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DIFFRACTION OF PLANE WAVE BY STRIP WITH
ARBITRARY ORIENTATION OF WAVE VECTOR

S. S. Sautbekov

Eurasian National University, 5 Munaitpassov St., Astana, Kazakhstan

Abstract—The classical problem for diffraction of a plane wave
with an arbitrarily oriented wave vector at a strip is considered
asymptotically by Wiener-Hopf method. The boundary-value problem
has been broken down into distinct Dirichlet and Neumann problems.
Each of these boundary-value problems is consecutively solved by a
reduction to a system of singular boundary integral equations and then
to a system of Fredholm integral ones of second kind. They are solved
effectively by a reduction to a system of linear algebraic equations with
the help of the etalon integral and the saddle point method.

1. INTRODUCTION

The problem of the electromagnetic wave diffraction on a conducting
strip attracts attention since the publication of Sommerfeld’s famous
paper where an exact solution of the half-plane diffraction problem was
presented [1]. Both the method developed and the results obtained are
detailed in the numerous textbooks [2–5]. Following this technique,
researchers have tried to construct the solution of the problem by
combining two similar solutions for spaced edges of the conducting
surface. The solution obtained with this approach depends critically
on the width of the strip.

The exact solution for this problem, which removes the necessity
for the Kirchhoft-Huygens (K-H) approximation, was first reported
by Strutt [6] for the case of incidence in a plane normal to the strip
axis. Generally, at arbitrary orientation of the incident propagation
vector, the range of validity of the K-H approximation also depends
on the polar angle between the incident wave propagation vector
and strip axis. For small angle values, a K-H approximation gives
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poor results. Other methods as Kobayashi potential method [7],
Maliuzhinet’s techniques [8] could be used to solve the problem. The
best result was achieved by Ufimtsev [9] who obtained the solution for a
strip in the form of a series in sequential edge waves excited by different
its edges. This series is formally convergent at any strip width, but its
elements are integrals of rising multiplicity, and that is inconvenient
from the computational viewpoint.

The classical diffraction problem of a plane wave, orthogonally
impinged on a strip edge was considered in a closed-form [10]. In
the present paper a generalization of the article [10] in case when
the plane wave propagates in an arbitrary direction is carried out.
For convenience the boundary-value problem is divided into two
independent ones which are named after Dirichlet and Neumann
and then are solved separately by the Wiener-Hopf method [5, 10].
It is important to observe that the obtained solution automatically
satisfies the boundary Meixner’s condition [11] on the strip edge
which determines the uniqueness of the solution of the boundary-value
problem.

2. STATEMENT OF THE PROBLEM

Let a plane electromagnetic wave (Fig. 1) impinges on an ideally
conducting strip |z| ≤ a, y = 0, −∞ < x < ∞ in arbitrary direction,
given by the unit vector n

E 0 = eE0, E0 = Aekr, H 0 = n× e

√
ε0ε

µ0µ
E0 (e⊥n), (1)

k = nk0, k0 = ω
√

ε0εµ0µ, nr = x cosβ + y sinβ sinψ0 + z sinβ cosψ0

where A is the electric field amplitude, β is the angle between the x-
axis and the wave propagation direction n, ψ0 is the angle between the
z-axis and the YOZ plane projection of n. The electric field direction is
given by any unit vector e, perpendicular to n. Further, the harmonic
time factor exp(−iωt) is everywhere omitted.

As the incident wave has an x dependence in accordance with the
harmonic law exp(ixk0 cosβ) in (1), the diffraction fields should have
the same x-co-ordinate dependence. Hence, it is possible to present
the electromagnetic field in the form

E (x, y, z) = E (y, z)eixk0 cos β, H (x, y, z) = H (y, z)eixk0 cos β,

E = E 0 + E 1, H = H 0 + H 1,
(2)

where E 1, H 1 are the diffraction fields. Moreover, the harmonic x-
dependence factor will be dropped in the expressions, too.
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Figure 1. A strip.

Using the above mentioned dependence (2) in the Maxwell’s
equations, the electromagnetic field components can be written as [5]:

Ey =
i

k0 sin2 β

(
cosβ

∂

∂y
Ex +

√
µ0µ

ε0ε

∂

∂z
Hx

)
, (3)

Ez =
i

k0 sin2 β

(
cosβ

∂

∂z
Ex −

√
µ0µ

ε0ε

∂

∂y
Hx

)
, (4)

Hy =
i

k0 sin2 β

(
cosβ

∂

∂y
Hx −

√
ε0ε

µ0µ

∂

∂z
Ex

)
, (5)

Hz =
i

k0 sin2 β

(
cosβ

∂

∂z
Hx +

√
ε0ε

µ0µ

∂

∂y
Ex

)
(6)

by the directed along the strip (x-axis) components Ex, Hx. As known
these basic components of the electromagnetic field satisfy the two-
dimensional Helmholtz equation for Ex and Hx

∂2

∂y2
Ex +

∂2

∂z2
Ex + k2

0 sin2 βEx = 0, (7)

∂2

∂y2
Hx +

∂2

∂z2
Hx + k2

0 sin2 βHx = 0, (8)

which follow from

Ex =
i

ωε0ε

(
∂Hz

∂y
− ∂Hy

∂z

)
, Hx = − i

ωµ0µ

(
∂Ez

∂y
− ∂Ey

∂z

)

and (3)–(6).
Thus, the boundary-value problem was transformed to the

solution of Equations (7) and (8) for Ex, Hx with boundary conditions:

Ex = Ez = 0 at |z| ≤ a, y = 0 (9)
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which corresponds to an absence of a tangential component of the
electric field intensity on the strip. Since Ex and Hx are independent,
like one can see, the boundary-value problem is divided in the next
two boundary-value ones:

2.1. Dirichlet Problem

Equation (7) with a boundary condition

Ex = 0 at |z| ≤ a, y = 0.

Below it will be referred to as a magnetic problem.

2.2. Neumann Problem

Equation (8) with a boundary condition

∂

∂y
Hx = 0 at |z| > a, y = 0. (10)

This problem is considered as an electric problem. It is easy to show
that the condition (10) comes from (4) and (9). Further we will use
the following notations

k ≡ k0 sinβ, h ≡ k cosψ0. (11)

3. SOLUTION OF THE ELECTRIC PROBLEM

We will present the general solution of Equation (8) in the form

Hx(y, z) = signy

∞∫

−∞
ei(wz+

√
k2−w2|y|)F(w)dw + H0

x(y, z). (12)

Here, the component of the magnetic field of the incident plane wave
(1) along the strip is

H0
x(y, z) = B0e

i(yk sin ψ0+zh), B0 ≡ A

√
ε0ε

µ0µ
sinβ(ez sinψ0 − ey cosψ0),

ey and ez are the y- and z-axes projections of the unit vector
e. The integral equation, expressing the absence of currents, is a
consequence of the continuity condition of the magnetic field (12) on
the continuation of the strip

∞∫

−∞
eiwzF(w)dw = 0 at |z| > a, (13)
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where F is the Fourier component of the current density for the
electric problem. According to the boundary condition (9) we have
the following integral equation

∞∫

−∞
eiwz

√
k2 − w2F(w)dw + k sinψ0B0e

ihz = 0 at |z| ≤ a. (14)

For concreteness the value h is fixed for example in the lower w half-
plane (LHP).

We will construct the solution of the system of the singular
Equations (13) and (14) by a technique, developed in Ref. [10] as
analytical sources, localized on the edges of the strip. Thus, the Fourier
component of the current density is written as a sum of two analytical
sources:

F(w) = F1 + F2,

F2(w) =
1√

k − w

(A2(w) + B+(w)
)
e−iwl2 ,

F1(w) =
1√

k + w

(A1(w) + B−(w)
)
e−iwl1 ,

(15)

where the co-ordinates of the edges 1 and 2 are l1 and l2, respectively.
Let us choose the co-ordinates as l1 = a and l2 = −a.

Note that F1 (F2) conforms to the current density on the semi-
infinite plane in case B− = 0 (B+ = 0). The desired functions
A2 and A1 correspond to plane wave amplitudes which provides a
full cancelation of the field of the incident plane wave on the strip.
Therefore they should be analytical functions on the entire complex w
plane, except for a simple pole at w = h on the LHP w. Note that
the functions B−, B+ answer to the amplitudes of the reflected waves
from the strip edges, as the singular points in the upper half plane
(UHP) correspond to traveling waves from left to right. Therefore, the
functions B+ and B− should be analytical in the LHP, and B+ in the
UHP.

It is convenient to present them in the form of contour integrals

B+(w) =
1

2πi

∫

C−

b1(u)
u− w

du, B−(w) = − 1
2πi

∫

C+

b2(u)
u− w

du, (16)

where b1, b2 are certain analytical functions in the band |Imu| < Imk,
C− and C+ are integration contours (IC), laying parallel at a distance
∓δ (0 < δ < Imk) from the real axis and consisting of an infinitely
narrow loop, enveloping the point w = ±h from below or from above
(Fig. 2).
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Figure 2. Integration contours.

Closing the IC in the LHP at z ≤ −a, according to Jordan’s
lemma, in the integral Equation (14), we obtain

A1(w) =
B0

√
k + h

2πi

eiha

w − h
. (17)

We compensate the pole at this point in the LHP w at z < −a and
find

A2(w) = −B0

√
k − h

2πi

e−iha

w − h
(18)

from (13). Note that (17) and (18) are valid when the plane wave
is incident from the left. It is also important to observe that the F
function satisfies the integral Equation (14) automatically. Really, each
a summand of an integrand in (14) proves to be an analytical function
in that half-plane where the integration contour is closed, according to
the Jordan’s lemma.

Representing the B+(w) function in the form of a Cauchy type
integral (16), taking a residue in the point w = u and compensating
the branch point in the LHP [10], we obtain the required function from
(13):

B+(w) = − 1
2πi

∫

C−

e−i2au

u− w

√
k − u

k + u

(A1(u) + B−(u)
)
du.

By means of the replacement u → −u, the latter is represented as

B+(w) =
1

2πi

∫

C+

ei2au

u + w

√
k + u

k − u

(A1(−u) + B−(−u)
)
du. (19)

Analogously, eliminating the branch point in the w UHP at z > a
in (13), also as well as the poles, we get

B−(w) =
1

2πi

∫

C+

ei2au

u− w

√
k + u

k − u

(A2(u) + B+(u)
)
du. (20)
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Hence, the boundary-value problem for the electric problem is reduced
to the solution of a system of Fredholm integral Equations (19) and
(20) of second kind.

That system may be integrated with a high precision by means of
the saddle point method and the etalon integral [10]

J(w, l) =
1

2πi

∫

C+

eilu

u− w

√
k + u

k − u
du

=
1
2i

H
(1)
0 (kl)−

√
k + w

k − w
eilwΥ(kl/2, w/k),

where

Υ(kl, cosβ) = −
√

k2 − w2

2πi
e−i2lw

∫

C1

ei2lu

(u− w)
√

k2 − u2
du

= sinβ

kl∫

∞
H

(1)
0 (2t)e−2it cos βdt,

H
(1)
0 (x) is the Hankel function of the first kind and zero order, C1

is the integration contour along the banks of the cut of the function
v =

√
k2 − w2 that is a parallel line to the imaginary axis upwards

from the branch point.
Note that

J(−k, l) =
i

2
H

(1)
0 (lk). (21)

By deforming the integration contours in (19) and (20) up to C1 which
is the line of the steepest descent and applying the saddle point method
and the etalon integral, the short-wave asymptotic behavior of the
system of integral Equations (19), (20) is achieved:

B+(w) ∼= A1(w)
(
J(−w, 2a)− J(−h, 2a)

)
+ B−(−k)J(−w, 2a),

B−(w) ∼= A2(w)
(
J(w, 2a)− J(h, 2a)

)
+ B+(k)J(w, 2a).

By solving the following system of linear algebraic equations:
B+(k) = A1(k) (J(−k, 2a)− J(−h, 2a)) + B−(−k)J(−k, 2a),

B−(−k) = A2(−k) (J(−k, 2a)− J(h, 2a)) + B+(k)J(−k, 2a),
we find the function values in a branch point:

B+(k) = A1(k)
J(−k, 2a)− J(−h, 2a)

1− J2(−k, 2a)
+A2(−k)J(−k, 2a)

J(−k, 2a)− J(h, 2a)
1− J2(−k, 2a)

, (22)
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B−(−k) = A2(−k)
J(−k, 2a)− J(h, 2a)

1− J2(−k, 2a)
+A1(k)J(−k, 2a)

J(−k, 2a)− J(−h, 2a)
1− J2(−k, 2a)

. (23)

It is important to observe that 1 − J2(−k, 2a) is a resonance
denominator in the foregoing expressions.

Thus, all required functions of a system of the integral equations
were deduced. Now we will calculate the field.

3.1. Magnetic Field Calculation

By substituting (15) in (12) we will calculate the component of the
magnetic field of the conical waves

H1
x = I1 + I2,

in the form of integrals sum

I1 = signy

∞∫

−∞
ei(w(z−a)+v|y|)A1(w) + B−(w)√

k + w
dw,

I2 = signy

∞∫

−∞
ei(w(z+a)+v|y|)A2(w) + B+(w)√

k − w
dw.

In a polar coordinate system:

z = r cos θ, y = r sin θ; w = k sinα, v = k cosα, (24)

the first integral is

I1 =
B0

πi

∫

S

eikr− sin(α+θ−)

sinα− cosψ0

∣∣∣∣sin
α− π

2

2

∣∣∣∣ {cos
ψ0

2
eika cos ψ0 − sin

ψ0

2

e−ika cos ψ0 [J(k sinα, 2a)− J(k cosψ0, 2a)]}dα

+
√

2k

∫

S

eikr− sin(α+θ−)

∣∣∣∣sin
α− π

2

2

∣∣∣∣J(k sinα, 2a)B+(k)dα,

where S is the integration contour in the complex plane, passing from
the top of the second quadrant down through the co-ordinate origin to
the fourth one. Here, the following notation is introduced:

r− ≡
√

r2 − 2ar cos θ + a2, θ− ≡ θ + arctan
(

a sin θ

r − a cos θ

)
, (25)
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in accordance with a transfer of the coordinate origin to the strip edge
by a polar coordinates transformation:

r cos θ − a = r− cos θ−, r sin θ = r− sin θ−.

Their asymptotic behaviors are useful, too:

r− ' r − a cos θ, θ− ' θ +
a

r
sin θ at r À a.

Putting a new integration variable τ = α + ζ − π/2 and with a
glance to the representation of the Hankel function

H
(1)
0 (kr−) =

1
π

∫

S

eir−k cos τdτ,

by means of the saddle point method [12], we will deduce

I1 = −iB0H
(1)
0 (kr−)

sin θ−
2

cos θ− − cosψ0

{
cos

ψ0

2
eika cos ψ0 − sin

ψ0

2

e−ika cos ψ0
[
J(k cos θ−, 2a)− J(k cosψ0, 2a)

]}
+
√

2kπ

H
(1)
0 (kr−) sin

θ−

2
J(k cos θ−, 2a)B+(k). (26)

The second integral is calculated similarly:

I2 = iB0H
(1)
0 (kr+)

cos θ+

2

cos θ+ − cosψ0

{
sin

ψ0

2
e−ika cos ψ0 − cos

ψ0

2

eika cos ψ0
[
J(−k cos θ+, 2a)− J(−k cosψ0, 2a)

]}
+
√

2kπ

H
(1)
0 (kr+) cos

θ+

2
J(−k cos θ+, 2a)B−(−k). (27)

Here, the following notation

r+ ≡
√

r2 + 2ra cos θ + a2, θ+ ≡ θ − arctan
(

a sin θ

r + a cos θ

)
(28)

and its asymptotic forms

r+ ' r + a cos θ, θ+ ' θ − a

r
sin θ

are used. In a general way, the diffraction fields in Equations (26) and
(27) are conical. They go over to cylindrical waves [10] at β = π/2.
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4. SOLUTION OF THE MAGNETIC PROBLEM

The general solution of Equation (7) is presented in the form, also as
well as in (12) [10]:

Ex(y, z) =

∞∫

−∞
ei(wz+v|y|) F (w)

v
dw + A0e

i(hz+yk sin ψ0), (29)

where v =
√

k2 − w2, A0 = exA, ex is the x-axis projection of the unit
vector e.

So, from (9) and (29), according to the boundary condition, we
have the integral equation

∞∫

−∞
eiwz F (w)

v
dw + A0e

ihz = 0 at |z| ≤ a. (30)

For concreteness the value h is fixed for example in the lower w half-
plane (LHP).

Due to the continuity condition of the magnetic field component
Hz on the continuation of the strip with a glance to (29) and (6), a
fulfillment of the following integral equation is necessary

∞∫

−∞
eiwzF (w)dw = 0 at |z| > a. (31)

Here, F is the Fourier component of the current density for the
magnetic problem. The solution of a system of the singular integral
Equations (30) and (31) will be constructed by the method of edge
sources [10]

F (w) = F1 + F2, (32)

where

F2(w) =
√

k − w
(
A2(w) + B+(w)

)
eiwa,

F1(w) =
√

k + w
(
A1(w) + B−(w)

)
e−iwa.

Here, the required functions A2 and A1 correspond to the plane wave
amplitude and should be analytical functions on the entire complex w-
plane, except for the simple pole at w = h. The functions B+ and B−
answer to the amplitudes of the reflected waves from the strip edges,
B− should be analytical in the LHP w, and B+ in the UHP. Therefore,
the required functions B− and B+ were represented as well as in (16).



Progress In Electromagnetics Research M, Vol. 21, 2011 127

Compensating the simple pole at the point w = h in the w LHP,
we define from (30)

A1(w) =
A0

√
k − h

2πi

eiha

w − h
. (33)

Likewise, we obtain from (31) at z < −a

A2(w) = −A0

√
k + h

2πi

e−iha

w − h
. (34)

Compensating the branch point of the integrand in (31) in the w
LHP at z < −a, similarly to (19), we get B+(w):

B+(w) =
1

2πi

∞+iδ∫

−∞+iδ

ei2au

u + w

√
k − u

k + u

(
A1(−u) + B−(−u)

)
du. (35)

Compensating the branching point in the w UHP at z > a from (31),
we also obtain:

B−(w) =
1

2πi

∞+iδ∫

−∞+iδ

ei2au

u− w

√
k − u

k + u

(
A2(u) + B+(u)

)
du. (36)

Thus, the system of singular boundary integral Equations (30) and
(31) is reduced to a system of the functional Equations (35) and (36)
which are Fredholm integral equations of second kind. The validity of
the solution of (30) and (31) may be readily checked by substituting of
(33)–(36) in the system and calculating the integrals, using the theory
of residues.

Further, the system will be solved with the help of the saddle point
method and the etalon integral:

I(w, l) =
1

2πi

∫

C+

eilu

u− w

√
k − u

k + u
du.

It can be expressed by virtue of the special functions of Hankel H
(1)
0

and Υ [10]:

I(w, l) =
1
2i

H
(1)
0 (kl)−

√
k − w

k + w
eilwΥ(kl/2, w/k). (37)

By deforming the integration contours in (35) and (36) up to the banks
of the cut C1 which is the line of the steepest descent and calculating
the short-wave asymptotic behavior of the integral, employing the
saddle point method and the etalon integral (37), the system of
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integral Equations (35), (36) is reduced to a system of algebraical linear
equations:

B+(k) = A1(k) (I(−k, 2a)− I(−h, 2a)) + B−(−k)I(−k, 2a),

B−(−k) = A2(−k) (I(−k, 2a)− I(h, 2a)) + B+(k)I(−k, 2a).
(38)

The functional values at the saddle point are found by solving the
forgoing system of linear algebraic equations:

B+(k) = A2(−k)I(−k, 2a)
I(−k, 2a)− I(h, 2a)

1− I2(−k, 2a)
+ A1(k)

I(−k, 2a)− I(−h, 2a)
1− I2(−k, 2a)

, (39)

B−(−k) = A1(k)I(−k, 2a)
I(−k, 2a)− I(−h, 2a)

1− I2(−k, 2a)
+ A2(−k)

I(−k, 2a)− I(h, 2a)
1− I2(−k, 2a)

, (40)

where the required functions are defined in a short-wave approximation
by these values as

B+(w) ∼= A1(w) (I(−w, 2a)− I(−h, 2a)) + B−(−k)I(−w, 2a),

B−(w) ∼= A2(w) (I(w, 2a)− I(h, 2a)) + B+(k)I(w, 2a).
(41)

4.1. Electric Field Calculation

The diffraction field is calculated by substituting of (32) in (29)

E1
x = I3 + I4 (42)

in the form of the following integrals:

I3 =

∞∫

−∞
ei(w(z−a)+v|y|) A1(w) + B−(w)√

k − w
dw, (43)

I4 =

∞∫

−∞
ei(w(z+a)+v|y|) A2(w) + B+(w)√

k + w
dw. (44)
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The integral (43) in the notation of (25) in a polar coordinate system
(24) becomes

I3 =
A0

πi

∫

S

eikr− sin(α+θ−)

sinα− cosψ0

∣∣∣∣cos
α− π

2

2

∣∣∣∣
(

sin
ψ0

2
eika cos ψ0 − cos

ψ0

2

e−ika cos ψ0 [I(k cosα, 2a)− I(k cosψ0, 2a)]
)
dα +

√
2k

∫

S

eikr− sin(α+θ−)

∣∣∣∣cos
α− π

2

2

∣∣∣∣ I(k sinα, 2a)B+(k)dα.

Next, we obtain the short-wave asymptotic formula by the saddle point
method

I3
∼= −iA0H

(1)
0 (kr−)

cos θ−
2

cos θ− − cosψ0

{
sin

ψ0

2
eika cos ψ0 − cos

ψ0

2

e−ika cos ψ0
[
I(k cos θ−, 2a)− I(k cosψ0, 2a)

]}
+
√

2kπ

H
(1)
0 (kr−) cos

θ−

2
I(k cos θ−, 2a)B+(k). (45)

Analogously, we have for the integral (44):

I4
∼= −iA0H

(1)
0 (kr+)

sin θ+

2

cos θ+ − cosψ0

{
− cos

ψ0

2
e−ika cos ψ0 + sin

ψ0

2

eika cos ψ0
[
I(−k cos θ+, 2a)− I(−k cosψ0, 2a)

] }

+
√

2kπH
(1)
0 (kr+) sin

θ+

2
I(−k cos θ+, 2a)B−(−k). (46)

It should be noted that the obtained diffraction electromagnetic
waves are conical, they go over to cylindrical at β = π/2 and their
asymptotic expressions provide a high precision [10].

5. CONCLUSION

Let us now consider a transition to a limit of the strip to a half plane
when the first edge goes to infinity. If the second analytical source in
Equation (15) is located in the origin of coordinates (l2 = 0) and the
first analytical source is at infinity (l1 → ∞) from Equation (27) we
obtain the asymptotic magnetic field formula

H1
x = I2 ' B0

cos θ
2 sin ψ0

2

cos θ − cosψ0

√
2

πk0r sinβ
ei(k0x cos β+k0r sin β+π

4
). (47)
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Similarly from Equation (46) we have the next asymptotic expression
for the electric field

E1
x = I4 ' A0

sin θ
2 cos ψ0

2

cos θ − cosψ0

√
2

πk0r sinβ
ei(k0x cos β+k0r sin β+π

4
). (48)

Thus, the formulae (47) and (48) coincide with the expressions for the
diffraction of the plane wave by a half plane [5].

Notice that primary edge waves in Equations (26) and (27) are
coincided with the results [9]

H1
x = I1 + I2 ∼ 2

cosϑ + cos ϑ0

[
sin

ϑ

2
sin

ϑ0

2
e−ikl(cos ϑ+cos ϑ0) − cos

ϑ

2

cos
ϑ0

2
eikl(cos ϑ+cos ϑ0)

]
ei(kr+π

4
)

√
2πkr

, (49)

in the far zone found from the solution of the half-plane diffraction
problem, where the asymptotic form of Hankel function and the
following notation θ0 = π − ψ0, a = l, β = π

2 , k0 = k are used.
So, the first terms of I1, I2, I3, I4 in Equations (26), (27), (45),

(46) for H1
x and E1

x correspond to a diffraction of the plane wave,
incident to the half plane. The second terms in equations listed above
correspond to the diffraction of the primary conical wave on the edges
of the strip.

It is interesting to observe that the precision of the dominating
contribution turns out to be no less than that of the solution
of the tertiary diffraction, achieved by the method of successive
approximations.
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