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Abstract—We investigate the properties of nonlinear envelope pulses
developed in a coupled composite right- and left-handed (CRLH)
transmission line with regularly spaced Schottky varactors. It is
found that the dispersive distortion of the envelope pulses carried
by each mode is well compensated by nonlinearity introduced by the
varactors. In addition, we numerically observe that the collision of two
nonlinear envelope pulses leads to the development of a new pair of
envelope pulses (one traveling forward and the other backward). The
newly developed pulses become maximal when phase-matching with
the original pulses is established, and their carrier frequency is close to
that of the harmonics of the colliding pulses.

1. INTRODUCTION

Composite right- and left-handed (CRLH) transmission lines have
been investigated for their unique electromagnetic [1] and dispersive
properties [2, 3]. A CRLH line also attracts considerable attention for
pulse management [4]. In particular, pulse propagation in nonlinear
CRLH lines has been well investigated, including purely left-handed
transmission lines with series varactors [5–9] and CRLH lines with
shunt varactors [10, 11]. In general, a broadband pulse cannot travel
on the CRLH line without distortion, because the line exhibits high
dispersion. As a result of the balance between the dispersion and
the nonlinearity introduced by the varactors, undistorted envelope
pulses governed by the nonlinear Schrödinger (NS) equation can be
developed. Recently, we numerically investigated the collision of such
nonlinear envelope pulses and found that a pair of envelope pulses was
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Table 1. Comparison between Schottky CRLH line (single) and
coupled Schottky CRLH line (coupled).

Single Coupled
Collision-generated pulses + +

Mode conversion − +
Impedance conversion ± +

Design facility + −
Potential for loss compensation − +

newly developed, one traveling forward and the other backward [12].
This mechanism can potentially be used to manage the directivity of
radiating waves because the line operates as a leaky-wave antenna.

To enhance the potential of the nonlinear envelope pulses, we
investigate two coupled CRLH lines, one of which is periodically
loaded with Schottky varactors, called coupled Schottky CRLH lines
for brevity. Owing to the coupling, maximum two different modes
exist at a given frequency. Table 1 compares the coupled Schottky
CRLH line with the Schottky CRLH line. The number of components
required for the coupled Schottky CRLH line is nearly twice as much
as that for the Schottky CRLH line. In return for this complexity, the
coupled Schottky CRLH line has several advantages over the Schottky
CRLH line. In the case of the coupled Schottky CRLH line, it is
found that each mode can support nonlinear envelope pulses, whose
pulse widths and amplitude fractions between the lines are uniquely
determined by the dispersion and nonlinearity coefficients obtained
for a given mode. Moreover, we numerically investigate the collisions
of oppositely traveling nonlinear envelope pulses. We observe that
the collision leads to the development of a new pair of envelope
pulses similar to the Schottky CRLH lines. The newly developed
pulses become maximal when phase-matching with the original pulses
is established, and their carrier frequency is close to that of the
harmonics of the colliding pulses. Moreover, the mode supporting
the newly developed pulses is generally different from that of the
original pulses. Obviously, this mode conversion is the unique property
that the coupled Schottky CRLH line exhibits. This property results
in the conversions of the voltage fraction between the lines and the
characteristic impedance, which are uniquely determined by the mode.
In addition, the coupled Schottky CRLH line has a potential to amplify
the collision-generated envelope pulses. The large parasitic resistance
of the inductor greatly diminishes the amplitude of the waves on the
line, making the varactor’s nonlinearity inefficient in compensating for



Progress In Electromagnetics Research M, Vol. 20, 2011 157

the dispersion of the CRLH lines. To cancel the wave attenuation, we
consider a traveling-wave field-effect transistor (TWFET), whose gate
and drain transmission lines have a CRLH line structure [13]. The gate
and drain lines are coupled via the FET’s drain-to-gate capacitance;
therefore, the coupled Schottky CRLH line can be regarded as a pinch-
off TWFET. Then, we can easily introduce the FET’s gain to the
coupled Schottky CRLH line, when we recognize lines 1 and 2 as the
gate and drain lines, respectively, and take the contributions of the
drain-to-source currents into considerations.

We first describe the circuit configuration and the dispersive
properties of the coupled Schottky CRLH lines. Next, we discuss the
predictions of the NS equation that perturbatively models the line and
the results of several numerical time-domain calculations. Further,
we explain the collision of two identical nonlinear envelope pulses to
characterize the pulses newly developed by the collision. Moreover, we
determine the properties of the newly developed pulses including wave
numbers, carrier frequencies, and carrying modes. Finally, we describe
several observations of the collision of two distinct nonlinear envelope
pulses.

2. COUPLED SCHOTTKY CRLH LINES

Figure 1 shows a unit cell of the investigated line. Parameters
LR1, CL1, and LL1 are the series inductance, series capacitance,

Figure 1. Equivalent circuits for unit cell of coupled Schottky CRLH
lines. Red and blue elements represent lines 1 and 2, respectively.
Lines 1 and 2 are coupled via mutual capacitance Cm.



158 Narahara

and shunt inductance of line 1, respectively. The elements denoted
with subscript 2 correspond to line 2. Lines 1 and 2 are coupled
via mutual capacitance Cm. The shunt capacitances of lines 1
and 2 are represented by CR1 and CR2, respectively. As the source
of nonlinearity, the Schottky varactor is employed for CR1. Its
capacitance-voltage relationship is defined as

CR1(V ) =
C0(

1− V
VJ

)mJ
, (1)

where C0, VJ , and mJ are the zero-bias junction capacitance, junction
potential, and grading coefficient, respectively. Hereafter, the biasing
voltage of the Schottky varactor is represented by V0. Using this
representation, the transmission equations are given by
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= − 1
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{
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+

d
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dt2
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d2Wn

dt2
+

Wn

CmLL2
− 1

Cm

d

dt
(Jn − Jn+1) , (5)

where In, Jn, Vn, and Wn are the current on line 1 at the nth cell, the
current on line 2 at the nth cell, the voltage on line 1 at the nth cell,
and the voltage on line 2 at the nth cell, respectively.

We first linearize Equations (2)–(5) to examine the dispersive
property of the line. Because the line has a very complicated structure,
any characterizing expression are extremely complex; therefore, we
hereafter confine the discussion to a coupled Schottky CRLH line with

Table 2. Line parameters of investigated line.

LR1 (nH) 1.5 LR2 (nH) 1.0
CL1 (pF) 2.4 CL2 (pF) 1.0
LL1 (nH) 1.2 LL2 (nH) 2.5

CR1(V0) (pF) 2.0 CR2 (pF) 3.0
Cm (pF) 1.0
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Figure 2. Sample structure of coupled Schottky CRLH lines.

the parameters listed in Table 2 for concise illustration. The main
properties are precisely illustrated by the example listed in Table 2.
We suppose that microwave surface-mount capacitors and inductors
realize these line parameters and the print-circuit-board fabrication.

A sample structure of unit cell of a coupled Schottky CRLH line
is shown in Figure 2. For the operating frequencies we investigate,
the high frequency chip devices mounted on a glass epoxy board suit
to fabricate the line. This sample configuration utilizes the double-
sided print-circuit-board. The chip varactors are mounted on the back,
while the other chip components are mounted on the front. Each
node of line 1 is connected with the back wiring through a via hole
to render the bias voltage to CR1. Many manufacturers have the
product line-ups of chip capacitor and inductor that include various
electrical and geometrical properties, so that it is possible to select
the size and reactance rather flexibly. Moreover, by minimizing the
length of the wiring, its unfavorable contributions to the line’s electrical
properties can be reduced. The bias-dependent capacitance can also
be implemented with surface-mount varactors. The minimum size of
surface-mount chip inductor and capacitor is about 500µm. Taking
extra areas needed for solder coating into considerations, the unit cell
size is practically 5.0 mm with allowance. The dispersion relationship
is shown in Figure 3. Owing to the coupling, maximum two different
modes exist for each frequency [14]. Note that modes 1 and 3 exhibit
left-handed properties, while modes 2 and 4 exhibit right-handedness.
Each mode has its own voltage fraction (line 2 voltage/line 1 voltage)
between the lines denoted as Ri for mode i (i = 1, 2, 3, 4).
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Figure 3. Dispersion of coupled Schottky CRLH lines.

3. PROPERTIES OF NONLINEAR ENVELOPE PULSES
IN COUPLED SCHOTTKY CRLH LINES

To investigate the contribution of nonlinearity, we introduce spatial
continuous variable x to define functions V = V (x, t) and W = W (x, t)
as the continuous functions of voltages at the nth cell Vn and Wn,
respectively. Moreover, we assign the respective spatial and temporal
coordinates for the envelope and carrier waves. We use x and t as
the spatial and temporal coordinates, respectively, for describing the
carrier wave. For the envelope wave, ξ ≡ ε(x − Ugt) and τ ≡ ε2t are
used as the spatial and temporal coordinates, respectively, in which Ug

represents the group velocity given by ∂kω(k), where ω = ω(k) denotes
the dispersion relationship for wave number k. Next, we expand the
voltage variables as

V (x, t) = V0 +
∞∑

m1=1

εm1

∞∑

l=−∞
v

(m1)
l (ξ, τ)eil(kx−ωt), (6)

W (x, t) =
∞∑

m1=1

εm1

∞∑

l=−∞
w

(m1)
l (ξ, τ)eil(kx−ωt). (7)

By applying the reductive perturbation method [15] to Equations (2)–
(5), we obtain the NS equation that describes w

(1)
1 :

i∂τw
(1)
1 + p∂2

ξ w
(1)
1 + q

∣∣∣w(1)
1
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2
w

(1)
1 = 0, (8)
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(a) (b)

(c) (d)

Figure 4. Pulse width and voltage fraction of a single bright soliton
supported by each mode. Figures 4(a), (b), (c), and (d) correspond
to modes 1, 2, 3, and 4, respectively. The bright solitons cannot be
developed in the filled region, where the product of the dispersion and
nonlinearity coefficients becomes negative.

where p and q are the dispersion and nonlinearity coefficients. If pq > 0
and the contribution of the ε-order components is dominant, W (x, t)
is calculated as

W (x, t)=A0sech
{√

q

8p
A0(x− Ugt)

}
cos

{
kx−

(
ω − qA2

0

8

)
t

}
, (9)

where A0 = 2εA. Furthermore, we observe that each mode can
support a soliton-like pulse, and the soliton-like pulse carried by mode
i (i = 1, 2, 3, 4) has voltage fraction Ri between lines 1 and 2.
In general, because each mode can support soliton-like pulses, the
nonlinear envelope pulse can preserve its original shape when it is
carried by a specific mode. By applying the envelope pulses to both
lines such that the voltage fraction of the incident pulses is equal to
Ri, we can only develop the envelope pulses carried by mode i.
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(a) (c)

(b) (d)

Figure 5. Soliton-like pulses on a coupled CRLH line. The waveforms
of a pulse carried by mode 3 on lines 1 and 2 are shown in Figures 5(a)
and (b), respectively. Figures 5(c) and (d) correspond to the waveforms
of a pulse carried by mode 1 on lines 1 and 2, respectively. The
numerically obtained waveforms and the analytically obtained envelope
waveforms are shown by the black and red curves, respectively.

Instead of the explicit forms of p and q, in Figure 4, we show
their pulse width and voltage fraction between lines 1 and 2 of a single
bright soliton for the line parameters listed in Table 2. For the Schottky
varactor, V0, mJ , and VJ are set to −2.0V, 2.0, and 2.0 V, respectively.
The pulse width is calculated by Equation (9) such that the amplitude
of the pulse on line 1 is 1.0, i.e., A0 is set to Ri in Equation (9)
for mode i (i = 1, 2, 3, 4). In Figure 4, the pulse width and the
voltage fraction between the lines are shown by the red and blue curves,
respectively. Moreover, the frequencies indicated by the dashed vertical
lines represent the upper or lower cutoff frequencies shown in Figure 3.
Because pq becomes negative, bright solitons cannot develop in the
frequency range indicated in red. Note that modes 1 and 3 exhibit
left-handedness, while modes 2 and 4 exhibit right-handed properties.

To validate the prediction of the NS equation, we numerically
solved Equations (2)–(5) for the parameters listed in Table 2 with the
same varactor model used to obtain Figure 4 by using the fourth-
order Runge-Kutta method, and compared the resulting waveforms to
Equation (9). The total number of cells was 2000. Figures 5(a) and (b)
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show the waveforms monitored at the 500th cell on lines 1 and 2,
respectively. We apply the envelope pulses with voltage fraction R3 on
lines 1 and 2; therefore, the envelope pulses are expected to be carried
by mode 3. Note that the pulse must be distorted significantly after this
long propagation unless the high dispersion is canceled by nonlinearity.
The black curves show the numerically obtained waveforms, and
the red curves show the analytically obtained ones for the 0.5-V
amplitude on line 1 and the 1.3-GHz carrier frequency. The pulse
width and the voltage fraction are correspondingly calculated to be
18.52 ns and −4.3, respectively. The numerically obtained waveforms
are well characterized by the analytical ones. Similar calculations
were performed for the nonlinear envelope pulses carried by mode 1.
Applying the 1.30-GHz envelope pulses with voltage fraction R1, we
obtain Figures 5(c) and (d), which show the numerical and analytical
waveforms on lines 1 and 2, respectively. The analytical envelope has
the amplitude, pulse width, and voltage fraction of 0.45 V, 13.76 ns,
and 0.7, respectively. Again, we confirm the pulse propagation without
distortions and the significant similarity between the numerical and
analytical envelope waveforms. It is observed that each mode supports
non-distorted envelope pulses.

4. COLLISION OF TWO IDENTICAL NONLINEAR
ENVELOPE PULSES IN COUPLED SCHOTTKY CRLH
LINES

Here, we discuss the collision of two identical oppositely directing
nonlinear envelope pulses along with the results of the time-domain
calculations mentioned in the previous section. We again employ the
parameters listed in Table 2. The total number of cells was set to 2000.
The 1.3-GHz envelope pulses with voltage fraction R3 were applied on
both the left and right ends of lines 1 and 2. The pulses applied
on both ends started to travel in opposite directions and collided at
the midpoint. Figure 6 shows the results. Eight spatial waveforms
are monitored on line 1 at even intervals. Time progresses downward
with an increment of 32.8 ns. Both the incident pulses travel without
distortion and collide at the fourth temporal point. As indicated by
the red-dashed curves, a pair of envelope pulses is newly developed
owing to the collision. The newly developed pulses are faster than the
original ones. In addition, we observe that the carrier wave of the newly
developed pulses has a considerably longer wavelength than that of the
original ones. Figure 7 shows the temporal waveforms of the newly
developed pulses that is recorded at the 500th cell. The waveforms
on lines 1 and 2 are shown in Figures 7(a) and (b), respectively. The
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Figure 6. Collision of two identical nonlinear envelope pulses.
Colliding pulses were carried by mode 3 and their carrier frequencies
were set to 1.30 GHz. Time progresses downward with an increment
of 32.8 ns.

carrier frequency is estimated to be 2.59GHz by the spectral peak.
In addition, the voltage fraction is estimated to be 0.42. At around
2.6GHz, mode 1 is the specific mode that carries waves as shown in
Figure 3. The voltage fraction of mode 1 is calculated to be 0.40. Thus,
it is concluded that the newly developed pulses are carried by mode 1.

The positions of the fundamental, second, third harmonic waves
are represented by P1, P2, P3, respectively, in Figure 3. Moreover,
either P4 or P ′

4 corresponds to the fourth harmonic waves. We denote
the wave vectors of the left- and right-going incident carrier waves as
kl and kr, respectively; therefore, the wave vector of newly developed
carrier wave kc has to satisfy the phase-matching condition: kc ∼
kn ≡ mlkl +mrkr for maximal amplitudes, where ml,r are the integers
determined by the order of harmonics. For example, the development
of the second harmonic envelope pulses requires (mr,ml) = (1, 1).
When the carrier frequency of the right-going pulse fr is equal to that
of the left-going pulse fl, kl becomes equal to −kr, |kc| must be close
to zero to develop the second harmonic envelope pulses. Similarly,
we denote |kl| (= |kr|) as k0; therefore, the phase-matching condition
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requires |kc| ∼ k0 for the development of the third harmonic envelope
pulses. Similarly, for the fourth harmonic envelope pulses, |kc| must
be close to either 0 or 2k0. We can see in Figure 3 that (a) the wave
number corresponding to P2 is close to zero, (b) the wave number of P3

is definitely smaller than k0, and (c) both the wave numbers of P4 and
P ′

4 are considerably smaller than 2k0 and sufficiently higher than zero.
Thus, the newly developed pulses are carried by the second harmonic
waves for the line parameters used in this study. As expected, the
wavelengths of the collision-generated pulses are considerably longer
than those of colliding pulses in Figure 6.

5. DISCUSSION

Both the left- and right-going pulses can be potentially develop by
the collision. The balance of their amplitudes is determined by the
wave vector that is closer to the phase-matched one. Without loss of
generality, we only consider the case when fl ≤ fr. When fl < fr, kn

directs to the right for the line parameters listed in Table 2 because
(a) |kr| becomes smaller than |kl| and (b) both the incident pulses are
carried by mode 3, which exhibits left-handedness. The sum-frequency
pulses are carried by mode 1, which also exhibits left-handedness;
therefore, the wave vector of the left-going collision-generated pulse
(kcl) directs to the right, whereas that of the right-going pulse (kcr)
directs to the left. When the separation between fr and fl becomes
large, the right-going pulse must be significantly suppressed because
|kn − kcr| becomes sufficiently large to violate the phase-matching
condition. As a result, the left-going pulse dominates the right-going
one, as shown in Figure 7(a). When the frequency separation becomes
small, kn approaches zero; therefore, |kn − kcl| and |kn − kcr| become
comparable. This suggests that the right-going collision-generated
pulse tends to be comparable to the left-going one. Finally, these two
become identical when fr = fl. To examine this, we perform several
numerical calculations. The calculation setup is almost the same as
that used to obtain the results in the previous section. We fix fr at
1.30GHz and fl at the values slightly different values from 1.30 GHz.
The results are shown in Figure 8. Figures 8(a) and (b) correspond
to the cases when fl was set to 1.32 and 1.28 GHz, respectively. The
left-going pulse consistently becomes larger than the right-going one in
Figure 8(a), and the amplitude balance is reversed in Figure 8(b). The
spectrum peak of the newly developed pulses is at 2.61 and 2.57 GHz
for the cases shown in Figures 8(a) and (b), respectively. They are
supported by the sum-frequency carrier waves.

Finally, we consider the influence of losses. Because the wave
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(a)

(b)

Figure 7. Waveforms of newly developed envelope pulses. The
temporal waveforms monitored on lines 1 and 2 are shown in
Figures 7(a) and (b), respectively.

losses are mainly caused by the parasitic resistances of inductors,
the amplitude of the harmonic pulse for five different values of the
resistances of LR1, LL1, LR2, and LL2 is estimated. The resistance of
LL1 was precisely set to 0.10ρΩ, where fraction ρ was varied from 0.0
to 1.0 with 0.2 increments. For other inductors, we set the resistances
proportional to the corresponding inductances. These values are
practical for high-performance surface-mount inductors. Figure 9
shows the development of the second harmonic pulse for the input
pulses having three different amplitudes by using temporal waveforms
monitored at the 80th cell. Larger the losses, larger is the incident
pulse decay; therefore, it is efficient to reduce the line’s cell number
for obtaining large amplitude of the newly developed pulses. We then
set the total number of cells to 300. It is observed that the second
harmonics amplitude decays exponentially as the resistances increase.
Moreover, the ratio of the second harmonics amplitude for the 2.0-
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(a)

(b)

Figure 8. Collision of two nonlinear envelope pulses having different
carrier frequencies. We fixed fl at 1.30 GHz, while fr were set to 1.32
and 1.28 GHz for Figures 7(a) and (b), respectively.

Figure 9. Influence of inductors’ parasitic resistances. We set the
resistances of LR1, LL1, LR2, and LL2 to 0.048ρ, 0.06ρ, 0.10ρ, and
0.04ρ Ω, respectively, where the fraction ρ was varied from 0.0 to 1.0
with 0.2 increments.
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V input to that for the 1.1-V input also decreases as ρ increases.
The ratio is calculated to be 5.27 and 3.41 for the 2.0- and 1.1-V
inputs, respectively. It is possible to obtain finite number of the
second harmonic pulses even by using practical inductors. On the
other hand, an amplification scheme must be devised for attenuation-
free wave propagation. As mentioned above, we have investigated
a TWFET, whose gate and drain transmission lines have a CRLH
line structure [13]. It becomes important to examine the collision of
nonlinear envelope pulses in TWFETs.

6. CONCLUSION

The properties of nonlinear envelope pulses developed in a coupled
Schottky CRLH transmission line are investigated. Every mode can
support nonlinear pulses. Moreover, the collision of two nonlinear
envelope pulses leads to the development of a new pair of envelope
pulses. Phase-matching essentially determines the carrier frequency
and amplitude of the newly developed pulses. Although further
investigations are required, we believe that the line may significantly
increase the applications of the nonlinear envelope pulses.
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