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Abstract—A computational technique is presented for efficient and
accurate time-domain analysis of multiport waveguide structures
with arbitrary metallic and dielectric discontinuities using a higher
order finite element method (FEM) in the frequency domain. It is
demonstrated that with a highly efficient and appropriately designed
frequency-domain FEM solver, it is possible to obtain extremely fast
and accurate time-domain solutions of microwave passive structures
performing computations in the frequency domain along with the
discrete Fourier transform (DFT) and its inverse (IDFT). The
technique is a higher order large-domain Galerkin-type FEM for 3-
D analysis of waveguide structures with discontinuities implementing
curl-conforming hierarchical polynomial vector basis functions in
conjunction with Lagrange-type curved hexahedral finite elements and
a simple single-mode boundary condition, coupled with standard DFT
and IDFT algorithms. The examples demonstrate excellent numerical
properties of the technique, which appears to be the first time-from-
frequency-domain FEM solver, primarily due to (i) very small total
numbers of unknowns in higher order solutions, (ii) great modeling
flexibility using large (homogeneous and continuously inhomogeneous)
finite elements, and (iii) extremely fast multifrequency FEM analysis
(the global FEM matrix is filled only once and then reused for every
subsequent frequency point) needed for the inverse Fourier transform.
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1. INTRODUCTION

There is a growing need for electromagnetic modeling and analysis
of modern waveguide-based microwave devices, to predict their per-
formance and/or optimize various design parameters prior to costly
prototype development [1–6]. The finite element method (FEM), as
one of the most powerful and versatile general numerical tools for
electromagnetic-field computations [7–10], has been especially effec-
tively used in full-wave three-dimensional (3-D) frequency-domain sim-
ulations of a broad range of multiport waveguide structures with arbi-
trary metallic and dielectric discontinuities, and the FEM is well estab-
lished as a method of choice for such applications [1, 2]. However, time-
domain analysis and characterization of such structures and evaluation
of associated transient electromagnetic phenomena are also of great
practical importance for a number of well-established and emerging
areas of applied electromagnetics, including wideband communication,
electromagnetic compatibility, electromagnetic interference, packaging,
high-speed microwave electronics, signal integrity, material characteri-
zation, and other applications [11–13]. For this purpose, time-domain
FEM techniques have recently been developed [8, 13, 14], allowing elec-
tromagnetic phenomena to be modeled directly in the time domain.
In [8], for instance, the spatially and temporally varying electric field is
approximated using interpolatory spatial vector basis functions defined
on tetrahedral elements, with time-dependent field-distribution coeffi-
cients, which are determined solving the corresponding second-order
ordinary differential equation in time by a time-marching procedure.
When compared to frequency-domain FEM solutions, time-domain
FEM formulations enable effective modeling of time-varying and non-
linear problems and fast broadband simulations (provide broadband
information in a single run), at the expense of the additional discretiza-
tion — in time domain, and the associated numerical complexities,
programming and implementation difficulties, and stability and other
problems inherent for time-domain computational electromagnetic ap-
proaches.

An alternative approach, an indirect time-domain analysis —
namely, finding the time-domain response of a microwave passive
structure based on the frequency-domain FEM analysis in conjunction
with the discrete Fourier transform (DFT) and its inverse (IDFT),
seems to have not been exploited, primarily because it requires FEM
solutions with many unknowns (unknown field-distribution coefficients
to be determined) at many discrete frequency points, which may
be very time consuming and computationally prohibitively costly.
This paper demonstrates exactly opposite — that with a highly
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efficient and appropriately designed frequency-domain FEM technique
it is possible to obtain extremely fast and accurate time-domain
solutions of microwave passive structures performing computations
in the frequency domain along with the DFT/IDFT. The technique
is a higher order large-domain Galerkin-type FEM for 3-D analysis
of N -port waveguide structures with arbitrary metallic and dielectric
discontinuities implementing curl-conforming hierarchical polynomial
vector basis functions of arbitrarily high field-approximation orders in
conjunction with Lagrange-type curved hexahedral finite elements of
arbitrary geometrical orders [2], coupled with standard DFT and IDFT
algorithms. The technique allows electrically large elements that are
up to about two wavelengths in each dimension (large domains), thus
fully exploiting the accuracy, efficiency, and convergence properties of
the higher order FEM. It also implements large finite elements with
continuous change of medium parameters throughout their volumes,
based on Lagrange interpolating schemes for variations of medium
parameters [15]. To close the waveguide problem, simple single-
mode boundary condition and excitation are introduced across the
waveguide ports. This condition appears to be extremely accurate
and computationally efficient in the context of the higher order large-
domain meshing procedure and FEM solution technique, which enable
placing a single large element with a high field-approximation order in
the longitudinal direction as a “buffer zone” between each port and the
domain with discontinuities, to ensure that the higher modes excited
at the discontinuity relax before they reach the port. Finally, the
technique is designed, developed, and executed in a form that enables
an extremely fast multifrequency analysis of the structure, allowing
the global FEM matrix to be filled only once and then reused for every
subsequent frequency point, where it should be noted that this is a
numerically exact multifrequency analysis, contrary to approximate
fast frequency sweep techniques [16]. This is of great importance for
the proposed evaluation of the time-domain response of a microwave
structure based on the frequency-domain analysis, where we need a
large number of frequency samples of the resulting quantities (eg., S-
parameters of the structure). To the best of our knowledge, this paper
presents the first time-from-frequency-domain FEM solver. Note that
a similar approach in the method of moments (MoM) framework (using
WIPL-D code) is presented in [17].

Section 2 of the paper presents the main numerical components
of the higher order large-domain FEM for transient analysis of
microwave passive structures based on frequency-domain computations
in conjunction with the DFT and IDFT. In Section 3, the accuracy
and efficiency of the new time-from-frequency-domain FEM solver are
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evaluated and discussed in three characteristic examples of waveguide
structures that include metallic and homogeneous and continuously
inhomogeneous dielectric discontinuities. The examples demonstrate
excellent numerical properties of the technique based on (i) very
small total numbers of unknowns in higher order solutions, (ii) great
modeling flexibility using large (homogeneous and inhomogeneous)
finite elements, and (iii) extremely fast analysis at multiple frequencies
needed for the inverse Fourier transform.

2. THEORY AND IMPLEMENTATION

Consider a 3-D N -port waveguide structure with an arbitrary metallic
and/or dielectric discontinuity shown in Fig. 1. In our analysis
method, the computational domain is first truncated by introducing
fictitious planar surfaces at each of the ports, and thus obtained closed
structure is then tessellated using curvilinear geometrical elements.
Elements are adopted in the form of Lagrange-type generalized
parametric hexahedra of arbitrary geometrical orders Ku, Kv, and Kw

(Ku, Kv, Kw ≥ 1), analytically described as [2, 18]

r(u,v,w)=
Ku∑

m=0

Kv∑
n=0

Kw∑
p=0

rmnpL
Ku
m (u)LKv

n (v)LKw
p (w), −1 ≤ u, v,w ≤ 1, (1)
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Figure 1. 3-D multiport waveguide structure with an arbitrary
discontinuity.
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Figure 2. Cube to hexahedron mapping defined by (1) and (2).

with rmnp = r(um, vn, wp) being the position vectors of interpolation
nodes and LKu

m representing Lagrange interpolation polynomials,

LKu
m (u) =

Ku∏
l=0, l �=m

u − ul

um − ul
, (2)

and similarly for LKv
n (v) and LKw

p (w). Equations (1) and (2) define a
mapping from a cubical parent domain to the generalized hexahedron,
as illustrated in Fig. 2. The same Lagrange interpolating scheme is
used to describe the continuous variations of both the complex relative
permittivity and permeability, εr and μr, within the hexahedron, as
follows [15]:

εr(u, v,w) =
Ku∑

m=0

Kv∑
n=0

Kw∑
p=0

εr,mnp LKu
m (u)LKv

n (v)LKw
p (w), (3)

where εr,mnp = εr(um, vn, wp) are the relative permittivity values at
the points defined by position vectors of spatial interpolation nodes,
rmnp, and similarly for μr.

The electric fields inside the hexahedra are represented as [2, 18]

E =
Nu−1∑
i=0

Nv∑
j=0

Nw∑
k=0

αuijk fuijk +
Nu∑
i=0

Nv−1∑
j=0

Nw∑
k=0

αvijk fvijk

+
Nu∑
i=0

Nv∑
j=0

Nw−1∑
k=0

αwijkfwijk, (4)
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where f are curl-conforming hierarchical-type vector basis functions
defined as

fuijk = uiPj(v)Pk(w)a′
u, fvijk = Pi(u)vjPk(w)a′

v,
fwijk = Pi(u)Pj(v)wka′

w.
(5)

The P -functions are simple polynomials representing a higher-order
generalization (extension) of one-dimensional rooftop functions,

Pi(u) =

⎧⎪⎨
⎪⎩

1 − u, i = 0
u + 1, i = 1
ui − 1 i ≥ 2, even
ui − u i ≥ 3, odd

, −1 ≤ u, v,w ≤ 1. (6)

Parameters Nu, Nv, and Nw (Nu, Nv , Nw ≥ 1) are the adopted degrees
of the polynomial approximation for fields, and αuijk, αvijk, and αwijk

are unknown field-distribution coefficients. The reciprocal unitary
vectors a′

u, a′
v, and a′

w in (5) are obtained as a′u = (av × aw)/J ,
a′

v = (aw×au)/J , and a′
w = (au×av)/J , J = (au× av) · aw being the

Jacobian of the covariant transformation and au = ∂r/∂u, av = ∂r/∂v,
and aw = ∂r/∂w the unitary vectors, with r given in (1).

For the general waveguide problem in Fig. 1, we invoke the curl-
curl electric-field vector wave equation

∇× μ−1
r ∇× E − k2

0εrE = 0, (7)

where k0 = 2πf
√

ε0μ0 is the free-space wave number and f is
the frequency of the implied time-harmonic variation. A standard
Galerkin-type weak form discretization of (7) yields [2, 18]∫

V
μ−1

r

(
∇× f̂iĵk̂

)
· (∇× E ) dV − k2

0

∫
V

εr f̂iĵk̂ ·EdV

= −
∮

S
μ−1

r f̂iĵk̂ · n× (∇× E) dS, (8)

where V is the volume of a generalized hexahedron, f̂iĵk̂ stands for any
of the functions fuîĵk̂, fvîĵk̂ or fwîĵk̂ [testing functions are the same as
basis functions in (5)], S is the boundary surface of the hexahedron,
and n is the outward unit normal (dS = ndS). Due to the continuity
of the tangential component of the magnetic field intensity vector,
n × H, and hence the vector n × (∇ × E) in (8) across the interface
between any two finite elements in the FEM model, the right-hand
side term in (8) contains the surface integral over the overall boundary
surface of the entire FEM domain, and not over the internal boundary
surfaces between the individual hexahedra in the model, which for the
waveguide problem in Fig. 1 reduces to the surface integral across the
artificially introduced planar surfaces (waveguide ports).
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If the waveguide operates in the single-mode regime (which is
a standard assumption for practical microwave applications) and the
ports are placed far enough from all discontinuities, it can be shown [7]
that the boundary condition at the ports can be expressed as

n×(∇×E)+jkz10n×(n× E) =

{
−2jkz10Einc (excitation port)

0 (receiving ports)
, (9)

where, for a rectangular waveguide, kz10 =
√

k2
0 − (π/a)2 is the

wave number of the dominant mode (a is the larger dimension
of the waveguide cross section), and Einc = E0e10e

−jkz10z is the
electric field of the TE10 wave, incident on the excitation port. This
condition is much easier to implement and faster to compute than
alternative multi-mode conditions. However, it has frequently been
found to be impractical and computationally costly in traditional
small-domain FEM models, due to the fact that placing the ports
far from discontinuities (needed to ensure a single-mode simulation)
requires a considerable number of additional elements to be employed,
which significantly enlarges the computational domain and introduces
a large number of new unknowns to be determined. On the other
side, this major drawback can be very effectively overcome in the
higher order large-domain waveguide modeling, by placing a single
large element with a high field-approximation order in the longitudinal
direction as a buffer zone between each port and the domain with
discontinuities [2]. The sufficient length of the buffer-element allows
for the higher modes excited at the discontinuity to relax before they
reach the port, while the high-order field expansion in the longitudinal
direction ensures the accurate approximation of the fields throughout
the element, without introducing an unnecessarily large number of new
unknowns.

Substituting the field expansion (4) and the boundary condi-
tion (9) into (8) yields the following FEM matrix equation:

(
[A] − k2

0[B] + jkz10[C]
) · {α} = 2jkz10{G}. (10)

Matrix [A] is given by⎡
⎢⎣

[UUA] [UV A] [UWA]

[V UA] [V V A] [V WA]

[WUA] [WV A] [WWA]

⎤
⎥⎦, (11)

and similarly for matrices [B], [C], and [G], where the elements of the
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respective submatrices have the form

UUAîĵk̂ijk =
∫

V
μ−1

r

(
∇× fuîĵk̂

)
· (∇× fuijk) dV, (12)

UUBîĵk̂ijk =
∫

V
εrfuîĵk̂ · fuijkdV, (13)

UUCîĵk̂ijk =
∫

Sall ports

μ−1
r

(
n× fuîĵk̂

)
· (n× fuijk) dS, (14)

UUGîĵk̂ijk =
∫

Sexcitation port

μ−1
r

(
n× fuîĵk̂

)
· (n× Einc

)
dS, (15)

with analogous expressions for the elements corresponding to other
combinations of field components. The assembly of a local system
of linear equations of the form given by (10) is repeated for each of
the elements comprising the mesh, and the global connected system,
again of the same form, is solved for the unknown field-distribution
coefficients, {α}. Once they are known, the electric field E inside the
structure in Fig. 1 is computed from (4), and the S-parameters of the
structure are obtained as

S11 =

∫
SPort 1

E · e10dS

E0

∫
SPort 1

e10 · e10dS
− 1, S21 =

1
E0

∫
SPort 2

E · e10dS, (16)

and so on.
What is very important for finding the time-domain response

of multiport waveguide structures based on the frequency-domain
analysis, if the materials contained in the structure are dispersionless,
integrals appearing in (12)–(15) are frequency independent. Therefore,
for a multifrequency analysis of the same structure, which exactly is
our case — where we need a large number of frequency samples of the
resulting quantities (eg., S-parameters of the structure), these integrals
can be calculated only once, conveniently stored, and then recalled
during the problem solution for different excitation frequencies, since
the only change in the global system is that of the wave number. This
procedure significantly reduces the overall computational time for the
time response calculation by allowing the global FEM matrix to be
filled only once, at the expense of a considerably larger storage space
that needs to be allocated, since matrices [A], [B], and [C] have to be
stored separately. However, higher order large-domain FEM models of
frequently encountered waveguide discontinuity structures require very
small numbers of unknowns for high levels of accuracy, which makes
them perfect for implementing the described multifrequency solution
acceleration procedure within the time-from-frequency-domain FEM
solver. Also, it is very important to note that this is a numerically exact
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multifrequency analysis, as opposed to approximate fast frequency
sweep techniques [16].

To obtain the transient response of the structure in Fig. 1, we
excite one of its ports by a causal real signal E0(t) that is band-limited
in the frequency domain. The signal is sampled at N uniformly spaced
points over the total time period T , the time step thus amounting
to Δt = T/N , where Δt must satisfy the Nyquist sampling criterion,
Δt ≤ 1/(2fmax), i.e., the sampling rate, fs = 1/Δt, must be at least
twice the highest frequency in the spectrum of the signal, fmax [17].
We then compute the frequency-domain response to this excitation, in
its discrete (sampled) form, E0(tn), as R(fk) = S(fk)E0(fk), where
E0(fk) is the discrete Fourier transform (DFT) of E0(tn), given by

E0(fk)=E0(k)=
N−1∑
n=0

E0(tn)e−j 2π
N

nk, fk =k
fs

N
, k = 0, 1, . . . , N−1, (17)

and S(fk) is the port-to-port frequency-domain transfer function
(namely, an S-parameter) of the structure, which is obtained by the
frequency-domain FEM based on (1)–(16), at frequencies fk (k =
0, 1, . . . , N − 1). In fact, since S(−f) = S∗(f), that is, S(N − k) =
S∗(k), only N/2 frequency points, for f > 0, suffice in the FEM
analysis. Moreover, as the waveguides in Fig. 1 are assumed to operate
in the single-mode (dominant-mode) regime, with buffer elements at
the ports included in the FEM region ensuring the relaxation of the
higher order modes, we implement a brick-wall band-pass filter to
practically use only frequency samples within the dominant frequency
range of the waveguide, between the cutoff frequency of the dominant
mode and that of the next propagating mode in the structure. Finally,
the transient response is evaluated as the inverse discrete Fourier
transform (IDFT) of R(fk), as follows:

R(tn)=R(n)=
1
N

N−1∑
k=0

R(fk)ej 2π
N

nk, tn = nΔt, n = 0, 1, . . . , N − 1. (18)

3. NUMERICAL RESULTS AND DISCUSSION

As the first numerical example, consider a homogeneous lossless
dielectric post in a WR-90 rectangular waveguide [13], as shown in
Fig. 3(a). The post is illuminated by an incident TE10 wave, and
we calculate the modal S-parameters using the higher order large-
domain FEM. In the analysis, we allow a certain distance between
the waveguide ports, at which the S-parameters are calculated, and
the discontinuity, as depicted in Fig. 3(b), where the large-domain
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Figure 3. Dielectric (εr = 8.2) post discontinuity in a WR-90
waveguide: (a) definition of the structure geometry (a = 22.86mm,
b = 10.16mm, c = 12mm, and d = 6mm) and (b) higher order
large-domain FEM model (mesh) of the structure using generalized
hexahedra in Fig. 2 (e = 45.72mm and g = 24mm).
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Figure 4. MoM-SIE model of the waveguide structure in Fig. 3:
the model includes two waveguide feed sections required for the de-
embedding of S-parameters.

FEM model (mesh) is also shown. Note that only seven trilinear
(Ku = Kv = Kw = 1) hexahedral elements are sufficient to model
the structure in this example. The polynomial field-expansion orders
(Nu, Nv, and Nw) in the FEM simulation range from 2 to 7 in different
elements and different directions.

For the purpose of verification of the numerical results by an
alternative computational technique, which is adopted in the form
of a higher order MoM within the surface integral equation (SIE)
approach [19], a special model is constructed, as shown in Fig. 4, where
we first calculate the S-parameters between the two wire probes with
point-generators (ports 1’ and 2’), and then de-embed the modal S-
parameters for the two-port section between ports 1 and 2 [20]. In
addition, the higher order FEM results are verified against the results
obtained using the commercial FEM software HFSS.
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Figure 5. Frequency-domain results for the S11-parameter of the
dielectrically loaded waveguide in Fig. 3.

The magnitude of the computed S11-parameter of the dielectri-
cally loaded waveguide structure in Fig. 3 is plotted in Fig. 5. The re-
sults obtained by the higher order FEM are compared to the envelope-
finite element (EVFE) results from [13], to the results obtained by the
MoM-SIE technique [19], and to the HFSS results, and a very good
agreement between the four sets of results is observed. Note that the
results obtained by the higher order FEM and MoM and by HFSS
(all directly in the frequency domain) agree extremely well, while the
EVFE results (extracted from a time-domain solution) are slightly dif-
ferent.

In terms of the computational efficiency, the computational time
required for the higher order FEM simulation (with 7 generalized
hexahedral elements and 1012 unknowns) on a 3GHz CPU PC
computer (IntelR© Core i5 760 at 3 GHz) is 2.9 seconds for matrix filling
(only once) and only 0.03 seconds for the solution for S-parameters
per every frequency point, so that the total simulation time (at 300
frequencies) is 11.9 seconds. The total simulation time using HFSS
(with 3574 tetrahedral finite elements) is 332 seconds on the same
computer. Hence, the higher order FEM is 28 times faster than HFSS
in this case. We consider this higher order FEM simulation to be
extremely fast and suitable for large frequency sweeps necessary for
the generation of transient responses.

We next calculate the transient response of the waveguide
structure in Fig. 3 exciting it by a modulated Gaussian pulse expressed
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Figure 6. Transient waveforms of incident, reflected, and transmitted
waves for the structure in Fig. 3 and excitation in (19) obtained by
the FEM-DFT/IDFT technique (note that rectified modulated signals
are shown within the envelopes); EVFE results from [13] are shown in
figure insets.

as [13]

E0(t) = e
−4

(
t−t0

T

)2

sin [2πfc(t − t0)] V/m, (19)
where the carrier frequency is fc = 10GHz, half bandwidth is Δf =
2.5GHz, T = 4/(πΔf), and t0 = 1.4T . The parameters of DFT/IDFT
calculations are as follows: the sampling frequency is fs = 200GHz
(time step is Δt = 1/fs = 5ps) and the number of samples is N = 2048;
in fact, we compute responses only at frequency points within the
dominant frequency range of the waveguide. The obtained transient
waveforms, shown in Fig. 6, are in a good agreement with EVFE
responses from [13] (shown in figure insets), having in mind that the
two sets of results are obtained with different waveguide excitations —
current probes in [13] (with no details provided), as opposed to modal
excitations in this present work, as well as that no details are provided
in [13] about the actual locations of reference planes with respect to
which the responses are given.
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Based on a close analysis of the reflected wave in Fig. 6, we realize
that the two peaks occurring at trefl1 ≈ 1.135 ns and trefl2 ≈ 1.5 ns
correspond to the waves reflected from the front and rear sides of the
dielectric post, respectively. Note also that, although the nonloaded
waveguide sections in front of and behind the post are equally long,
the maximum of the transmitted wave, in Fig. 6, arrives at the second
port at ttrans ≈ 1.32 ns, which is in between trefl1 and trefl2. This can
be attributed to the fact that the transmitted wave travels a slightly
shorter distance (from port 1 to port 2) than the wave reflected from
the rear side of the post (from port 1 to the rear side and back to
port 1). Additionally, the wave reflected from the front side of the
post travels only in air (hence, it is the fastest), the wave reflected
from the rear side makes a round trip inside the dielectric post (which
slows it down considerably), and the transmitted wave travels through
the dielectric only in one direction (and thus its average velocity is
between those of the other two waves).

As the second example, consider a WR-62 waveguide with two
crossed metallic cylindrical posts, the higher order FEM model of
which is shown in Fig. 7. The higher order FEM solution in the
frequency domain is compared with numerical results by HFSS and
with measured data [21], and we observe in Fig. 8 a very good
agreement of the three sets of results for the S11 of the structure.
For the higher order FEM (with ten curved and straight generalized
hexahedral elements, field-expansion orders ranging from 2 to 5, and
1184 unknowns), matrix filling time is 9 seconds and solving time is
0.05 seconds per frequency, which results in a total computational time
of 24 seconds for the 12–18 GHz discrete frequency sweep in 300 points
(on a 3 GHz CPU PC computer). The HFSS FEM solution (with 3157
tetrahedral elements) takes 314 seconds of computational time for the
same frequency sweep on the same computer, which makes the higher
order solution 13 times faster.

Figure 7. Ten-element higher order FEM model of a WR-62
waveguide with two crossed metallic cylindrical posts.
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The transient response of the structure in Fig. 7 computed using
the FEM-DFT/IDFT simulation is shown in Fig. 9, where, for the
excitation in (19), fc = 14GHz and Δf = 3GHz, the sampling
frequency amounts to fs = 280GHz (Δt ≈ 3.57 ps), and the numbers
of time and frequency samples are the same as in Fig. 6.

Figure 8. S11-parameter of the waveguide structure in Fig. 7;
measured data are from [21].
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Figure 9. Transient response of the waveguide structure in Fig. 7
obtained by the FEM-DFT/IDFT technique.



Progress In Electromagnetics Research, Vol. 120, 2011 229

The last example is a WR-15 waveguide loaded with a
continuously inhomogeneous dielectric slab where εr(u) = 9 − 8u2,
−1 < u < 1 and u = 2z/c − 1, as portrayed in Fig. 10,
where two simple large-domain FEM models are shown as well.
The continuously inhomogeneous section is (i) modeled by a single
continuously inhomogeneous finite element and (ii) approximated by a
series of piecewise homogeneous dielectric layers, respectively. When
the piecewise homogeneous approximation of the dielectric profile
is implemented, the original slab is subdivided into Nlayers equally
thick layers with individual permittivities calculated as an average
permittivity of the original profile in the corresponding coordinate
range, i.e.,

εri =
1

Δz

∫ zi+Δz

zi

εr(z)dz , Δz =
c

Nlayers
, zi = (i − 1)Δz (20)

(i = 1, 2, . . . , Nlayers). Such piecewise constant permittivities for
Nlayers = 3, 5, and 7, respectively, are given in Table 1.

Results of the frequency-domain analysis of the waveguide
structure in Fig. 10 are shown in Fig. 11. In the graphs, the
higher order FEM solution with the continuously inhomogeneous
model is compared to higher order FEM simulations of piecewise
homogeneous models with Nlayers = 3 and 7, respectively, to higher
order MoM-SIE [19] results for the Nlayers = 7 approximate model
(excitation/reception by wire probes and S-parameter de-embedding
are done as in Fig. 4), and to the HFSS solution for the Nlayers = 7
model. It is clearly seen that the model with three layers provides
a poor approximation of the continuous permittivity profile of the
slab, yielding very inaccurate S11 in both magnitude and phase (both
equally important for the accurate calculation of transient responses),
and that seven (and more) layers are necessary to obtain a fairly good
approximation of the profile resulting in a rather accurate S-parameter
characterization. We also observe an almost exact match of the higher
order FEM, MoM, and HFSS solutions for the same Nlayers = 7 model.

Table 1. Dielectric permittivities constituting three piecewise ho-
mogeneous layered approximations of the continuously inhomogeneous
dielectric slab in Fig. 10 obtained using (20).

Nlayers εr1 εr2 εr3 εr4 εr5 εr6 εr7

3 5.14815 8.7037 5.14815

5 3.77333 7.61333 8.89333 7.61333 3.77333

7 3.06803 6.33333 8.29252 8.94558 8.29252 6.33333 3.06803
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Figure 10. Three-element higher order large-domain FEM model of a
WR-15 waveguide (a = 3.76mm, b = 1.88mm, and c = 2.5mm) with
a continuously inhomogeneous lossless dielectric load (central element)
whose permittivity varies quadratically in the longitudinal direction;
five-layer (Nlayers = 5) model of the load with piecewise constant
approximation of the permittivity profile, according to (20), is also
shown.

(a) (b)

Figure 11. Magnitude and phase (argument) of the S11-parameter of
the waveguide structure with a continuously inhomogeneous dielectric
load in Fig. 10.
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Figure 12. Transient response — reflected wave — of the structure
in Fig. 10 computed using the FEM-DFT/IDFT technique applied
to models with the continuous permittivity profile, with the 3-
layer approximation of the load (see Table 1), and with the 7-layer
approximation, respectively.

The continuously inhomogeneous higher order FEM model [with
only 3 hexahedral finite elements (one inhomogeneous dielectric
element and two buffer elements) and only 205 unknowns] takes a
total of only 3 seconds of computational time for 300 frequencies
(matrix filling time is 1.02 seconds, while solving time per frequency is
undetectable) on a 3 GHz CPU PC. With HFSS (3674 tetrahedral finite
elements), the total computational time (for 300 frequencies) amounts
to 398 seconds on the same computer, so the higher order FEM comes
out to be 132.7 times faster than the HFSS solution.

For the transient analysis of the structure in Fig. 10, we employ the
excitation in (19) with fc = 62GHz and Δf = 15GHz. The sampling
frequency is now fs = 1240GHz (Δt ≈ 0.8 ps), whereas the numbers
of time and frequency samples are the same as in Fig. 6. The results
of the FEM-DFT/IDFT computation are shown in Fig. 12, where we
conclude, as expected based on the frequency-domain results in Fig. 11,
that the transient response of the Nlayers = 3 approximate model is
significantly less accurate than that with Nlayers = 7, as compared to
the FEM model with the inhomogeneous profile modeled exactly.
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4. CONCLUSIONS

This paper has presented a computational technique for efficient and
accurate time-domain analysis of multiport waveguide structures with
arbitrary metallic and dielectric discontinuities using a higher order
FEM in the frequency domain. It has demonstrated that with a highly
efficient and appropriately designed frequency-domain FEM solver, it is
possible to obtain extremely fast and accurate time-domain solutions
of microwave passive structures by performing computations in the
frequency domain along with the discrete Fourier transform and its
inverse. The technique is a higher order large-domain Galerkin-type
FEM for 3-D analysis of waveguide structures with discontinuities
implementing curl-conforming hierarchical polynomial vector basis
functions in conjunction with Lagrange-type curved hexahedral finite
elements, coupled with standard DFT and IDFT algorithms. To
close the waveguide problem, a simple single-mode boundary condition
has been introduced across the waveguide ports, with a large buffer
finite element at each port to ensure relaxation of higher modes.
The technique enables an extremely fast multifrequency analysis of
a microwave structure, allowing the global FEM matrix to be filled
only once and then reused for every subsequent frequency point,
which is of great importance for the evaluation of the time-domain
response of the structure based on the frequency-domain analysis.
Numerical examples of waveguide structures that include homogeneous
and continuously inhomogeneous dielectric discontinuities, as well as
metallic ones, have validated and verified the accuracy and efficiency
of the presented technique, which appears to be the first time-from-
frequency-domain FEM solver. The examples have demonstrated
excellent numerical properties of the technique primarily due to (i) very
small total numbers of unknowns in higher order solutions, (ii) great
modeling flexibility using large (homogeneous and inhomogeneous)
finite elements, and (iii) extremely fast FEM solutions at multiple
frequencies needed for the inverse Fourier transform.
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jević, “Time-domain response of 3-D structures calculated using
WIPL-D,” Proceedings of the 2007 Annual Review of Progress
in Applied Computational Electromagnetics, 525–531, Verona,
Italy, March 2007.
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