low, even employing the fast algorithm proposed by [11]. In
contrast, the high frequency methods, such as the ray tracing method
(RT) [4] and the physical optics method (PO) [5–7], have higher
efficiency. However, the accuracy of RT is not very high, especially
for the radome with small curvature radius. The aperture integration-
surface integration (AI-SI) method, which is based on PO, has a good
balance between the accuracy and efficiency [6, 7]. It is suitable for the
analysis of the electrically large antenna-radome system in millimeter
wave band.

In the AI-SI method, the incident fields on the inner surface of the
radome have two parts. The first part is determined by integrating the
aperture currents over the antenna aperture. Some portion of the first
incident fields will transmit through the radome wall and the remaining
will be reflected by the wall. The reflected fields have important effects
on the flash lobe of the radiation pattern [12–14]. By integrating the
reflected fields over the inner surface of the radome, the second incident
fields on the inner surface of the radome can be obtained. In the
traditional AI-SI method [5–7], the aperture integration of the first
incident fields and the inner surface integration of the second incident
fields are all determined by direct integration using the Stratton-Chu
formulas. As the antenna aperture and the inner surface of the radome
are electrically large, these integrations take a lot of time [15].

In MoM, the fast multipole method (FMM) is employed to
accelerate the computation of the mutual couplings between different
elements [16–19]. The determinations of the aperture integration
and inner surface integration in the AI-SI method are similar to the
computation of the mutual coupling in MoM. So, in this paper, FMM
is proposed to accelerate the above mentioned aperture integration and
inner surface integration in the AI-SI method.

Firstly, the general steps of the AI-SI method for the antenna-
radome analysis are given. Then, the applications of the fast multipole
to accelerate the aperture integration and inner surface integration are
presented. Finally, some computational results are compared with the
experimental results to show the accuracy and efficiency of the fast
multipole accelerated analysis.

2. THE AI-SI METHOD

The AI-SI method is a high-frequency method based on PO. It can
analyze the electrically large antenna-radome system very efficiently
with acceptable accuracy. It was firstly introduced to analyze the
radome by Paris [5], and many other researchers have done a lot of
work [6, 7]. The general steps of this method are as follows:
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In the antenna-radome model, an aperture antenna in an ideally
black screen is enclosed by the dielectric radome [5, 13]. When the
equivalent electromagnetic currents on the aperture of the antenna are
known, the first incident fields on the inner surface of the radome can
be obtained by integrating the currents over the antenna aperture using
the following formulas:
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is the Green’s function in free space, ~JAP , ~MAP are the electromagnetic
currents on the antenna aperture, and SAP is the antenna aperture.

The incident vector at the intersection point on the inner surface
of the radome is established by the direction of the Poynting vector [5]
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The incident vector and the normal vector at the intersection point
on the inner surface define the plane of incidence. The incident fields
at the intersection point are decomposed into the perpendicular and
parallel polarization components to the plane of incidence. After
reflection and refraction by the radome wall, the reflected fields ~Er,
~Hr on the inner surface and the transmitted fields ~Et, ~Ht on the outer
surface of the radome are recombined as [7]
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Figure 1. Model of the AI-SI method for the antenna-radome analysis.

where ~v⊥ and ~v// are the unit vectors illustrated in Figure 1,
the superscripts i, r, and t represent the incident, reflected, and
transmitted fields, respectively. R⊥, R//, T⊥, T// are the reflection and
transmission coefficients for the perpendicular and parallel polarization
components [7, 20].

The reflected fields on the inner surface may bounce in the radome
and they have important effects on the flash lobe of the antenna-radome
system [12–14]. In order to account the mutual interactions between
different parts of the radome, the fields radiated from the reflected
fields must be calculated. So, the equivalent reflected currents on the
inner surface of the radome are

~Jr = n̂× ~Hr
~Mr = −n̂× ~Er (6)

where n̂ is the normal vector on the inner surface of the radome.
As the flange of the aperture antenna is modeled as black screen,

the fields reflected to the bottom of the radome are ignored. However,
the fields reflected to the inner surface of the radome may form second
radiation. Thus, the second incident fields on the inner surface of the
radome can be determined as follows:
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where G(~r, ~r ′) is the Green’s function in free space defined in (2) and
SRin is the inner surface of the radome.

The second incident fields are treated the same as the first incident
fields in (5) and the second transmitted fields ~E ′

t, ~H ′
t can be obtained.

Finally, the total fields on the outer surface of the radome are the
vector sum of the first and second transmitted fields:

~Etotal
t = ~Et + ~E ′

t
~Htotal

t = ~Ht + ~H ′
t (8)

When the total transmitted fields on the outer surface are known,
the far field radiation patterns of the antenna-radome system can
be determined by integrating the fields over the outer surface of the
radome using the Stratton-Chu formulas [6].

3. THE FAST MULTIPOLE ACCELERATION

As above mentioned, the integration (1) needs to be performed
over the antenna aperture SAP and the integration (7) needs to be
performed over the inner surface of the radome SRin. In numerical
computation, the integration surface SAP and SRin are meshed into

Figure 2. Schematic of the mesh on the antenna aperture and radome
surface.
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small triangles with the edge length much smaller than the wavelength
as in Figure 2, and then the integrations (1) and (7) are converted into
the summations over all the triangles. If the antenna aperture SAP is
meshed with M triangles and the inner surface of the radome with N
triangles, then the computation of the first incident fields on the inner
surface of the radome is of O(MN) complexity and the computation
of the second incident fields of O(N2) complexity. As the antenna and
radome in millimeter wave band are electrically large and the numbers
M and N are large, the aperture integration (1) and inner surface
integration (7) demand a long computing time.

In MoM, the impedance matrix shows the mutual coupling
between every triangle. FMM is always adopted to accelerate the
matrix-vector product [16–19]. FMM was proposed for static problem
by Rokhlin in 1987 and for dynamic problems in 1990 [16, 17]. For the
matrix-vector product with N unknowns, the two-level FMM reduces
both the memory requirement and numerical complexity from O(N2)
to O(N1.5) and the three-level FMM reduces it to O(N4/3) [16–19]. By
using the multilevel fast multipole method (MLFMM), the numerical
complexity can be further reduced to O(N log N) [21–24].

When applying FMM to accelerate the mutual coupling
computation, the triangles on the integration surface are divided into
groups depending on their position. The key point of FMM is the
addition theorem, which is presented as follows:
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The expansion of the product jlPl in propagating plane waves is

4π(−j)ljl(kd)Pl

(
d̂ · R̂

)
=

∫∫

4π

e−jkk̂·~dPl

(
k̂ · R̂

)
d2k̂ (10)

Applying the Gaussian-Legendre quadrature to (10) and substitut-
ing (9) and (10) into (2), the Green’s function can be expressed as
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where ~R is the vector from the source group center to the field group
center, ~d is the summation of the vectors from the source point to
source group center and from the field group center to field point, R
and d are their amplitudes with R > d, and R̂ and d̂ are the unit
vectors, respectively.

In (9), L is an infinite number. However, in numerical practice,
L must be truncated with the finite number of modes and the relative
error is depending on L with the following relationship [18, 21]:

L = kdmax + γ ln (π + kdmax) (12)

where dmax is the maximal diameter of all the groups. The relative
error of (11) can less than 0.1 when γ = 1 and the larger of γ, the
more accurate of (11).

In (11), K is the number of integration points over the unit sphere
and is always chosen as

K = 2L2 (13)

When kR > L, the source group and field group are called far
groups. The interactions between the triangles in the far groups in
the integrals (1) and (7) can be calculated as follows: the fields from
all the triangles in the source group are aggregated to the source group
center firstly, then, the field information is transformed from the source
group center to the field group center, and finally, the field effect is
disaggregated to every triangle in the field group.

The integration formula between the far groups can be replaced
by:
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When kR is comparable or smaller than L, the source and field group
are near groups. At this time, the Equation (11) can not get desired
accuracy and the effects between the triangles in the near groups must
be calculated using the traditional direct integration.
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Finally, the integrals (1) and (7) can be expressed as

~E(~r) = ~Enear(~r) + ~Efar(~r) (15)

in which ~Enear(~r) is calculated with the traditional direct integration in
the near group triangles. When applying (14) and (15) to accelerate the
aperture integration (1), the symbols ~E(~r), ~J(~r ′) and ~M(~r ′) represent
~Ei(~r), ~JAP (~r ′) and ~MAP (~r ′), and when applying them to (7), they are
~E ′

i(~r), ~Jr(~r ′) and ~Mr(~r′), respectively.
For the aperture integration (1), the integration only needs

to calculate the mutual interactions from the aperture triangles to
triangles on the inner surface of the radome. As the radome is several
wavelengths away from the antenna as shown in Figure 3, all the groups
between the aperture and the radome are far groups, then the fast
multipole acceleration will be very significant.

For the inner surface integration of (7), the schematic of the
application of the fast multipole acceleration is shown in Figure 4.
As the distances between most groups are larger than L, FMM will
reduce the computing time between the far groups very significantly.
However, in the top of the radome, where the distances between the
groups are comparable with the group size, FMM will not be used.

Figure 3. Schematic of the
application of FMM to accelerate
the aperture integration.

Figure 4. Schematic of the
application of FMM to accelerate
the inner surface integration.
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Figure 5. The photo and geometrical sizes of the millimeter wave
radome.

4. RESULTS

To confirm the validity and efficiency of the fast multipole acceleration,
an electrically large antenna-radome system at W band are fabricated
and measured. The radiation patterns of the antenna-radome system
determined by the AI-SI method with the fast multipole acceleration
are compared with the calculated and measured results in the pervious
work [7].

The photo and geometrical sizes of the millimeter wave radome
are shown in Figure 5. The radome has a height of 200mm and a
base diameter of 156 mm. In the front of the radome, there is an arc
with the curvature radius of 8 mm. The radome is made of Teflon with
the relative permittivity of 2.1 and the thickness is 5 mm. A conical
horn with the aperture diameter of 20 mm is enclosed by the radome.
The horn can rotate around the gimbal center, which is located at the
base center of the radome. The antenna-radome system is operating
at 94 GHz.

Firstly, the first incident fields on the radome are calculated by
direct integration using (1) and by integration with the fast multipole
acceleration using (14) and (15). In FMM, the triangles on the aperture
and radome are divided into groups with the maximal diameter dmax =
1.25λ. In order to obtain enough accuracy, the parameters in (12)
are chosen as γ = 1 and L = 10, thus the relative error of FMM
result can be less than 0.1. The Gauss-Legendre integration number is
K = 2L2 = 200. The distributions of the electrical field components Ey

and Ez on the inner surface of the radome are compared in Figure 6.
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(a) (b)

(c) (d)

Figure 6. The distributions of the electrical field components on the
inner surface of the radome, (a) Ey computed by direct integration,
(b) Ey computed by integration with the fast multipole acceleration,
(c) Ez computed by direct integration, (d) Ez computed by integration
with the fast multipole acceleration.

As the conical horn is linear polarized in y direction, the electrical
field component Ex is very small and is not given here. It is clear that
the electrical field distributions calculated by direct integration and by
fast multipole accelerated integration have good agreement with each
other.

Then, the radiation patterns of the antenna-radome system are
computed. In order to shown the accuracy of FMM, the radiation
patterns determined by FMM with different the number of modes
(L = 8, 10 and 12) are compared with the direct integration result
in Figure 7. It is clear that, the result of L = 8 has obvious differences
with the direct integration result, however, the results of L = 10 and
12 agree very well with it. As discussed in (12), when L = 8, the
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Figure 7. Calculated H plane radiation patterns using AI-SI with
fast multipole acceleration compares with the result in [7] calculated
by direct integration.

relative error of (11) will be very significant. However, when L = 10,
it will be less than 0.1, and 0.01 for L = 12. The results agree with
the conclusion in [21] as compared in Figure 7.

For this antenna-radome system at W band, the direct integration
of AI-SI needs about 1 h to calculate the aperture integration and
19 h for the inner surface integration. However, by applying the
fast multipole acceleration with L = 10, it takes only 12 m for the
aperture integration and 6 h for inner surface integration. The fast
multipole acceleration reduces the computational time of the antenna-
radome analysis significantly, especially the time for the aperture
integration. When the number of modes L in FMM becomes large,
the computational time will increase quickly, for example, 28 m for the
aperture integration and 13 h for the inner surface integration with
L = 12. However, as in Figure 7, the accuracy is improved a little. In
the following antenna-radome analysis, the number of modes is L = 10.

The calculated radiation patterns of the antenna-radome system
using the fast multipole accelerated AI-SI with the number of modes
L = 10 are compared with the measured radiation patterns in Figure 8.
It can be seen that the results with fast multipole acceleration have
some agreements with the measured patterns. They have the same
accuracy with the direct integration method as in [7].

Finally, the antenna tilts 10◦ in the H plane as in [7]. The
calculated radiation pattern with the fast multipole acceleration and
the results in [7] are illustrated in Figure 9. The radiation patterns
calculated with and without FMM acceleration agree very well with
each other and they both have the same agreement with the measured
result.
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(a)

(b)

Figure 8. Measured and calculated radiation patterns of the conical
radome enclosed conical horn, (a) H plane, (b) E plane.

Figure 9. Measured and calculated H plane radiation patterns of
the conical radome enclosed conical horn when the horn tilts 10◦ in H
plane.
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Up to now, the full wave methods (MLFMM, MoM and FEM)
have high accuracy for antenna-radome analysis, but their only suitable
for electrically small system. The RT method has higher efficiency and
lower accuracy. However, the proposed FMM accelerated AI-SI reduces
the computational complexity of PO based method significantly and
keeps an acceptable accuracy. It is more accuracy and more efficiency
than the other methods for the analysis of electrically large radome in
millimeter wave band.

5. CONCLUSION

In this paper, an electrically large antenna-radome system in millimeter
wave band is analyzed using the AI-SI method. The fast multipole
method is adopted to accelerate the aperture integration from the
antenna to the radome and the surface integration on the inner surface
of the radome. The calculated radiation patterns have good agreements
with the experimental results and direct integration results. The
efficiency of the present method is much higher than the traditional
direct integration method and the accuracies of the two methods are
comparable. It is suitable for fast analysis of the antenna-radome
system in millimeter wave band.
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