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Abstract—This paper deals with an analytical solution of the time
domain Pocklington equation for a straight thin wire of finite length,
buried in a lossy half-space and excited via the electromagnetic
pulse (EMP) excitation. Presence of the earth-air interface is taken
into account via the simplified reflection coefficient arising from the
Modified Image Theory (MIT). The analytical solution is carried out
using the Laplace transform and the Cauchy residue theorem. The
EMP excitation is treated via numerical convolution. The obtained
analytical results are compared to those calculated using the numerical
solution of the frequency domain Pocklington equation combined with
the Inverse Fast Fourier Transform (IFFT).

1. INTRODUCTION

Transient analysis of thin wire scatterers has been a subject of
considerable interest of many prominent researchers for more than
fifty years. There are numerous applications of these studies in
antenna theory and propagation, as well as in electromagnetic
compatibility (EMC), such as buried power and telecommunication
cables, respectively, grounding, target identification, stimulation of
biological tissue, etc. [1–10].

The electromagnetic field coupling to thin wire scatterers can be
treated via different approaches. Transient response can be obtained
by means of direct time domain modeling, or via an indirect approach
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in the frequency domain, where the time domain solution is obtained
using certain inverse transform procedures [1, 2]. The principal
advantage of the indirect approach is the relative simplicity of both
the formulation and the selected numerical treatment. On the other
hand, direct time modeling ensures better physical insight, accurate
modeling of highly resonant structures, possibility of calculating only
early time period and easier implementation of nonlinearities [2, 11].

The formulation of the problem in thin wire transient analysis
is usually governed by some variants of integral or integro-differential
equations (Hallen or Pocklington type), respectively. The solution of
such equations is, in most cases, undertaken using some variant of
numerical methods. Numerical modeling is widely used for solving
various complex problems. On the other hand, analytical solution can
be obtained when dealing with canonical problems, using a carefully
chosen set of approximations [12–15]. These approximations are
usually posed by limiting parameters for which the solution is valid
or by using the approximation procedures to simplify the governing
equations. The advantage of analytical solutions over numerical
ones is the ability to “follow up” the procedure with the complete
control of adopted approximations. In this way, the insight into the
physical characteristics of the problem is ensured, which is, when using
numerical methods, rather complex task. Also, analytical solutions
are readily implemented for benchmark purposes, as well as some
fast engineering estimation of phenomena. Furthermore, analytical
solutions can be used within some hybrid approaches for modeling
complex structures, where computational time can be significantly
reduced [2].

Valuable contributions in the area of analytical solutions of
integral equations in electromagnetics are given by R. W. P. King
et al. [12, 13]. In [12, 13] analytical solutions of different expressions,
arising from the antenna analysis, in either transmitting or receiving
mode, are derived primarily in the frequency domain. S. Tkachenko
derives the analytical solution for the current induced along the wire
above perfectly conducting (PEC) ground using the transmission line
modeling (TLM) for LF excitations [14]. This model is extended to
the case of high frequencies in [15].

Time domain analytical modeling is not investigated to a great
extent and papers on the subject are rather scarce. Such papers usually
deal with a narrow set of parameters for which the model is valid
(free space, homogeneous medium) [16–19]. Hoorfar and Chang give
the solution for transient response of thin wire in free space using
singularity expansion method [16]. Velazquez and Mukhedar derive
analytical solution for the current induced along a grounding electrode,
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based on the TL model [17]. Chen gives the solution for transient
response of infinite antenna in a lossy medium, driven by a voltage
generator [18]. Analytical solution for transient response based on the
full wave model is needed, as TL approximation fails to account for
radiation effects. For the simple case of a straight thin wire embedded
in a homogeneous lossy medium analytical solution has been reported
by the authors in [20].

In the second part of this paper, Pocklington integro-differential
formulation for current induced on a thin wire buried in a lossy half-
space, illuminated by a transmitted electromagnetic wave is posed
in the time domain. The influence of the boundary is taken into
account via simplified reflection coefficient arising from Modified Image
Theory. Thin wire approximation is used throughout the paper [2, 12].
In the third part, the corresponding Pocklington equation is solved
using the approximation of the unknown current function, Laplace
transform and Cauchy residue theorem. Results obtained with these
relations are compared, in the fourth section, with the results obtained
via numerical solution of corresponding Pocklington equation in the
frequency domain and subsequent Inverse Fast Fourier Transform
(IFFT) [2]. The results obtained via different approaches agree
satisfactorily.

2. TIME DOMAIN FORMULATION

A perfectly conducting thin wire of length L and radius a, is
horizontally buried in a lossy medium at depth d. The electrical
properties of a medium are permittivity ε and conductivity σ. The
wire is illuminated by a transmitted part of a transient electromagnetic
(EM) wave. For the sake of simplicity, only normal incidence is
considered. The geometry of the problem is shown in Figure 1.

The governing Pocklington integro-differential equation for half-
space is derived gradually. First, thin wire in a homogeneous lossy
medium is considered.

A time dependant electric field can be expressed in terms of
electric scalar ϕ and magnetic vector potential ~A, respectively [1, 21]

~E = −∂ ~A

∂t
−∇ϕ. (1)

Performing certain mathematical manipulations, the following
relation is obtained [11]

1
µ
∇2 ~A− σ

∂ ~A

∂t
− ε

∂2 ~A

∂t2
=

1
µ
∇

(
∇ · ~A + µσϕ + µε

∂ϕ

∂t

)
− ~Ji, (2)
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Figure 1. Horizontal straight thin wire buried in a lossy medium.

where ~Ji represents current density produced by the external source.
Adopting the Lorentz gauge [21]

∇ · ~A + µσϕ + µε
∂ϕ

∂t
= 0, (3)

(2) becomes

∇2 ~A− µσ
∂ ~A

∂t
− µε

∂2 ~A

∂t2
= −µ~Ji, (4)

representing the wave equation for magnetic vector potential.
Combining the Equations (1)–(4), the electric field can be

expressed as follows
(

µε
∂

∂t
+ µσ

)
~E = ∇2 ~A− µσ

∂ ~A

∂t
− µε

∂2 ~A

∂t2
. (5)

The solution of (4) is the particular integral [2]

~A (~r, t) = µ

t∫

0

∫

V ′

~Ji

(
~r′, t

)
g

(
~r, ~r′, t, t′

)
dV ′dt′, (6)

assuming the current density ~Ji to be the only source in the considered
domain. g(~r, ~r′, t, t′) represents the Green’s function of a homogeneous
lossy medium that can be obtained by solving the following differential
equation

(
∇2 − µσ

∂

∂t
− µε

∂2

∂t2

)
g

(
~r, ~r′, t, t′

)
= δ

(
~r, ~r′, t, t′

)
. (7)
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The solution of (7) can be written in the form [22]

g
(
~r, ~r′, t, t′

)
= e

− 1
τg

R
v

δ
(
t− t′ − R

v

)

4πR
+

σ2

16πε2v
e
− t−t′

τg
I1(u)

u
, (8)

where time constant is defined as

τg =
2ε

σ
(9)

and the distance from the source to observation point is given with
R =

∣∣~r − ~r′
∣∣ , (10)

while I1(u) represents the modified Bessel function of the first kind
and first order with the argument u defined as

u =
1
τg

√
(t− t′)2 −

(
R

v

)2

. (11)

The second term in (8) can be neglected if the condition σ2 ¿ 16πε2v
is satisfied [11], so the Green’s function can be defined as

g
(
~r, ~r′, t, t′

)
= e

− 1
τg

R
v

δ
(
t− t′ − R

v

)

4πR
. (12)

Combining Equations (6) and (12) and taking into account the thin
wire approximation [12], the axial component of vector potential is
obtained [2]

Ax(x, t) =
µ

4π

L∫

0

I

(
x′, t− R

v

)
e
− 1

τg
R
v

R
dx′, (13)

where the distance from the source point in the axis of the wire to the
observation point on the wire surface is defined as

R =
√

(x− x′)2 + a2. (14)
For the case of dissipative half-space, shown in Figure 1, the expression
for magnetic vector potential (13) has to be expanded to account for
the ground-air interface, as shown in Figure 2.

In the frequency domain, the additional term due to the image
wire in the air is obtained by multiplying the reflection coefficient with
the corresponding Green’s function. To obtain the expression for a
lossy half-space, first the relation (13) is transformed into frequency
domain applying the Laplace transform. The following equation is
obtained

Ax(x, s) =
µ

4π

L∫

0

I(x′, s)e−
R
v

s e
− 1

τg
R
v

R
dx′, (15)
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Figure 2. Wire and its image due to image theory.

where s = jω is the Laplace variable.
Now, the expression for the magnetic vector potential can be

written as follows

Ax(x, s) = =
µ

4π

L∫

0

I(x′, s)e−
R
v

s e
− 1

τg
R
v

R
dx′

− µ

4π

L∫

0

ΓMIT
ref (s)I(x′, s)e−

R∗
v

s e
− 1

τg
R∗
v

R∗ dx′ (16)

where ΓMIT
ref (s) is the reflection coefficient due to earth-air interface.

The reflection coefficient arises from the Modified Image Theory
and is given by [23]

ΓMIT
ref (s) = −sτ1 + 1

sτ2 + 1
, (17)

where

τ1 =
ε0(εr − 1)

σ
,

τ2 =
ε0(εr + 1)

σ
.

(18)

Applying the inverse Laplace transform to Equation (17), a time
domain counterpart for the reflection coefficient (17) is obtained in
the form

ΓMIT
ref (t) = −

[
τ1

τ2
δ(t) +

1
τ2

(
1− τ1

τ2

)
e
− t

τ2

]
. (19)
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The distance from the source point on the image wire in the air to the
observation point on the original wire in the ground is given as

R∗ =
√

(x− x′)2 + 4d2. (20)

Applying the inverse Laplace transform to Equation (16), the following
time domain expression is obtained

Ax(x, t) =
µ

4π

L∫

0

I

(
x′, t− R

v

)
e
− 1

τg
R
v

R
dx′

− µ

4π

t∫

0

L∫

0

ΓMIT
ref (τ)I

(
x′, t−R∗

v
− τ

)
e
− 1

τg
R∗
v

R∗ dx′dτ, (21)

where the convolution integral is applied instead of multiplication in
the Laplace domain. Combining the relations for the electric field (5)
and for magnetic vector potential (21), the derived time domain
integro-differential Pocklington equation is obtained(

µε
∂

∂t
+ µσ

)
Etr

x (t)

= −
(

∂2

∂x2
− µσ

∂

∂t
− µε

∂2

∂t2

)
·

 µ

4π

L∫

0

I

(
x′, t− R

v

)
e
− 1

τg
R
v

R
dx′

− µ

4π

t∫

0

L∫

0

ΓMIT
ref (τ) I

(
x′, t− R∗

v
− τ

)
e
− 1

τg
R∗
v

R∗ dx′dτ


 . (22)

Solving the integro-differential Equation (22), the space-time depen-
dant current is obtained. Knowing the current distribution, other pa-
rameters of interest can be determined.

Apart from this special case of Pocklington equation, it is
worth mentioning some general information about the equation itself.
The Pocklington equation is used for obtaining the current induced
along the wire. The current can be induced either by incident
electromagnetic wave or by impressed voltage source. It can be used
both in frequency and time domain and it is, generally speaking, easier
to solve (numerically) in frequency domain [2]. Pocklington equation
can be written for different electromagnetic problems, such as: thin
wire, thick wire, curved wire, free space, lossy half-space, multilayered
medium, wire array, arbitrary wire configurations, to name just a few.
As opposed to differential formulations that are, generally, used to
solve domain problems, integral formulations are intended for solving
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problems with (un)known sources, as is in this case, induced current.
Pocklington equation is obtained directly from Maxwell’s equations,
using magnetic vector potential as auxiliary variable. Because of
this, Pocklington equation approach is considered to be a full wave
approach, since only used assumption is well known Lorentz gauge (3)
that is needed to define the divergence of magnetic vector potential [2].
In this way, no generality is lost and results obtained by solving
Pocklington equations are considered to be most accurate.

3. ANALYTICAL SOLUTION OF POCKLINGTON
EQUATION

Under some conditions it is possible to handle differential operator and
integral operator from Equation (22) separately. First, the solution of
the integral operator is acquired, using certain approximations.

The first integral from the right-hand side of Equation (22) can
be, generally, written as

L∫

0

I

[
x′, t−

√
(x− x′)2 + a2

v

]
e
− 1

τg

√
(x−x′)2+a2

v

√
(x− x′)2 + a2

dx′ = f(x, t) (23)

The accurate analytical integration of kernel in expression (23) is not
possible to obtain [24, 25]. On the other hand, the solution is possible
to acquire with the aid of numerical methods and those solutions
are well known in literature [1, 2, 26]. Using certain approximations,
the analytical solution of (23) can be obtained. In 1938, Hallen
used an approximation to solve corresponding integral equation in
the frequency domain [27]. Adjustment of that approximation has
recently been used to obtain the solution of integral equation in time
domain [19, 28].

To handle the integral operator in Equation (23), addition and
subtraction technique is applied

L∫

0

I

(
x′, t− R

v

)
e
− 1

τg
R
v

R
dx′

=

L∫

0

[
I

(
x, t− a

v

)
+I

(
x′, t−R

v

)
−I

(
x, t− a

v

)]
e
− 1

τg
R
v

R
dx′. (24)
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Now, the right hand side of the Equation (24) can be written as
L∫

0

[
I

(
x, t− a

v

)
+ I

(
x′, t− R

v

)
− I

(
x, t− a

v

)]
e
− 1

τg
R
v

R
dx′

=

L∫

0

I
(
x, t− a

v

) e
− 1

τg
R
v

R
dx′

+

L∫

0

[
I

(
x′, t− R

v

)
− I

(
x, t− a

v

)]
e
− 1

τg
R
v

R
dx′. (25)

Adopting the following assumption [17, 28]

I

(
x′, t− R

v

)
− I

(
x, t− a

v

)
≡ 0 (26)

Equation (24) becomes
L∫

0

I

(
x′, t− R

v

)
e
− 1

τg
R
v

R
dx′ = I

(
x, t− a

v

) L∫

0

e
− 1

τg
R
v

R
dx′. (27)

The approximation (26) has proven to be valid in papers by Tijhuis
et al. [19, 28]. The apparent advantage of this approximation is
replacing the integral equation with corresponding ordinary differential
equation with the unknown induced current. The drawback of this
approximation is that time retardation is assumed to be a/v instead
of R/v, which results in the loss of the information on radiated energy
due to current reflection on the wire free ends. This information
is significant when dealing with free space. In this paper, however,
the primary concern is to deal with a lossy medium where the
approximation is valid. Substituting (27) into (22) yields

(
µε

∂

∂t
+ µσ

)
Etr

x (t)

= −
(

∂2

∂x2
− µσ

∂

∂t
− µε

∂2

∂t2

)
·

 µ

4π
I

(
x, t− a

v

) L∫

0

e
− 1

τg
R
v

R
dx′

− µ

4π

t∫

0

ΓMIT
ref (τ)I

(
x, t− a

v
− τ

) L∫

0

e
− 1

τg
R∗
v

R∗ dx′dτ


 . (28)
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The next step in solving the differential Equation (28) is to apply the
Laplace transform. Taking into account following assumptions

Ex(t) = 0, t ≤ 0

I
(
x, t− a

v

)
= 0, t ≤ 0

∂I
(
x, t− a

v

)

∂t
= 0, t < 0

, (29)

and performing the Laplace transform, the following equation is
obtained

(µεs + µσ)Etr
x (s)

= − µ

4π

(
∂2

∂x2
− µσs− µεs2

)

·I(x, s)e−
a
v
s




L∫

0

e
− 1

τg
R
v

R
dx′ − ΓMIT

ref (s)

L∫

0

e
− 1

τg
R∗
v

R∗ dx′


 . (30)

Satisfying the condition

σ ¿ 2
a

√
ε

µ0
, (31)

which is achieved for the medium conductivity of order 10 mS/m,
integrals in (30) can be solved analytically as follows [14, 28]

L∫

0

e
− 1

τg
R
v

R
dx′ ≈

L∫

0

1
R

dx′ ≈ 2 ln
L

a
; (32)

L∫

0

e
− 1

τg
R∗
v

R∗ dx′ ≈
L∫

0

1
R∗dx′ ≈ 2 ln

L

2d
. (33)

Imposing Equation (17), it can be written

Ψ(s) =

L∫

0

e
− 1

τg
R
v

R
dx′ − ΓMIT

ref (s)

L∫

0

e
− 1

τg
R∗
v

R∗ dx′

= 2
(

ln
L

a
+

sτ1 + 1
sτ2 + 1

ln
L

2d

)
. (34)

Now, relation (30) can be written as

(µεs + µσ)Etr
x (s) = − µ

4π

(
∂2

∂x2
− µσs− µεs2

)
I(x, s)e−

a
v
sΨ(s). (35)
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Adopting the expression for the propagation constant of a lossy
medium

γ =
√

µε
(
s2 +

σ

ε
s
)
, (36)

the following differential equation is obtained

∂2I(x, s)
∂x2

− γ2I(x, s) = − 4π

µsΨ(s)
e

a
v
sγ2Etr

x (s). (37)

The solution of (37) can be readily obtained, prescribing the boundary
conditions at the wire ends

I(0, s) = 0
I(L, s) = 0

. (38)

The solution of (37) can be written as

I(x, s) =
4πe

a
v
s

µsΨ(s)
Etr

x (s)

[
1− cosh

(
γ

(
L
2 − x

))

cosh
(
γ L

2

)
]

. (39)

To obtain the solution for the current distribution in time domain,
inverse Laplace transform has to be performed featuring the Cauchy
residue theorem [29]

f(t) = lim
y→∞

1
j2π

x+jy∫

x−jy

etsF (s)ds =
n∑

k=1

Res(sk), (40)

where residues of the function are defined as

Res(sk) = lim
s→sk

(s− sk)etsF (s), (41)

while sk denotes the poles of the function F (s).
The excitation function in the Laplace domain is of the form

Etr
x (s) = 1 [V/m] (42)

which corresponds to impulse excitation in time domain.
Calculating all the residues of the function (39) and undertaking

the inverse transform as in (40), the following expression is obtained

I(x, t)

=
4π

µ





R(sΨ)
[
1− cosh(γΨ(L

2
−x))

cosh(γΨ
L
2 )

]
e(t+a

v )sΨ

− π
µεL2

∞∑
n=1

2n−1
±√b2−4cns1,2nΨ(s1,2n)

sin (2n−1)πx
L e(t+a

v )s1,2n





, (43)
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where coefficients R(sΨ) and sΨ represent physical properties of the
system, taking into account properties of the medium, as well as the
dimensions of the wire and the distance from the interface

R(sΨ) =
1

2 ln L
2d

sΨ
sΨτ2+1

(
τ1 − τ2

sΨτ1+1
sΨτ2+1

) ,

sΨ = − ln L
a + ln L

2d

τ1 ln L
a + τ2 ln L

2d

.

(44)

Furthermore, other coefficients in relation (43) are given as follows

γΨ =
√

µε
(
s2
Ψ + bsΨ

)

s1,2n =
1
2

(
−b±

√
b2 − 4cn

)

b =
σ

ε

cn =
(2n− 1)2π2

µεL2
, n = 1, 2, 3, . . .

. (45)

Expression (43) represents the space-time distribution of the current
along the straight wire buried in a lossy medium excited by an impulse
excitation, i.e., it represents an impulse response. The part with
infinite series can be truncated after first ten terms achieving very
good convergence.

Furthermore, the response to an arbitrary excitation can
be obtained performing the corresponding convolution. The
excitation function is plane wave in the form of double exponential
electromagnetic pulse tangential to the wire [30]

Ex(t) = E0

(
e−αt − e−βt

)
. (46)

The transmitted electric field in the Laplace (frequency) domain can
be written as follows [2]

Etr
x (s) = Γtr(s)Ex(s)e−γd (47)

where Γtr(s) represents the Fresnel transmission coefficient defined
as [21]

Γtr(s) =
2
√

sε0√
sε + σ +

√
sε0

. (48)

The expression for the transmitted field (47) is too complex for the
use of analytical convolution, therefore the numerical convolution is
applied to obtain the results for the induced current. Numerical
convolution is carried out with the discrete samples obtained from
inverse Fourier transform of expression (47) and the discrete samples
of Equation (43).
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4. RESULTS

In this section some illustrative results obtained via the proposed
method are presented. The analytical results are obtained using the
presented method of convolution and are compared to the results
obtained by numerical solution of the corresponding frequency domain
Pocklington equation using the Galerkin-Bubnov Indirect Boundary
Element Method (GB-IBEM) and the Inverse Fast Fourier Transform
(IFFT) [2].

Evidently, Pocklington equation is used in both models, in that
way making both a full wave model. The main difference lies in the
method of solving integro-differential equation. The approximations
used for analytical solution have been stated and explained. However,
frequency domain model used for comparison is solved numerically
in the frequency domain. Generally, numerical solution is considered
to be more accurate, because fewer approximations are made in
calculation procedure, so these results are considered to be a
benchmark.

After extensive numerical tests, it has been found that optimal
parameters for numerical convolution outlined at the end of the third
part, are: number of samples nt = 216 and period of observation
T = 33µs. With these parameters, accurate results are obtained in
reasonable time period.

All results for the current response are calculated using the
standard EMP excitation [30]

E0 = 1V/m, α = 4 · 106 1/s, β = 4.78 · 108 1/s. (49)
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Figure 3. Transient current at the center of the straight wire, L = 1 m,
d = 30 cm, σ = 1 mS/m.
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The first geometry of interest to be analyzed is a wire of length
L = 1m, radius a = 5mm and the burial depth d = 30 cm. Relative
electric permittivity of a medium is given as εr = 10 and a conductivity
is varied with the respective values σ = 1mS/m, 10 mS/m and
100mS/m. The results calculated via different methods are shown
in Figures 3 to 7.

The largest discrepancies of the results can be seen in Figure 3.
But even there, a relatively good agreement between the results for the
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early time behavior (t < 20 ns) is obvious. The discrepancies at a later
time instants can be readily explained taking into account the nature
of the approximations used throughout the formulation. Namely,
it is reasonable not to expect approximation (26) to provide valid
results for very short wire (L < 1m) immersed in a low conducting
medium (σ < 1mS/m). However, even for a short wire, for higher
conductivities of a medium (Figures 4 and 5) relatively good agreement
between the results is achieved. This can be explained with larger
dissipation of energy through more conductive medium.

In Figures 6 and 7, current distribution along the wire at different
time instants is shown. The parameters correspond to geometries
shown in Figures 3 and 5, respectively. Smaller discrepancies can be
observed, but overall agreement is very good.

Figures 8 to 10 show the transient current induced at the center
of straight longer wires buried in a lossy medium with σ = 1mS/m.
The length of the wire is L = 10 m and 20 m, respectively, while burial
depth varies as d = 4 m, 1 m, 15 m, respectively.

As it can be seen in Figure 8, for a 10 m-long wire the agreement
between the results is rather satisfactorily. In Figures 9 and 10,
another interesting phenomenon can be observed. Namely, for 20 m-
long wire, a relatively low discrepancy between the results can be
seen, due to the implementation of simplified approximation for the
reflection coefficient arising from Modified Image Theory (19). The
discrepancy that can be observed for smaller burial depths is caused by
the vicinity of the earth-air interface. As the burial depth increases, as
in Figure 10, it can be seen that the results agree satisfactorily because

0

2

4

6

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t [s]

TD

FD + IFFT BEM

I 
[A

]

× 10
-3

× 10
-6

10

-2

-4

-6

Figure 8. Transient current at the center of the straight wire,
L = 10 m, d = 4 m, σ = 1 mS/m.
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of the diminishing influence of the two media interface.
In Figures 11 and 12, also, a current distribution along the wire

is shown. The results are obtained for different time instants. The
parameters of the geometries correspond to those shown in Figures 8
and 10, respectively. The overall agreement between the methods is
very good.

From examples given in Figures 3 to 12, it can be concluded that
two variables affect the agreement of the results the most; wire length
and medium conductivity. Generally speaking, the longer the wire, the
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better is the agreement and the higher the conductivity, the better is
the agreement. The lower limit for wire length is about 1 m, and for
medium conductivity is about 1 mS/m. However, these limits are not
to be taken strictly, because the influence of these two parameters is
coupled. If the wire is longer, the results are in better agreement even
for a lower conductivity of the medium, and vice versa.

The last example is related to Figure 13 representing the transient
current at the center of a 100m-long wire, buried at depth d = 1 m,
with the electrical properties of the media εr = 9 and σ = 0.833mS/m.
These values correspond to realistic configuration of power cable
layout.

It can be seen in the Figure 13, that there is a small discrepancy
in the early time behavior of the induced current which manifests in
a smaller maximum value. Namely, the conductivity of the medium is
very low and the cable is buried relatively close to the boundary, so,
taking into account the adopted approximations, the obtained results
agree rather satisfactorily.

5. CONCLUSION

In this paper, the direct analytical solution of the time domain
Pocklington integro-differential equation for straight buried thin wire
is presented. The governing equation is posed in time domain
and subsequently solved using the approximation of the unknown
current function, Laplace transform and Cauchy residue theorem, thus
obtaining analytical expression for space-time varying induced current.
The numerical convolution of the impulse response with the incident
transmitted wave is performed to obtain the transient response for
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actual excitation. The results are compared with the results obtained
via numerical solution of corresponding Pocklington equation in the
frequency domain and subsequent IFFT. The results obtained via
different approaches agree satisfactorily.
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