
Progress In Electromagnetics Research B, Vol. 37, 205–235, 2012

DERIVATION OF HOMOGENEOUS PERMITTIVITY OF
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Abstract—The paper gives an analytical transition from the
Maxwell Garnett model of a biphasic mixture (dielectric host and
dielectric or conducting inclusions) to the parameters of a single-
or double-term Debye representation of the material frequency
response. The paper is focused on modeling biphasic mixtures
containing cylindrical inclusions. This is practically important
for engineering electromagnetic absorbing composite materials, for
example, containing carbon fibers. The causal Debye representation
is important for incorporation of a composite material in numerical
electromagnetic codes, especially time-domain techniques, such as
the finite-difference time-domain (FDTD) technique. The equations
derived in this paper are different for different types of host
and inclusion materials. The corresponding cases for the typical
combinations of host and inclusion materials are considered, and
examples are provided. The difference between the original Maxwell
Garnett model and the derived Debye model is quantified for validating
the proposed analytical derivation. It is demonstrated that in some
cases the derived equivalent Debye model well approximates the
frequency characteristics of the homogeneous model based on the
MGA, and in some cases there is an exact match between Debye and
Maxwell Garnett models.
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1. INTRODUCTION

Composite materials are largely employed due to their outstanding
mechanical and electrical properties, and they are widespread in
many civil and military applications, e.g., microwave filters, printed
circuit boards, electromagnetic shields, and radar radomes [1, 2].
These materials allow for high design flexibility, since they can be
adapted to achieve complex shapes and ad-hoc strength levels, provide
sound and heat isolations, as well as good electromagnetic shielding
protection [3–7]. Micro/nano fabrication processes, indeed, allow for
making composites of carbon nanotubes, which could be used in various
devices, e.g., actuators [8–12]. In the early application design stages,
the knowledge of the effective electromagnetic properties of composite
materials is essential for a quick and appropriate layout, based on
numerical electromagnetic simulations.

In the present-day literature, there is a variety of different
homogenization mixing rules, applicable to biphasic mixtures to
retrieve their effective dielectric properties, e.g., Bruggeman [13],
McLachlan et al. [14], and Maxwell Garnett models [15]. These
theories describe the frequency-dependent properties of homogenized
composites depending on mechanical and electrical properties of host
and inclusions, such as inclusion shape, volume fraction, electrical
conductivity, and permittivity. These models have different degree
of accuracy and ranges of validity [16].

The Maxwell Garnett approximation (MGA) [15] is a quasi-static
model for electromagnetic properties of mixtures with comparatively
small inclusions embedded inside a host material [17]. The assumptions
for applying the MGA are linearity of a biphasic material (neither the
host, nor the inclusion behavior depends on the intensity of the applied
electromagnetic field); inclusion size is smaller than the wavelength
in the effective medium; and concentration of inclusion is below the
percolation threshold, if inclusions are conductive. If the inclusions
are spheres with a random distribution, the highest volume fraction
of inclusions should be below approximately 30% [18]. The concept
of percolation threshold is applicable only if there are conducting
particles in the composite. If the mixture is dielectric-dielectric, the
concept of the percolation is irrelevant. When conductive inclusions
are considered, in general, the percolation threshold depends on
many factors, including particle distribution and orientation, shape
of inclusion (aspect ratio), physical properties of a polymer matrix,
inclusion-matrix interactions, leading to an ability of inclusions to build
chains within the matrix. If inclusions are considered to be aligned,
as in this work, the assumption of uniform distribution in space, and
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also the non overlapping condition is assumed; therefore, ideally, the
percolation condition is always avoided leading to the possibility to
neglect the percolation threshold, and thus any limitation on the
volume fraction [19–25].

The MGA may be applied to different types of ellipsoidal
inclusions, including spherical and cylindrical particles, which may be
either randomly distributed, or arranged as a regular lattice. [25–
31]. An electromagnetically isotropic equivalent homogeneous material
can be obtained based on the electrical and geometrical properties
of a composite with randomly dispersed inclusions. If inclusions are
regularly distributed and aligned, instead, the resultant homogeneous
medium is anisotropic, and its electromagnetic parameters such as the
electric permittivity should be described by a tensor [17].

The application of the MGA leads to an equivalent homogeneous
medium described by a complex frequency dependent dielectric
permittivity εeff -MG(f). If intrinsic electromagnetic parameters of
ingredients of a composite satisfy causality, the effective parameters,
calculated using the MGA, should also be causal. If the effective
permittivity εeff -MG(f) is represented in the Debye form, then the
causality expressed through the Kramers-Krönig relations (KKR) [32–
34] is satisfied automatically. This is important for simulation
convergence of numerical codes in time domain, if the material
with εeff -MG(f) is modeled using one of the time-domain numerical
electromagnetic technique [35]. Numerical simulations in frequency
domain, e.g., the ones employing the finite-element method or the
method of moments, may simply neglect the KKR, and it will not
affect convergence, though computational results may be unphysical.
However, violation of the KKR leads to the divergence of simulations
in time domain. Appendix A contains an analytical proof that the real
and imaginary parts of permittivity in the first-order Debye model are
related as the KKR.

The purpose of this study is to analytically obtain the parameters
of the one-term or two-term Debye model from the geometry-based
MGA for effective permittivity of a mixture containing dielectric
and/or conductive aligned cylindrical inclusions. The total or
approximate equivalence between the two models (Maxwell Garnett
and Debye) allows for simple incorporation of the MGA into
time-domain electromagnetic simulations. The complete analytical
derivation of the Debye model parameters from the intrinsic material
parameters of the composite phases, e.g., their geometry and volume
fraction is presented below in this paper.

Several cases of different combinations of electrical properties of
host and inclusion materials will be considered in this paper. The host
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material may be with either constant, or Debye frequency-dependent
permittivity, and the inclusions may be made of a lossy dielectric, or
a conductive material. The corresponding analytical relations for the
Debye parameters from the MGA will be derived. Some examples will
be presented for validating the proposed approach by comparing the
original MGA and the computed Debye model.

2. DESCRIPTION OF THE ANALYTICAL PROCEDURE

The MGA model can be used to calculate the frequency-dependent
effective permittivity of composite structures with aligned cylindrical
inclusions from their geometrical parameters [15, 36, 37]. The present
study deals with aligned inclusions. For this reason, the composite is
anisotropic. Hence two values of the effective dielectric permittivity
should be considered: one along the inclusion axes, i.e., z-axis, and
one for the directions normal to the inclusion axes, i.e., in the (xy)
plane [17, 37]. The assumption is that there is no cross-coupling
among different directions, thus describing the anisotropic mixture by
a diagonal tensor,

←→εeff -MG (ω) =

[
εeff -MG,x (ω) 0 0

0 εeff -MG,y (ω) 0
0 0 εeff -MG,z (ω)

]
, (1a)

where each component, εeff -MG,α = ε∞,α + χα(ω), is calculated
as in (1b). The notation in (1a) includes explicitly the frequency
dependence of the permittivity values associated to the Maxwell
Garnett mixing rule; it is omitted in the following equations for
simplicity. The derivation of (1b) is detailed in [38], where the
cylindrical inclusions are assumed to be ellipsoidal scatterers. The
effective permittivity of the medium in each direction is derived
starting from the relation between the electric field inside and outside
the scatterers, and the induced dipole moment due to an exciting field.

εeff -MG,x,y,z = εe + fεe
εi − εe

εe + (1− f)Nx,y,z(εi − εe)
. (1b)

In (1b), the parameters εe and εi are the host and inclusion relative
permittivity values, respectively, and f is the volume percentage
(volume fraction) of the inclusions. The same Eq. (1b) applies to
all three permittivity values, since they depend on the polarization
factor Nk of elongated cylindrical inclusions [39, 40], assuming that the
axes of the cylindrical inclusions are aligned in the z-direction. The
depolarization factors given in (2) are evaluated from the equation



Progress In Electromagnetics Research B, Vol. 37, 2012 209

given in [38, 41]. The closed form expression in (2b) can be obtained
if the ellipsoids are of the shape of elongated prolate spheroids.

Nx = Ny =
1−Nz

2
, (2a)

Nz =
1
2

ln
(

a+
√

a2−1
a−√a2−1

)
a− 2

√
a2 − 1

(√
a2 − 1

)3 . (2b)

where a = l/d is the aspect ratio of the inclusions, defined as the ratio
between cylinder length (l) and inclusion diameter (d). The resulting
Nz is in inverse proportion to the aspect ratio a, thus it assumes very
small values for large aspect ratios, being consistent to the case limit
of infinite thin ellipsoids, having one axes much larger than the other
two. In this case limit the depolarization factor is 0 along the main
axes, i.e., z-direction, and 0.5 along the other two directions, i.e., x
and y directions. The calculation of Nx and Ny in (2a) is obtained
taking into account the relationship that link the three depolarization
factors, Nx + Ny + Nz = 1, as demonstrated in [41].

In this study, based on the practical cases of materials behavior
at microwaves, the host material permittivity εe in (1b) is considered
to be constant, or having a first order Debye frequency dependence,

εDx,y,z = ε∞ +
(εs − ε∞)
1 + jωτ

, (3a)

and inclusions are assumed to be made of a lossy dielectric,
characterized by the frequency dependent permittivity as in (3a), or
a conductive material, whose complex permittivity is characterized
by (3b).

εDx,y,z = ε∞ +
σ

jωε0
, (3b)

In (3a) and (3b), εs is the static dielectric constant and ε∞ is the
high frequency (“optic limit”) relative permittivity, τ is the relaxation
time, σ is the conductivity (of the inclusion material), ω is the angular
frequency, and ε0 = 8.85.10−12 F/m is the permittivity of free space.

Various optimization procedures, e.g., a genetic algorithm [42–
44], or a curve-fitting based on the non-linear regression analysis [45],
are typically employed in order to extract the frequency dependent
Debye model based on composite geometrical parameters. However, in
general, these procedures are not very efficient, since they are time- and
memory-consuming, need special skills to work with those optimization
procedures, and sometimes accuracy of the fit depends on the initial
guess for the search pool parameters. An analytical derivation of the
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Debye model from the equivalent permittivity obtained applying the
MG model is more attractive.

According to the procedures described in [36, 46–49], there is not
perfect equivalence between the Debye and the MGA models, thus a
rigorous analytical relation cannot be found. An alternative could be
considered by looking at the trends of the real and imaginary parts
of εeff -MG representing one of the components of the tensor in (1) An
example of the Debye-like εeff -MG is shown in Figure 1 for inclusions
made of Barium Titanate (BaTiO3 with Debye dispersive parameters
εis = 1900, εi∞ = 280, τi = 2 · 10−9) in a host material with constant
permittivity εe = 2.2. The idea is to analytically derive the static
permittivity εsD as the limit for ω → 0 of Re(εeff -MG), and ε∞D for
ω → ∞ of Im(εeff -MG) [39], as can be seen in qualitatively shown in
Figure 1(a).
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Figure 1. εeff -MG for a = 500, f = 20.1, εe = 2.2 and εi = BaTiO3.
(a) Real part. (b) Imaginary part.

More precisely the static and optic limit permittivity values
should be derived for the three terms in (1a), εsDx,y,z and ε∞Dx,y,z,
respectively,

εsDx,y,z = lim
ω→0

Re (εeff−MGx,y,z) (4a)

ε∞Dx,y,z = lim
ω→∞Re (εeff−MGx,y,z) (4b)

After getting the εsDx,y,z and ε∞Dx,y,z, the last term to be
evaluated is the relaxation time τDx,y,z; the MG model in (1) is set
equal to the general form of the equivalent Debye model in (3a), as in

εeff−MGx,y,z = ε∞Dx,y,z +
(εsDx,y,z − ε∞Dx,y,z)

1 + jωτDx,y,z
. (5)



Progress In Electromagnetics Research B, Vol. 37, 2012 211

Equation (5) is then solved for τDx,y,z as

τDx,y,z (ω) =

εsDx,y,z − ε∞Dx,y,z

εeff−MGx,y,z − ε∞Dx,y,z
− 1

jω
. (6)

As stated before, the MGA applied to aligned cylindrical
inclusions cannot be described perfectly in terms of a Debye model.
Therefore, (6) provides not a single real value, but a complex and
frequency-dependent relaxation time. However, the imaginary part
has been found to be much smaller than the real part for all the
cases investigated (Im[τDx,y,z(ω)] ≈ 10−6 ·Re[τDx,y,z(ω)]), and it can be
simply neglected. Furthermore, the real part looks like a step function
with the higher value at the lower frequencies close to d.c., and the
lower value for ω → ∞. Although the variation in the real part is
very small (Re[τDx,y,z(ω = 0)] ≈ Re[τDx,y,z(ω →∞)]), the step occurs
at frequencies (≈ 1015–1020 Hz) much beyond than the validity of the
MGA formulation. Therefore, the relaxation time of the equivalent
Debye model can be expressed as the d.c. limit of the real part of (6)
as

τDx,y,z = lim
ω→0

Re(τDx,y,z (ω)) = lim
ω→0

Re




εsDx,y,z − ε∞Dx,y,z

εeff−MGx,y,z − ε∞Dx,y,z
− 1

jω


.

(7)
The set of Eqs. (4)–(7) allows for a complete derivation of

the Debye parameters. These equations can be specified for the
most practical (in microwave applications) combinations of host
and inclusion type of materials, such as constant and Debye-like
permittivity host, and lossy dielectric (Debye-like) and conductive

Table 1. Case overview.

Host εe Inclusion εi

εes εe∞ τe εis εi∞ τ i σi

Case 2 A 2.2 1900 280 2 · 10−9

Case 3 A 2.5 2.2 8 · 10−12 280

Case 4 A 2.5 2.2 8 · 10−12 1900 280 2 · 10−9

Case 5
A 2.2 2 4 · 103

B 2.2 2 4 · 104

Case 6
A 2.5 2.2 8 · 10−12 2 4 · 103

B 2.5 2.2 8 · 10−12 2 4 · 104
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inclusion material. Thus the three parameter of the equivalent Debye
model, εeff−Dx,y,z, can be expressed in terms of the specific electrical
and geometrical properties of the host and inclusions εe, εi, f and a
values. A specific set of equations are derived for the five different
cases listed in Table 1.

The values given in Table 1 are mainly associated with the
commercial composite materials, widely used for shielding and other
microwave applications. The Teflon (PTFE) material is usually
employed as the base material (host matrix) for design of shields
for microwave frequencies (100 MHz–10GHz). This material [50] is
almost non-dispersive in the frequency range of interest, and its
loss factor can be neglected, thus the constant value εs = 2.2 is
employed [51]. Inclusions in the Cases 2 and 4 are made of Barium
Titanate (BaTiO3) [52]. The latter provides good insulation properties
and high dielectric contrast with the host matrix. As for the conducting
inclusions, the conductivity values are associated with carbon. It is
known that conductivity of carbon fibers varies over a wide range;
and carbon fibers may be manufactured with different dimensions
(diameters and lengths). However, reasonable values for σ are on the
order of 103 − 104 S/m [51]. The other type of inclusions found in the
literature is chloroprene rubber inclusions [53], and in this study this
material is also considered in Cases 3, 4, and 6 as the host material [51].
Parameters for the other cases in the Table 1 are a combination of those
mentioned herein.

The Case 1 is the base case that assumes constant permittivity
both for the host and inclusion materials. It is readily suitable for time-
domain numerical solution because of the frequency independent values
of εeff D. Special attention should be paid to Cases 4 and 6 which
contain frequency dependencies both for host and inclusion materials.
A two-term Debye model should be considered in these cases, as will
be detailed below.

2.1. Case 2

Case 2, as from Table 1, is defined as a case, in which the host material
has a constant permittivity, and the inclusion material is a Debye-like
material.

The expressions for εsD and ε∞D are derived from (4a) and (4b).
An equation applicable for both εsD and ε∞D,

εLIMx,y,z (ε1, ε2)=
ε1 (ε1 (fNx,y,z−Nx,y,z−f+1) + ε2 (−fNx,y,z+Nx,y,z+f))

ε1 (fNx,y,z−Nx,y,z+1)+ε2 (−fNx,y,z+Nx,y,z)
. (8)

is a function of the two generalized parameters ε1 and ε2, which should
be replaced by the specific material properties εe and εis, respectively,
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to calculate εsDx,y,z, when applying the two limits in (4a) and (4b).
Similarly, ε∞Dx,y,z is obtained by substituting ε1 = εe and ε2 =

εi∞ to (8). The derived equations for these two parameters can be
written as

εsDx,y,z = εLIMx,y,z (εe, εis)

=
εe(εe (fNx,y,z−Nx,y,z−f+1)+εis (−fNx,y,z+Nx,y,z+f))

εe (fNx,y,z−Nx,y,z+1)+εis (−fNx,y,z+Nx,y,z)
(9)

ε∞Dx,y,z = εLIMx,y,z (εe, εi∞)

=
εe(εe (fNx,y,z−Nx,y,z−f+1)+εi∞(−fNx,y,z+Nx,y,z+f))

εe (fNx,y,z−Nx,y,z+1)+εi∞ (−fNx,y,z+Nx,y,z)
. (10)

The relaxation time τDx,y,z can be obtained from (7) as

τDx,y,z =
τi (εe (fNx,y,z −Nx,y,z + 1) + εi∞Nx,y,z (−f + 1))

εe (fNx,y,z −Nx,y,z + 1) + εisNx,y,z (−f + 1)
. (11)

The three terms in the tensor (1a) are completely defined by the
Debye-like permittivity values, as computed by Eqs. (9)–(11) applied
to the three directions x, y, and z.

2.2. Case 3

Case 3 is dual to Case 2, and is characterized by a frequency-dependent
εe and constant εi. The parameters εsDx,y,z and ε∞Dx,y,z in this case
are obtained from (8) as

εsDx,y,z = εLIMx,y,z (εes, εi)

=
εes (εes (fNx,y,z−Nx,y,z−f+1)+εi (−fNx,y,z+Nx,y,z+f))

εes (fNx,y,z−Nx,y,z+1)+εi (−fNx,y,z+Nx,y,z)
(12)

ε∞Dx,y,z = εLIMx,y,z (εe∞, εi)

=
εe∞ (εe∞ (fNx,y,z−Nx,y,z−f+1)+εi (−fNx,y,z+Nx,y,z+f))

εe∞ (fNx,y,z−Nx,y,z+1)+εi (−fNx,y,z+Nx,y,z)
. (13)

The expression for τDx,y,z is given by
τDx,y,z =
− (

(εi−εes)
2 (−1 + f) N2

x,y,z−[(2−f) εes+εif ] (εi−εes) Nx,y,z−ε2
es

) ·
·τe [(εi−εe∞) (−1+f) Nx,y,z−εe∞]

− ((εi−εes) (−1+f) Nx,y,z−εes) ·
·
(

(εi−εe∞) (εi−εes) (f−1) N2
x,y,z+

+
[−ε2

i f+(εes+εe∞) (−1+f) εi−εesεe∞ (−2 + f)
]
Nx,y,z − εe∞εes

)
. (14)
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2.3. Case 4

This case has both host εe(εse, ε∞e, τ e) and inclusions εi(εsi, ε∞i,
τ i) characterized by the Debye dependences. If relaxation times in
these two phases are significantly different, real and imaginary parts of
the effective permittivity, εeff -MG, have, respectively, two pronounced
steps and peaks, as in Figures 7. This behavior of εeff -MG looks
like the superposition of two Debye terms. To obtain an analytical
expression, the host and inclusion Debye dependences should be
considered separately, and then simply added together. This approach
requires first to approximate the original εeff -MG. Three terms are
considered

εeff -MG ≈ εPart1-MG + εPart2-MG − εPart3-D. (15)

The first term εPart1-MG is the MGA computed by (1b) with
the constant dielectric permittivity εe = εe∞ for the host, and the
Debye model for the inclusion material εi(εsi, ε∞i, τ i) is the same
as in (3a). The second term εPart2-MG is dual to the first one, so
that the host material is the Debye-like εe(εse, ε∞e, τ e), and the
inclusions have a constant permittivity, εi = εi∞. These first two
elements describe independently the two Debye dependences. However,
the sum of these two terms takes into account twice the values of
the high-frequency permittivity for both materials (εe∞ and εi∞ are
included in both εPart1-MG and εPart2-MG), introducing a sort of a
bias level. To eliminate this bias level, a correction term is introduced,
εPart3-D. It is constructed directly as a Debye model, whose parameters
(εs-Part3, ε∞-Part3, τPart3) need to be computed. The three parameters
associated with εPart3-D are computed, once εPart1-MG and εPart2-MG

are evaluated as in (1b), thus the left side term in (15) and also the
first two terms on the right side of (15) can be considered known. The
limits of (15) for ω going to zero and infinity are computed. This
results in the asymptotic for the static (εs-Part3) and high-frequency
(ε∞-Part3) permittivity of the correction Debye term, respectively.

εs-Part3 = lim
ω→0

εPart1-MG + lim
ω→0

εPart2-MG − lim
ω→0

εeff -MG. (16a)

εs-Part3 = lim
ω→∞ εPart1-MG + lim

ω→∞ εPart2-MG − lim
ω→∞ εeff -MG. (16b)

The τPart3 parameter is found by averaging the relaxation time
for the host (τe) and inclusion (τi) materials,

τPart3 =
τe + τi

2
. (16c)

The set of Eqs. (15), (16) reproduce the MGA model, when both
host and inclusions have Debye dependences. The next step is to obtain
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an equivalent Debye model from (15). The term εPart3-D is already in
a Debye form, thus the conversion from the MGA to the Debye model
is required for εPart1-MG and εPart2-MG. This procedure is similar to
Case 2 for the first term εPart1-MG, and to Case 3 for the second term
εPart2-MG,

εeff -MG = εPart1-D + εPart2-D − εPart3-D. (17)

2.4. Case 5

Case 5 describes a composite having the constant-permittivity host
material, and conductive inclusions, whose complex permittivity is
described as in (3b). The parameters of the Debye model analogously
to Case 2, and the expression for εsDx,y,z can be obtained from (4a) as

εsDx,y,z =
εe (fNx,y,z −Nx,y,z − f)

Nx,y,z (f − 1)
. (18)

The parameter ε∞Dx,y,z is evaluated starting from (4b), and
resulting in the same form as (8),

ε∞Dx,y,z = εLIMx,y,z (εe∞, εi∞)

=
εe∞ (εe∞ (fNx,y,z −Nx,y,z − f + 1) + εi∞ (−fNx,y,z + Nx,y,z + f))

εe∞ (fNx,y,z −Nx,y,z + 1) + εi∞ (−fNx,y,z + Nx,y,z)
. (19)

The relaxation time τDx,y,z can be obtained from (7) as

τDx,y,z =
ε0 (εe (−fNx,y,z + Nx,y,z − 1) + εi∞Nx,y,z (f − 1))

σNx,y,z (f − 1)
. (20)

2.5. Case 6

In this case, the conductive inclusions with permittivity εi(εi∞,σi), as
in (3b), are embedded in a Debye-like host material εe(εes,εe∞,τ e),
described by (3a). The behavior of the real and imaginary parts of
the effective MGA permittivity is very similar to the two-term Debye
model, as in Case 4. Therefore, the same three terms in (15) are used
to derive the equivalent Debye model that approximates the behavior
based on the MGA. The first two terms in (15) are computed based on
the procedure analogous to Case 5 (host material with constant εe =
εe∞ and conductive inclusions, εi(εi∞,σi)) for εPart1-MG. At the same
time, εPart2-MG is evaluated analogously to Case 3 (host material with
Debye-like behavior, εe(εes,εe∞,τ e), and constant permittivity for the
inclusions, εe = εi∞). The third term εPart3 in

εeff -MG = εPart1-MG + εPart2-MG − εPart3, (21)
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as discussed in [46–49], is set to a constant value. It turns out that
the parameters ε∞-Part3 and εs-Part3, computed as in (16), are so close
to each other that their difference is around 1%. Thus, (15) can be
further simplified so that Eq. (21) provides a first-order approximation
to the MGA, which is later transformed into a sum of Debye terms

εeff -MG = εPart1-D + εPart2-D − εPart3. (22)
The approaches for Case 2 and 3 are applied to the

parameters εPart1-MG and εPart2-MG, respectively, achieving their
Debye counterparts εPart1-D and εPart2-D, as given in (22).

3. RESULTS AND DISCUSSION

The equations derived above are applied to the values presented in
Table 1 for each case. The real and imaginary parts of the MGA
permittivity are evaluated as in (1b) along the three directions x,
y, and z, for the tensor (1a). For the sake of brevity only the data
associated to the cylindrical inclusions main axes (the z direction) are
plotted and compared to the permittivity obtained using the derived
equivalent Debye model, for each case. The agreement between the
MGA and equivalent Debye is quantified by applying the Feature
Selective Validation (FSV) technique [54–57], as required by the IEEE
standard P1597. Furthermore, the difference between the effective MG
permittivity and the derived equivalent Debye-like dependences are
evaluated through the average error (AE )

AE =
1
N
·

N∑

f=1

Re (εeff -MG (f))− Re (εeq-Debye (f))
Re (εeff -MG (f))

· 100. (23)

The AE parameter is computed for all the cases under consideration,
and only for the largest volume fraction (f = 20.1%). Its value is
reported in the figure captions.

In the following examples, the dielectric-dielectric mixtures
(Cases 2–4) and the dielectric-conductive (Cases 5, 6) are examined for
two different aspect ratio values a = 5 and a = 500, and for the three
different volume fractions of inclusions, f = 2.5%, 8.4%, and 20.1%.
As explained before, the volume fraction has, ideally, no limitations
due to the percolation effects; however the maximum value considered
herein of 20.1% is selected looking at the data and discussions given
in [18–25].

3.1. Case 2

In this case, the host material has constant permittivity εe = 2.2, and
the inclusion permittivity is described with a Debye term (εsi = 1900,
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ε∞i = 2804, and τi = 2 ·10−9 s). The parameters (εsD, ε∞D, τD) of the
equivalent Debye model εeff−D are evaluated by applying the proposed
formulation in (9)–(11). The permittivity values are evaluated for
different aspect ratios a = 5 and 500, and volume fractions of inclusions
are set as f = 2.5%, 8.4 %, and 20.1%. The MGA and the Debye results
are compared in Figure 2 for the z direction, for aspect ratio a = 5.
The quantification of the agreement evaluated through the FSV tool is
shown in Figure 3 both for the real and imaginary parts of permittivity.
There is the perfect agreement between the pair of curves, since the
100% of the Global Difference Measure (GDM) parameter falls within
the ”Excellent” bar. The same steps are performed for the case with
a = 500, obtaining the results shown in Figure 4. The FSV agreement
evaluation provides exactly the same results as in Figure 4, thus they
are omitted for sake of brevity.

In addition to validating the proposed analytical derivation of the
Debye model, some observations can be made looking at Figures 2–
4, taking into account also the permittivity parameters associated
to the x and y directions, evaluated but not shown herein. The
high permittivity of the inclusions (much larger than the constant εe)
affects more the tensor parameter in (1) along the z direction, e.g., for
f = 20.1%: εsDz = 11.9 vs. εsDx,y = 3.37. Analogous consideration
can be made for the imaginary part. It is associated with the dielectric
polarization or conductivity losses, which are expected to be higher
along the inclusion axes. Furthermore, the inclusions with the higher
aspect ratio have larger impact on the equivalent permittivity. The
εsDz = 11.9 for a = 5, whereas it is 377, when a = 500, allowing much
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Figure 2. The original MGA model (solid curve) and the computed
equivalent Debye model (dashed curve) for Case 2A (z direction) with
a = 5. (a) Real part. (b) Imaginary part. AE < 10−5%.
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(a) (b)

Figure 3. GDM results for the pair of curve in Figure 2 for f = 20.1
and a = 5. (a) Real part. (b) Imaginary part.
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Figure 4. The original MGA model (solid curve) and the computed
equivalent Debye model (dashed curve) for Case 2A (z direction) with
a = 500. (a) Real part. (b) Imaginary part. AE < 10−5%.

more polarization or conducting effects along the z direction. The
aspect ratio a has a negligible effect on the equivalent permittivity
along the other directions, x and y, normal to the inclusion axes.

3.2. Case 3

Case 3, according to the input parameters in Table 1, is characterized
by inclusions with constant εi and the Debye model for εe. In the
example given herein, chloroprene rubber is considered as a host
material (Case 3A, εse = 2.5, ε∞e = 2.2, τe = 8 ·10−12 s) and inclusions
are taken with the constant permittivity εi, which corresponds to ε∞ of
the BaTiO3 (ε∞i = 280). Although both materials are mainly suitable
for inclusions, the wide range of their electrical properties is employed
herein for the host for a comprehensive validation of this particular
Case 3. The same volume fraction values (f = 2.5, 8.4 and 20.1%) are
used as for the Case 2, varying the aspect ratio, a = 5 and a = 500 for
computing the effective permittivity as in (2) and its equivalent Debye
model. The results of the comparison are presented in Figures 5 and 6.
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Figure 5. The original MGA model (solid curve) and the computed
equivalent Debye model (dashed curve) for Case 3A (z direction) with
a = 5. (a) Real part (AE < 10−5%). (b) Imaginary part (AE =
0.003%).
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Figure 6. The original MGA model (solid curve) and the computed
equivalent Debye model (dashed curve) for Case 3A (z direction)
with a = 500. (a) Real part (AE < 10−5%). (b) Imaginary part
(AE = 0.04%).

Again, a perfect agreement is found between the original MGA and the
derived Debye models. Also, the data processed with the FSV tool,
confirm this evaluation (the 100% of the GDM is “Excellent”), thus
the FSV results are not shown.

The smaller aspect ratio (a = 5) provides an equivalent model
with the lower permittivity, as follows from the Figure 5(a), along the
z direction. In the case with a = 500, the equivalent permittivity
is significantly higher, as is seen from Figure 6(a) whereas the values
along the x and y directions are basically unaffected by the larger
aspect ratio.



220 De Paulis et al.

3.3. Case 4

This case is related to a composite material with both the host and
the inclusion materials characterized by the Debye-like permittivity.
In the example Case 4A, the parameters are εse = 2.5, ε∞e = 2.2,
τe = 8 · 10−12 s; εsi = 1900, ε∞i = 280, τi = 2 · 10−9 s. The real
and imaginary parts of the resultant permittivity are presented in
Figures 7–9. This case, as is mentioned in Section 2 and is seen from
Figure 7, has a real part of εeff with two steps and the imaginary part
with a double peak due to the two different material features of host
and inclusions. As the aspect ratio increases, the frequency-dependent
behavior of the inclusions becomes dominating. Thus, the results for
the Case 4A with a = 500 provide just one step in the real part of εeff

and one peak in the imaginary part of εeff , as Figure 9 shows. Although
in this case the agreement is not perfect, the proposed formulation
provides an equivalent Debye model very close to the original MGA
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Figure 7. The original MGA model (solid curve) and the computed
equivalent Debye model (dashed curve) for Case 4A (z direction) with
a = 5. (a) Real part (AE = 0.05%). (b) Imaginary part (AE = 14%).
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Figure 10. GDM results for the pair of curve in Figure 14 for f = 20.1
and a = 500. (a) Real part. (b) Imaginary part.

effective permittivity. The FSV results help quantifying the difference,
and it is run for the two considered cases (Case 4A with a = 5 and
500), only for the principal direction (z). The worst results are those
in Figure 7, but the quantification of the agreement through the FSV
tool given in Figure 8 still provides a positive judgement, since the
“Excellent” bar is still the prevalent one. The FSV tool quantifies
with a full “Excellent” bar, as in Figure 10, the perfect agreement of
the data in Figure 9.

3.4. Case 5

The Case 5 is associated with conductive inclusions εi. In the example
Case 5A, εi∞ = 2, σi = 4 · 103, and in Case 5B, σi = 4 · 104 embedded
in a constant εe = 2.2. The results in Figures 11 and 12 show perfect
agreement between the two models, independently upon the volume
fraction f , aspect ratio a, and inclusion conductivity. The FSV results
provide a 100% “Excellent” parameter, thus the detailed figures are
omitted.
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equivalent Debye model (dashed curve) for Case 5A (z direction)
with a = 5. (a) Real part (AE < 10−5%). (b) Imaginary part
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Figure 12. The original MGA model (solid curve) and the computed
equivalent Debye model (dashed curve) for Case 5B (z direction)
with a = 500. (a) Real part (AE < 10−5%). (b) Imaginary part
(AE < 10−5%).

3.5. Case 6

The Case 6 is related to conductive inclusions embedded in a host
material with the Debye behavior. The results are presented in
Figures 13–15. Although all computations are performed for the three
volume fraction f = 2.5%, 8.4%, and 20.1%, the FSV tool is applied
to the cases with f = 20.1%, providing the results in Figure 14 and
Figure 16. As is seen from the Figure 13 compared to Figure 15,
the larger aspect ratio (a = 500 vs. a = 5) makes the model more
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Figure 13. The original MGA model (solid curve) and the computed
equivalent Debye model (dashed curve) for Case 6A (z direction) with
a = 5. (a) Real part (AE = 0.8%). (b) Imaginary part (AE = 39.8%).
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Figure 14. GDM results for the pair of curve in Figure 13 for
f = 20.1% and a = 5. (a) Real part. (b) Imaginary part.
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Figure 16. GDM results for the pair of curve in Figure 15 for f = 20.1
and a = 500. (a) Real part. (b) Imaginary part; and for f = 20.1 and
a = 500. (c) Real part. (d) Imaginary part.

accurate. This is related to the dominant behavior of the conducting
inclusions in forming the Debye peak over the host. It is possible to
state this conclusion also by looking at the FSV results in Figure 14
and Figure 16.

4. SIMULATION EXAMPLE

The validation of the derived equations that correlate the MGA and
its rational-fractional representation through the Debye model can
be illustrated by a numerical simulation example. For this purpose,
the same composite as in Case 2 is considered. It contains aligned
inclusions of BaTiO3 with the intrinsic dispersive Debye parameters
εis = 1900, εi∞ = 280, and τi = 2 · 10−9 s placed in a host material
with constant permittivity εe = 2.2. The aspect ratio of inclusions is
a = 500, and the inclusion volume fractions are f = 2.5, 8.4 and 20.1%.
The real and imaginary parts the effective dielectric permittivity of the
original MG model (1b) and the computed equivalent Debye model (8)–
(10) are shown in Figure 4, respectively.

Then two models for 3D numerical simulations are created.
Model 1 contains cylindrical inclusions, and Model 2 contains the
homogeneous material with the equivalent Debye parameters. In
Model 1, the inclusion radius is r, length is l, and the panel thickness
is W . These parameters are related as

f =
Inclusion Volume

Total Volume
=

π · r2 · l
W 2 · l =

π · r2

W 2
. (24)

a =
Inclusion Length

Inclusion Diameter
=

l

d
=

l

2 · r (25)

One parameter can be fixed, e.g., r is chosen 0.1 mm, and the other
two, W and l, are calculated. This is done for each abovementioned
volume fraction values. Table 2 contains the complete set of the
geometrical and calculated equivalent Debye parameters along all three
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directions. The parameters of the Debye model are associated to the
curves in Figure 4.

The simulations are done using the time domain solver within CST
Microwave Studio [58], on a workstation with an Intel Xeon CPU E5520
at 2.27GHz, with 24GB of RAM. In these simulations, the modeled
structure is excited by a plane wave source 1 mm before the composite
panel (at x = −1mm), and the E-field is evaluated 25mm behind
the composite layer (at x = W + 25 mm). The periodic boundary
conditions are applied along the y and zdirections to provide an infinite
structure along these directions. It is important to note that, in the
simulation model, just one block is simulated, as shown in Figure 17.
The host material covers entirely the inclusions along the z direction
for avoiding adjacent inclusions to touch each other (as emulated by the
periodic boundary conditions applied along the z direction); thus an
extra length to the host material is added s = r/2 (0.5 mm). The term
l in the denominator of (24) should be replaced by (l + 2s). However,
since l À s in the case of a = 500, then s is neglected in (24).

The simulation settings of the six 3D models are summarized in

Table 2. Parameters overview of the three simulation models.

a r 
(mm)

f l 
(mm)

W 
(mm) 

 sDx=  sD y
  Dx=   Dy  Dx =  Dy

(s) 
sDz   Dz

 
Dz 

(s)

500 0.1 2.5 100 1.12 2.3125 2.3110 3.057·10
-10

48.720 9.124 2.0257·10
-9

500 0.1 8.4 100 0.6115 2.6024 2.5966 3.0598·10
-10

158.693 25.4715 2.0277·10
-9

500 0.1 20.1 100 0.395 3.3037 3.2854 3.0663·10
-10

377.544 57.9050 2.0318·10
-9
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Figure 17. (a) The proposed geometries containing cylindrical
inclusions, model 1. (b) Its equivalent homogeneous models, model 2.
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Table 3. Simulation parameters.

f Models Run time Mesh cells
Mesh cells

on cross-section

2.5
Model-1 67 min 36 sec 1291864 31× 31
Model-2 4 sec 105000 7× 7

8.4
Model-1 96 min 35 sec 1882440 30× 30
Model-2 11 sec 208208 7× 7

20.1
Model-1 166 min 42 sec 3706238 34× 34
Model-2 25 sec 359310 7× 7
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Figure 18. Probe magnitude simulation result comparison.

Table 3. The simulated results in terms of the E-field transmitted
through the simulation sample, are compared in Figure 18 in the
frequency range up to 5 GHz.

The simulation results show that the agreement between Models 1
and 2 is excellent for all three inclusion volume fractions. The FSV
tool is employed to quantify the data agreement. The GDM results are
shown in Figure 19. It is important to note that the simulation of the
homogenous Model 2 is almost 200 times faster than the simulation of
the biphasic Model 1. These results, beside confirming the correctness
of the Maxwell Garnett approximation up to the 20.1% volume fraction
considered in our validation cases for a dielectric-dielectric mixture,
prove the usefulness of the derived analytical equivalence between the
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Figure 19. GDM results for the pair of curve in Figure 18 for
(a) f = 2.5% (Grade = 2, Spread = 2), (b) f = 8.4% (Grade = 2,
Spread = 2), (c) f = 20.1% (Grade = 1, Spread = 1).

Maxwell Garnett and the Debye model. The equivalent homogeneous
model, initially obtained applying the MGA to the biphasic composite,
and then converted into a Debye model, allows a quick and efficient
simulation of the electromagnetic behavior of the original biphasic
composite material.

5. CONCLUSION

The composite materials containing aligned cylindrical inclusions
embedded in a host material are studied by using the geometry-based
Maxwell Garnett approximation (MGA). The equivalent Debye model
is derived from some analytical relations between the two models.
The analytical derivations are obtained for the typical combinations
of permittivity types of host and inclusion materials, i.e., material
with constant permittivity, dispersive (described by a Debye model),
and conductive materials, and analytical expressions are derived for
each case. The validation for the five types of material combinations is
done numerically. The dielectric and conductivity parameters of some
commercial shielding materials are used in these computations. The
best agreement between the MGA and its derived equivalent Debye
model is obtained, when only one ingredient in a biphasic mixture
has a frequency dispersive behavior, while the other is non-dispersive.
However, the agreement is still acceptable in the cases, when both
phases are the Debye materials, or the host is the Debye material, while
inclusion phase is conductive (Cases 4 and 6). The proposed approach
can be used to analytically obtain the Debye parameters starting from
the MGA, without the need of curve-fitting and applying optimization
techniques. Thus a causal model for complex dielectrics suitable for
time domain electromagnetic simulations can be readily built.
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APPENDIX A.

Herein the proof that the Debye model satisfies the Kramer-Kronig
relationship is derived, based on the theory in [59, 60]. A general first
order Debye model can be written as in (A1), similarly to (3a). The
real part and imaginary parts computed starting from (A1) are given
in (A2).

εD (ω) = ε∞ +
(εs − ε∞)
1 + jωτ

, (A1)

εR (ω) = Re [εD (ω)] = ε∞ +
(εs − ε∞)
1 + ω2τ2

, (A2a)

εI (ω) = Im [εD (ω)] = −ωτ
(εs − ε∞)
1 + ω2τ2

. (A2b)

The KKR associated to the complex frequency dependent
parameter εD(ω) are given in (A3), considering the derivation of the
imaginary part starting from the real part and viceversa,

εI

(
ω′

)
= − 1

π
P

∞∫

−∞

εR (ω)
ω − ω′

dω, (A3a)

εR

(
ω′

)
=

1
π

P

∞∫

−∞

εI (ω)
ω − ω′

dω, (A3b)

where P refers to the Cauchy principal value since the integrand
function is singular in ω = ω’. The analytical derivation is applied
next to the case in (A3a). The integral can be solved applying
the residue theorem, considering a complex domain for ω, as from
Figure A1. The integral should be computed along the closed contour
C taken counterclockwise made by the partial paths CR, P , and γ, thus
bypassing the singularity on the contour at ω = ω’. Since the function
εR(ω) has a pole at ω =j/τ , the integral along the close contour is
equal to the residue computed at this pole, as from (A4).

∮

C

f (ω) dω =

∫

CR

f (ω) dω+

∫

P

f (ω) dω+

∫

γ

f (ω) dω = 2πj · Res [f (j/τ)], (A4)
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Figure A1. Complex domain and integration path for evaluating the
Cauchy principal value.

where f(ω) is the overall integrand function in (A3a).
The first integral along CR can be evaluated as in (A5), making

the variable substitution z = R · ejθ, thus dz = jR · ejθdθ.
∫

CR

f (z) dz = lim
R→∞

π∫

0

f
(
R · ejϑ

)
jR · ejϑdϑ = jπε∞, (A5)

The integral over the semicircle γ is calculated as in (A6) by noting
that z = ω′ − ε · ejθ and dz = jε · ejθdθ.

∫

γ

f (z) dz =

0∫

π

f
(
ω′ + εejϑ

)
jεejϑdϑ = −jπ

εs + ε∞ω′2τ2

1 + ω′2τ2
, (A6)

The residue in (A4) follows the calculation in (A7)

Res [f (j/τ)] = lim
z→j/τ

f (z) (z − j/τ) =
εs − ε∞

2j (j − ω′τ)
, (A7)

Thus the principal value of the integral in (A3) can be finally
evaluated obtaining the result in (A8).

P

∞∫

−∞

εR (ω)
ω − ω′

dω = ω′τπ
ε∞ − εs

1 + ω′2τ2
, (A8)

After multiplying the result in (A8) by −1/π from (A3a), the
expression in (A2b) is obtained, demonstrating analytically that the
frequency dependent dielectric permittivity described by a Debye
model satisfies the KKR, thus it is causal by definition. Similarly
the dual procedure can be applied to (A3b).
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