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Abstract—In this paper, we consider the problem of bistatic multiple-
input multiple-output (MIMO) radar systems design for parameters
estimation. Maximum channel capacity is used as criterion for the
problem of optimal systems design under transmitted power constraint
and channel constraint. We obtain that the system design based on
maximum channel capacity can be expressed as a joint optimization
problem. Given the number of transmit antenna, the number of receive
antenna and signal-noise ratio (SNR), the maximum channel capacity
can be determined. This maximum channel capacity can be obtained
from a unique appropriate power allocation and antenna placement
strategy, which is very important for system design.

1. INTRODUCTION

MIMO radar has gotten considerable attention in a novel class of
radar system, where the term MIMO refers to the use of multiple-
transmit as well as multiple-receive antennas [1–4]. MIMO radar
can transmit, via its antennas, multiple probing signals that may be
correlated or uncorrelated with each other. There are two basic regimes
of architecture considered in the current literature [5]. One is called
statistical MIMO radar with widely separated antennas, which capture
the spatial diversity of the target’s RCS [2, 6]. This spatial diversity
gain can improve the target detection and estimation of variations
parameters. The other is called coherent MIMO radar with colocated
antennas, which can obtain the waveform diversity and larger degrees
of freedom to improve the target parameters estimation, parameter
identifiability and much flexibility for transmit beampattern design [1].
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Furthermore, based on the location of transmit and receive antennas,
the coherent MIMO radar can be distributed into two classes. One
is bistatic MIMO radar; the other is monostatic MIMO radar. The
former is with the quite different locations of transmit antennas from
the receive antennas’. However, all transmit antennas are colocated,
so are all receive antennas. Then the directions of the target to all
transmit antennas are almost the same in the far-field scenario, so are
all receive antennas’. While the latter is with all transmit and receive
antennas colocated, then the directions of the target to all transmit
and receive antennas are almost the same in the far-field scenario. For
simplicity, we only discuss a bistatic MIMO radar architecture here.
As monostatic MIMO radar can be taken as a special bistatic one.

MIMO radar system optimization has been extensively investi-
gated. While the most authors concentrates on waveform optimization
problem under certain given criterion. For example, in [7], waveform
design methods for the optimization the Cramér-Rao Bound (CRB)
matrix is discussed, under a total power constraint. In [8], wave-
form design methods for maximizing the conditional mutual informa-
tion (MI) or minimizing the mean-square error (MMSE) are discussed.
The two criteria lead to the same solution under the same total power
constraint. In [9], the uncertainty of the target power spectrum is
considered and the MI and MMSE criteria lead to different minimax
robust waveforms. In [10], two information theoretic measures, maxi-
mizing the MI and maximizing the relative entropy for two hypotheses
in detection, are used as criterions for optimal waveform design un-
der transmitted power constraint. Both optimal solutions require that
transmitted waveform should “match” with the target and noise. How-
ever, the optimal solutions of the two problems lead to different power
allocation strategies. In [11], signal design for MIMO radar with colo-
cated antennas based on transmit beam pattern is considered, focus-
ing the power around the locations of the target, parameter estimation
accuracy can be significantly improved. Among these criterions for
waveform optimization, information theoretic criteria play an impor-
tant role for MIMO radar waveform design, just like for conventional
radar [12].

It is worth to note that antenna placement is an other key point
for MIMO radar systems design. Some literature has studied up on
antenna placement optimization problem. In [13], optimal antenna
placement is discussed based on CRB for velocity estimation using
separated MIMO radar. Assuming all antennas are located equidistant
from the target, it is shown that symmetrically placing the transmit
and receive antennas is the best choice, and the optimal achievable
performance is not affected by the relative position of the transmit
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and receive antennas under an orthogonal received signal assumption.
In [14], the target localization performance as a function of antennas
placement is constructed. Then the optimal antennas placement have
received from minimizing the variance of the localization error.

The predominant parameter estimation performance of bistatic
MIMO radar results from taking advantages of the degrees of freedom
greatly increased by virtual array. Considering a MIMO radar with
Mt transmit antennas and Mr receive antennas, the number of the
virtual array is MtMr. Since it can form MtMr channels of line-of-
sight (LOS) (i.e., only one path between each transmit antenna and
each receive antenna channel), like in communication theory [15]. We
notice that the greater the MI between the target impulse response and
the measurement, the better capability of parameter estimation [12].
Then channel capacity, defined as the maximum of the MI [17], is a
good tool used to evaluate the system performance. In this paper,
the MIMO radar system design for parameters estimation based on
maximum channel capacity criterion will be focused on. This design
strategy contains the factors of waveform and antenna geometry.

Notation: In this paper, we use boldface lowercase letters for
vectors and boldface uppercase letters for matrices. We use {·}∗,
{·}c, {·}T and {·}−1 for the complex conjugate transpose, complex
conjugate, transpose and inverse of a matrix, respectively. We use
| · | and tr{·} for the determinant and trace of a matrix, and E{·} for
expectation with respect to all the random variables with the brackets.
The symbol diag{a} denotes a diagonal matrix with its diagonal given
by the vector a. We let IN denote the identity matrix of size N×N , and
0 denote a zero matrix with appropriate size. Finally, (a)+ denotes the
positive part of a, i.e., (a)+ = max[0, a], and dae denotes the smallest
integer greater than or equal to a, and bac denotes the largest integer
smaller than or equal to a.

2. PROBLEM FORMULATION

Consider a bistatic MIMO radar system with Mt transmit antennas
and Mr receive antennas, which all the antennas are identical
omnidirectional, see Fig. 1. All transmit antennas are colocated, so are
all receive antennas. The transmit and receive antennas are located
in a three-dimensional (3-D) Cartesian coordinate system (x, y, z).
Assume the transmit antennas located at tk = [txk, tyk, tzk]T , k =
1, . . . , Mt, and the receive antennas located at rl = [rxl, ryl, rzl]T , l =
1, . . . , Mr. The gravity centers of transmit and receive antennas are
at tc = [xtc, ytc, ztc]T and rc = [xrc, yrc, zrc]T , respectively. Here the
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Figure 1. Illustration of bistatic MIMO radar.

centers of gravity are defined as in [18], given by
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(1)

Let xm(n), m = 1, . . . , Mt; n = 1, . . . , N denote the discrete-time
baseband signal transmitted by the mth transmit antenna, where n
and N denote the sampled time and the number of snapshots of each
transmitted signal pulse, respectively. Furthermore, the aggregate
power transmitted by the transmitters is constant P , regardless of
the number of transmit antennas. Let θt = [φt, ϕt]T ∈ Θ , [0, 2π) ×
[−π/2, π/2] and θr = [φr, ϕr]T ∈ Θ , [0, 2π) × [−π/2, π/2] denote
the direction-of-departure (DOD) and direction-of-arrival (DOA),
respectively. When all the antennas are colocated, i.e., θt ≈ θr, the
bistatic MIMO radar becomes a monostatic MIMO radar.

Under the assumption that transmitted probing signals are
narrowband and that the propagation is nondispersive, the baseband
signal at the target location can be described by the expression without
considering the velocity of the target (see, [1], [16] and [20], chapter 6)

a∗ (θt)x (n) , n = 1, . . . , N (2)

where x(n) = [x1(n), . . . , xMt(n)]T , and a(θt) is the antenna’s steering
vector for transmit antennas. If the carrier frequency of every transmit
antennas is the same, and also t1, . . . tMt are in units of wavelengths
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corresponding to the carrier frequency, a(θt) is given by

a (θt) =
[
ej2π((t′1)T u(θt), . . . , ej2π((t′Mt )

T u(θt))
]T

(3)

where t
′
i = ti − tc = [tx′i, ty′i, tz′i]

T , and where u(θt) =
[cosφt cosϕt, sinφt cosϕt, sinϕt]T is the steering vector of the isotropic
transmit antennas (i.e., the unit length vector pointing from the origin
toward the target). Assume the transmit antennas is calibrated. Let
yk(n), k = 1, . . . , Mr, n = 1, . . . , N denote the signal received by the
kth receive antenna; let

y(n) = [y1(n), . . . , yMr(n)]T , n = 1, . . . , N (4)

Under the simplified assumption of a point target, the received
data vector can be described by the equation

y (n) = βbc (θr)a∗ (θt)x (n) + ε (n) , n = 1, . . . , N (5)

where β, modeled an unknown deterministic constant during the
CPI, is the complex amplitude proportional to the RCS of the point
target. ε(n) = [w1(n), . . . , wMr(n)]T denotes the noise term. Without
loss of generality, we assume wj(n), j = 1, . . . , Mr; n = 1, . . . N
is independent identically distributed (i.i.d.) zero-mean complex
Gaussian process. The variance of this process is E{wj(n)wc

j(n)} = σ2
n.

b(θr) is the antenna’s steering vector for receive antennas, given by

b (θr) =
[
ej2π((r′1)T u(θr)), . . . , ej2π((r′Mr )T u(θr))

]T
(6)

where r′k = rk − rc = [rx′k, ry′k, rz′k]
T , and where u(θr) =

[cosφr cosϕr, sinφr cosϕr, sinϕr]T is the steering vector of the
isotropic receive antennas.

Let H = βbc(θr)a∗(θt) denote the Mr×Mt channel matrix, which
is dependent of the antennas placement seriously. Then (5) can be
reduced to

y(n) = Hx(n) + ε(n), n = 1, . . . , N (7)

Let Rx denote the covariance matrix of the input signal vector x(n),
and let Ry be the covariance matrix of the received signal vector y(n),
and let Rε be the covariance matrix of the noise vector. Assuming that
x(n) and y(n) are uncorrelated with one another, we have that

Ry , E
[
y
(
n
)
y
(
n
)∗]

= HRxH∗ + Rε

Rxy , E
[
x
(
n
)
y
(
n
)∗]

= RxH∗

Rε = σ2
nIMr (8)
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Then the capacity of channel H is given by (see, e.g., [17, 19, 20])

C = log2

|Rε + HRxH∗|
|Rε| = log2 |IMr + HRx0H∗| (9)

where Rx0 = E[x(n)x(n)∗]/σ2
n is a noise-normalized transmit

covariance matrix. We denote by µi, i = 1, . . . , nmin, nmin =
min(Mt, Mr), the ith eigenvalue of the Hermitian matrix HH∗.
Without loss of generality, we assume that |β|2 = 1. Then we can
easily get

tr [HH∗] =
∑

i
µi = tr

[
bc (θr)a∗ (θt)a (θt)bT (θr)

]
= MrMt (10)

From (10), small perturbations of the antenna locations do not change
the trace of the Hermitian matrix HH∗. Then we can get the channel
constraint condition:

∑
i µi = MrMt. Therefore, our goal is to find

the transmitted waveforms (their covariance matrix must be satisfied)
and the antennas placement that maximize the channel capacity C
under the power constraint tr{x(n)x(n)∗} 6 P and channel constraint∑

i µi = MrMt. Therefore we can express the problem of systems
design based on maximum channel capacity as a joint optimization
problem

max
ϑ,x(n)

log2 |IMr + HRx0H∗|

s.t. tr {Rx0} 6 P
/
σ2

n = P0, tr [HH∗] = MrMt (11)

where ϑ = [tT
1 , . . . , tT

Mt
, rT

1 , . . . , rT
Mr

]T is antennas placement vector,
and P0 is the signal-noise ratio (SNR).

3. SYSTEMS DESIGN CRITERION

The following lemma of Hadamard’s inequality (see [21]) is useful in
developing equation specifying optimal bistatic MIMO radar systems
design.

LEMMA 1 Let A be an N × N positive semidefinite Hermitian
matrix with (i, j)th entry aij. Then the following inequality,

|A| 6
N∏

i=1

aii (12)

holds, where equality is achieved if and only if A is diagonal.
Substituting USV ∗, the magnitude-ordered singular value

decomposition (SVD), for H, (11) can be written as
max

Q
log2 |Inmin + Q|

s.t. tr
{

Q (S∗S)−1
}

6 P0, Q ≡ SV ∗Rx0V S∗ (13)
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where S is a diagonal nmin×nmin matrix, and U and V are Mr ×nmin

and Mt × nmin matrices containing the selected columns of unitary
matrices, respectively. From LEMMA 1, we know Q is a diagonal
nmin × nmin matrix. Then we can write Q = diag(q11, . . . , qnminnmin),
where qii = µipi, and p1, . . . , pnmin is some noise-normalized power
allocation so that

∑
i pi 6 P0. Then (10) can also be written as

max
µ,p

nmin∑

i=1

log2 (1 + µipi)

s.t.

nmin∑

i=1

pi 6 P0,

nmin∑

i=1

µi = MrMt (14)

where µ = [µ1, . . . , µnmin ]
T and p = [p1, . . . , pnmin ]

T . This is a
constrained joint optimization problem which can be solved using the
method of Lagrangian multiplier [22]. Towards this goal we form

J (p1, . . . , pnmin , µ1, . . . , µnmin) =
nmin∑

i=1

log2 (1 + µipi)

+λ1

(
nmin∑

i=1

pi

)
+ λ2

(
nmin∑

i=1

µi

)
(15)

and differentiating J with respect to pi and µi and setting equal to
zero, respectively, we get

µi

1 + µipi
+ λ1 = 0,

pi

1 + µipi
+ λ2 = 0 (16)

or

pi = − 1
λ1
− 1

µi
, µi = − 1

λ2
− 1

pi
(17)

where λ1 and λ2 have to be selected such that they satisfy
nmin∑

i=1

pi = P0, and
nmin∑

i=1

µi = MrMt (18)

This discussion assumes that Q is full rank. Furthermore, with the
positive constraint on µi and pi, the optimal solutions are

pi =
(
− 1

λ1
− 1

µi

)+

, µi =
(
− 1

λ2
− 1

pi

)+

(19)

These positive constraints are enforced by employing only the top n+

(the number of positive eigenvalues of Q) modes of the nmin channel
modes. Then the optimum Qopt is given by [23]

Qopt =
[

Λn+n+ 0
0 0

]

nminnmin

(20)
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Theorem III.1: Under the power constraint tr {x (n)x (n)∗} 6 P
and channel constraint

∑
i µi = MrMt, the unique solution of the

maximization channel capacity problem is:

p1 = p2 = . . . = pn+ = P0/n+

µ1 = µ2 = . . . = µn+ = (MrMt)/n+ (21)

and the maximization channel capacity is given to

Cmax = n+ log2

(
1 +

PMrMt

σ2
nn2

+

)
(22)

n+ can be chosen by following the supplement illustration in the end
of this section.

Proof : Firstly, observe that (21) satisfies (18)–(19) obviously,
so (21) is a solution for our problem in (11). Now, we consider that
this solution is unique for our maximization problem. Consider the set
µ1, . . . , µn+ and the corresponding set p1, . . . , pn+ . The expression of
the channel capacity becomes

C =
n+∑

i=1

log2 (1 + µipi) = n+

n+∑

i=1

1
n+

log2 (1 + µipi)

= n+E {log2 (1 + µipi)} 6 n+ log2 (1 + E {µipi}) (23)

with equality iff µipi is constant for all i ∈ [1, n+] (see Jensen’s
inequality in [17]). So the maximum channel capacity is achieved for
µ1p1 = µ2p2 =, . . . , µn+pn+ . Then we can get (21).

Remarks:
a): It is worth to note that Q should not be a full rank. It depends

on the antennas placement vector and the transmitted signals. And
only to choose rank(Q) = n+ can be guaranteed the maximization
channel capacity. From (22), we can easily know that n+ depend on
P , Mr, Mt and σ2

n. It will be illustrated in detail in later part of
this section. This maximum channel capacity can be attained from
an appropriate power allocation and antenna placement strategy, by
which rank(Q) = n+ holds.

b): Theorem III.1 is the result under the assumption of the simpler
case of LOS channels with far field approximation. This assumption
ensure that one can modify the number and the value of the positive
eigenvalues of matrix HH∗ by perturbing the locations of the antennas
while keep tr[HH∗] constant. So Theorem III.1 can not ensure its
validity in a multipath environment.

c): It satisfies the maximum condition (21a) which almost all the
published literature about MIMO radar uses the narrow-band signals
with the same transmit power for all transmit antennas. Whereas,
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they do not consider the effect on the channel capacity by the antennas
placement. If the rank of the matrix Q satisfies n+ = Mt, the model
of the transmit signals in the published literature is appropriate for
maximizing the channel capacity. If the rank of the matrix Q satisfies
n+ 6= Mt (it is easy to know that n+ < Mt holds in this time),
the model of the transmit signals in the published literature is not
appropriate for maximizing the channel capacity. We can compute the
loss of channel capacity with respect to the maximum channel capacity.
It is easy to know that n+ 6 Mt holds. Then the following definition
of the channel capacity loss is positive semi-definite (only n+ = Mt,
then Closs = 0 holds), given by

Closs =Cn+−CMt =n+ log2

(
1 +

PMrMt

σ2
nn2

+

)
−n+ log2

(
1+

PMr

σ2
nMt

)
(24)

Now we are going to choose n+ for the maximum channel capacity.
Given P , Mr, Mt and σ2

n, and let k = (PMrMt)/σ2
n, we are look for

n0 (n0 is an integer) which satisfies the following equation

Cmax = max
16n06min{Mr,Mt}

n0 log2

(
1 +

k

n2
0

)
(25)

First we consider the maximum of the function

C = n log2

(
1 +

k

n2

)
(26)

and differentiating C with respect to n and setting equal to zero, we
get

log2

(
1 +

k

(n′)2

)
=

2k

(n′)2 + k
(27)

Using the numerical analysis technique, we have the unique solution
n′ = 0.505

√
k. Then we consider the monotony characteristic of (26).

Taking the first order derivative of (26) with respect to n, we get

∂C

∂n
= log2

(
1 +

k

n2

)
− 2k

n2 + k

{ > 0, n 6 n′

< 0, n > n′
(28)

Then n′ is the maximum point of (26) [22]. Whereas, n′ may be not
an integer, so we have the choose strategy of n0 based on n′ in the
following table.

It is obvious that n0 is not necessary for satisfying n+ = n0 · n+

is chosen by following the rule below:
Theorem III.1 supplement illustration:

• if n0 > nmin = min (Mr, Mt), then we have to take n+ = nmin,
• if n0 < nmin, we have to take n+ = n0.
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Table 1. Choose strategy of n0 based on n′.

n′ n0

integer n′

non-integer and 0 < n′ < 1 1
non-integer and n′ > 1, C|dn′e > C|bn′c dn′e
non-integer and n′ > 1, C|dn′e < C|bn′c bn′c
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a function of the SNR, Mr = 8,
Mt = 4.

 10  5 0 5 10
0

2

4

6

8

10

12

14

16

18

SNR(dB)

 

 

Maximum channel capacity

Channel capacity with n+= Mt

− −

C
h

an
n

el
 c

ap
ac

it
y

 (
b

it
s)

Figure 3. Comparison between
the maximum channel capacity
and the channel capacity using
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4. NUMERICAL RESULTS

In this section, we present numerical examples that illustrate the
systems design solution derived in this paper.

In our first example we consider that the channel capacity varies
with SNR. Assume a MIMO radar system having eight receive antennas
and four transmit antennas, that is Mr = 8 and Mt = 4. Fig. 2 depicts
the value of n+ as a function of the SNR, based on Theorem III.1
supplement illustration. At lower SNR, n+ increases with SNR’s gain
non-linearly, just like a ladder. While at enough large SNR (SNR >
2 dB here), n+ fixes with a constant at 4 (for n+ 6 min(Mr,Mt)), i.e.,
the number of the transmit antenna. Fig. 3 depicts the comparison
between the maximum channel capacity and the channel capacity using
n = Mt usually used system strategy. It is clearly seen that both of
channel capacities increase with SNR. However, at lower SNR (< 3 dB),
the channel capacity of our proposed system strategy is superior. In
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Fig. 4 we plot the Closs as a function of the SNR corresponding to two
system strategies in Fig. 3, where Closs is defined as in the Section 3,
i.e., we take the transmit model that all transmitting antennas transmit
the same power regardless of whether n+ = Mt holds. It likes a
sawtooth when n+ < 4. And Closs keeps zero when the SNR is large
enough for keeping n+ = 4.

In our second example we consider that the channel capacity varies
with the number of receive antenna. Obviously, there are the similar
results with respond to the number of transmit antenna. Assume
a MIMO radar system having four transmit antennas and working
in a SNR = 2 dB environment. Fig. 5 depicts the value of n+ as
a function of the number of receive antenna Mr, based on Theorem
III.1 supplement illustration. n+ increases with Mr non-linearly when
Mr < 8, just like in Fig. 2. And n+ keeps a constant 4, i.e., Mt, when
Mr > 8. Fig. 6 depicts the the comparison between the maximum
channel capacity and the channel capacity using n = Mt. It is clearly
seen that both of channel capacities increase with Mr. However, at
smaller Mr, the channel capacity of our proposed system strategy is
superior. In Fig. 7 we plot the Closs as a function of the number of
receive antenna corresponding to the conditions in Fig. 6. It also likes
a sawtooth when Mr 6 8. And Closs keeps zero when Mr is large
enough for keeping n+ = 4 (Mr > 8 here), which is the similar results
in Fig. 4.
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Figure 4. Channel loss cor-
responding to the conditions in
Fig. 3 varying with SNR.
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Figure 7. Channel loss cor-
responding to the conditions in
Fig. 6 varying with Mr.

5. DISCUSSIONS AND CONCLUSION

In this paper, we have shown the solution of the optimum system
design problem with bistatic MIMO radar for parameters estimation,
which contains the factors of waveform and antenna geometry. We have
used maximum channel capacity as criterion for this optimal problem
under transmitted power constraint and channel constraint. And this
problem of systems design based on maximum channel capacity can
be expressed as a joint optimization problem. Given the number of
transmit antenna, the number of receive antenna and SNR, then the
maximum channel capacity can be determined, which can be obtained
from a unique appropriate power allocation and antenna placement
strategy, which is very important for systems design.

In practical application, there are many factors involved in the
choice of a particular antenna geometry in MIMO radar system. It is
obvious that the antenna placement strategy is greatly decided by the
mission of radar system. We may get the completely different antenna
configuration under the different design criterion.
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