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Abstract—A comprehensive study is performed to investigate the
performance of a non-uniform circular array interferometer in a real
time 3-dimensional direction finder. The angular range of view is
supposed to be 65 degrees vertically and 120 degrees horizontally, which
is suitable for airborne applications. Interferometer is designed to
work in the S, C and X bands. Regarding optimization process, the
interferometer employs an eight element non-uniform circular array
along with a phase reference antenna at the center of the array. Several
quantities and parameters are studied, e.g., frequency behavior, origins
of phase measurement errors, Signal to Noise Ratio (SNR) effect on
phase measurement, and the effect of the phase measurement error
on direction finding performance. The proposed interferometer is able
to tolerate at least 35 degrees of phase measurement error. Radius of
the array is determined to be 22 cm in order to have good frequency
response in the desired frequency band. Both Generalized Regression
Neural Network (GRNN) and Maximum Likelihood (ML) estimation
are applied for mapping the phase relationships between antennas to
the Direction of Arrival (DoA). The results of two methods are well
matched, and therefore validation is performed.

1. INTRODUCTION

Direction Finding (DF) systems have found important applications
in geo-location, navigation, target locating systems, and Electronic
Counter Measure (ECM) systems. In comparison with other methods,
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for higher accuracy and more noise immunity, phase comparison DF
system (interferometer) based on the array of antennas is a good
choice [1, 2]. The greatest difficulty arising with an interferometer is
that for a specific range of view, higher accuracy needs solving more
ambiguities [3, 4]. To avoid ambiguity, the phase measurements must
be done in an interval with electrical length less than 2π or equivalently
the employed baseline must be shorter than half of the wavelength [2–
4].

In spite of switching beam former with butler matrices [2, 5, 6],
Uniform Circular Array (UCA) of antennas has been widely considered
for interferometer direction finder [7–10]. In [11], the performance
of different direction finding algorithms for the circular arrays is
investigated. In general, using a non-uniform array may improve
the performance of direction finding [12]. There have been several
promising attempts to extend the concept of various direction
finding algorithms to arbitrary non-uniform array geometries [13–15].
However, in the most of literature, a comprehensive study, which
includes all parts of a practical DF system, frequency behavior, and
the effect of systematic errors, is obviously missed.

A new real time 3-D single channel DF system is designed and
presented in this paper. The DF algorithm employs neural networks to
make the system both real time and more robust to phase measurement
errors. Moreover, another method which employs maximum likelihood
is applied for validating the results. Phase measurement blocks of
the system are explained and origins of phase measurement errors
are discussed. The effects of sampling rate and SNR on phase
measurement performance are studied. Unlike the most of studies in
the literature which consider narrow-band and 2-D direction finding
problem, this paper analysis covers 2–12 GHz frequency band as well
as the 3-D range of view, which is 65 degrees vertically and 120 degrees
horizontally. Even with 35 degrees of phase measurement error, the
proposed interferometer is able to achieve the DF accuracy less than
1 degree of RMS in both azimuth and elevation.

2. DF ALGORITHMS

2.1. Generalized Regression Neural Network and Maximum
Likelihood Estimation

The radial-basis function network (RBFN) is a three-layer feedforward
network, which is shown in Figure 1. It has universal approximation,
optimization, and regularization capabilities. It has been proved that
the RBFN can theoretically approximate any continuous function [16].
Radial basis networks may require more neurons than multilayer
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Figure 1. Architecture of the RBFN.

perceptron networks, but often they can be designed in a fraction of the
time it takes to train standard multilayer networks. They work best
when many training vectors are available. One variant of the radial
basis network, the Generalized Regression Network (GRNN) consists
of radial basis function cells in the first layer [17]. The weights and
biases are computed from the input and known output directly.

The phase differences between antennas can be computed from
inner product of the DoA vector and the vector of antennas position
by Equation (1).

∆Ψ12 =
2π

λ

(
~P1 · ân − ~P2 · ân

)
(1)

In Equation (1), λ is the wavelength, ~P is the vector of antennas
position and ân is the unit vector of DoA. In this paper the generalized
regression neural network in each frequency (2 GHz to 12 GHz with step
100MHz) has been trained with the phase differences between antennas
calculated from Equation (1) and DoA in spherical coordinate system
varied from ϕ = 25◦ to ϕ = 156◦ and θ = 85◦ to θ = 161◦ with
step 1.23◦ (coordinate system is shown in Figure 5). To maintain the
continuity of the input trained data instead of ∆Ψs (which jump from
−π to +π) we use sine and cosine of them. The outputs of these
networks are azimuth (ϕ) and elevation (θ) of DoA. The standard
deviation of the radial basis function is determined to be 0.3 after
optimization.

Maximum likelihood (ML) techniques were some of the first
ones investigated for DoA estimation. Since ML techniques are
computationally intensive, they are less popular than other techniques.
However, in terms of performance, they are superior to other
estimators, especially at low SNR conditions [18]. ML estimation
is a procedure that finds the set of parameters which maximize
the likelihood function. The likelihood function is the conditional
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probability of the observation for measured data sample, assuming
the probability density function is predetermined with respect to
the parameters [19]. Given a received data sequence x(tn), it is
desired to reconstruct the components of the data due only to the
desired signals. The parameter values for which the reconstruction
approximates the received data with maximal accuracy are taken to
be the DoA and desired signal waveform estimates. The approach is to
subtract from x(tn) an estimate A(θ̂, ϕ̂)ŝ(tn) of the signal components
A(θ, ϕ)s(tn), where x(tn) is the measured data, A(θ, ϕ) is the steering
matrix of the array and s(tn) is the received signal from the array.
If the estimates (θ̂, ϕ̂) and ŝ(tn) are sufficiently good, the residual
x(tn) − A(θ̂, ϕ̂)ŝ(tn) will primarily consist of noise and interference
with the smallest energy. In other words, minimizing the energy in
the residual x(tn) − A(θ̂, ϕ̂)ŝ(tn) can result in accurate estimates of
(θi ≈ θ̂, ϕi = ϕ̂) and s(tn) ≈ ŝ(tn) with proper choice of (θ̂, ϕ̂) and
ŝ(tn). The method can be stated mathematically in a least-squares
form as

min
θ,ϕ,ŝ(tn)

〈∥∥∥x(tn)−A(θ̂, ϕ̂)ŝ(tn)
∥∥∥

2
〉

N

(2)

for which the best least squares fit between the received signal and a
reconstruction of the signal components is sought [19].

In this paper, the measured data (x(tn)) is the measured phase
difference of each antenna with respect to the reference antenna. The
steering matrix (A(θ, ϕ)) is computed with step equal to 0.1 degree in
both azimuth (ϕ) and elevation (θ) according to Equation (1) and the
received signal (s(tn)) is assumed to be equal to unity.

2.2. Phase Measurement System and Phase Measurement
Error

If the product of cos(ωt + Ψ1) and cos(ωt + Ψ2) passes through an
appropriate flat low pass filter (LPF), the output would be cos(∆Ψ12).
However, If the product of sin(ωt + Ψ1) and cos(ωt + Ψ2) does the
same, the output would be sin(∆Ψ12). This is the main idea of using
90 degrees hybrid coupler in the path of reference signal to detect
the phase differences between the signals of other antennas and the
reference one.

Phase measurement system based on hybrid coupler is depicted in
Figure 2. Simulation result with Advanced Designed System (ADS),
for inverse tangent of the ratio Vout sin

Vout cos is shown in Figure 3. In this
simulation, the signal power values at the output of the antennas are
−64 dBm, the phase difference between the signals is 70 degrees, and
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Figure 2. Phase measurement system with Hybrid coupler. The
output of limiting amplifier is approximately 0 dBm and the gain of
LNA is 30 dB.

Figure 3. ADS simulation result for the system shown in Figure 2.
Signal power is −64 dBm at the output of the antenna and the phase
difference between the signals is 70 degrees. Minimum and maximum
of the phase difference estimation are m4 and m3 respectively.

maximum available noise has been considered. Moreover, amplitude
unbalance of the hybrid coupler is considered to be 2 dB and phase
unbalance is zero.
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Figure 4. Noise and sampling effect on phase measurement error.

In practice, phase unbalance of the 90◦ hybrid coupler (and maybe
some power dividers and mixers) in the wideband application is not
negligible. Typical 90◦ hybrid couplers in the band 2 GHz to 12 GHz
have 5 degrees phase unbalance. However, with some calibration
process in digital signal processing (in the various frequencies) these
errors can be reduced to zero. Moreover, wideband antennas like spiral
typically have 5 degrees phase tracking error in their range of view
which should be added to the phase measurement error.

Now, assume that all the elements and antennas in the phase
measurement system are ideal and without phase and amplitude
mismatch. Therefore, the presence of noise in the phase measurement
channels is the only source of phase error. Figure 4 shows the root mean
square error of phase measurement for various SNR (random Gaussian
noise has been considered) in the output of the low pass filter (LPF)
in Figure 2. Moreover, Figure 4 shows that by averaging more samples
the phase error due to the noise can be reduced.

2.3. Interferometer Modules and Optimized Circular Array
Structure

Several simulations have been performed to have the best unambiguous
response in the band 2–12 GHz. A configuration which resolves
ambiguities satisfactorily at the highest frequency will do at least as
well at any lower frequency, and in general, accuracy will decrease with
decreasing frequency [3]. Figure 5 shows both the elements position
in the optimized circular array and the coordinate system which is
used in all results of this paper. The radius of the circular array is
22 cm. This array is optimized to have good response in the 65 degrees
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Figure 5. Proposed circular array and the coordinate system of this
research.

Figure 6. General block diagram of the proposed interferometer.

elevation range (90◦ < θ < 155◦) and 120 degrees azimuth range
(30◦ < ϕ < 150◦).

Figure 6 shows the general block diagram of the interferometer.
Instantaneous frequency measurement (IFM) receiver determines the
frequency of the incident pulse. The phase measurement system
simultaneously finds the phase differences among the signals of the
antennas. Because of the low speed of ML method, and to make the
interferometer real time, the main DF algorithm of the interferometer
employs the generalized regression neural network for hardware
implementation [16]. After the phase and frequency measurement, the
appropriate neural network, which is trained in the nearest frequency
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to the received signal frequency, is chosen to map the phase relations
between antennas to the DoA.

3. RESULTS

Tables 1 and 2 compare the results of the DF algorithms based on
neural network and maximum likelihood in various frequencies. The
maximum phase measurement error is considered to be 35 degrees
which has Gaussian power spectral density. In this comparison, just
two DoA values in 3-D coordinate system ([θ = 100◦, ϕ = 45◦] and
[θ = 150◦, ϕ = 135◦]) have been examined (considering the low speed
of ML method which is at least 100 times slower than neural network
method in the simulation). Tables 1 and 2 show that the accuracy
of GRNN method is really acceptable compared with ML method.
Therefore, in the other simulations for the interferometer, we focus
just on GRNN method for DF algorithm.

Table 1. NN method in compared with ML method for θ = 100◦,
ϕ = 45◦.

Freq. (GHz)
ML method NN method

θ ϕ θ ϕ

2 100.7 44.7 100.2 44.5
4 99.1 46.6 100 45
6 100 44.8 99.8 44.9
8 100.3 44.8 99.8 44.7
10 100.1 45.1 99.8 44.7
12 99.9 45 99.8 44.7

Table 2. NN method in compared with ML method for θ = 150◦,
ϕ = 135◦.

Freq. (GHz)
ML method NN method
θ ϕ θ ϕ

2 148.2 131 149.7 135.2
4 150.2 132.7 149.9 135.1
6 149.5 134.8 150.1 134.4
8 150.1 136.3 150.2 134.8
10 150 135.1 150.2 134.7
12 150.3 135.4 150.2 135.5
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(a) (b)

(c) (d)

Figure 7. 3-D error for azimuth (ϕ) and elevation (θ) angle of arrival.
(a) and (b) are the azimuth and elevation errors of DoA in 2 GHz.
(c) and (d) are the same errors in 12 GHz. The maximum phase
measurement error is 35 degrees.

Figure 7 depicts 3-D plot of error for azimuth (ϕ) and elevation
(θ) estimation of DoA, with step 2.3333 degrees, in upper (12GHz) and
lower (2 GHz) frequencies. Phase measurement error is supposed to be
35 degrees. As Figure 7 shows, it is predictable that in lower elevations
(larger values of θ) more estimation error appears. Moreover, in the
upper and lower azimuth values the accuracy of azimuth estimation
decreases. Another result of these figures is that in higher frequencies,
the accuracy of DoA estimation is better than lower frequencies.

Figure 8 shows the RMS error of azimuth and elevation in the
frequency band of 2 to 12 GHz with step 50 MHz in the presence of
35 degrees of phase measurement error. It should be mentioned that
neural networks are trained every 100 MHz in the frequency interval.
Therefore, the error increasing in each 50 MHz is due to the frequency
interpolation. For example, in 2250 MHz the algorithm uses the GRNN
network trained in 2300 MHz. Therefore, the error increases due to the
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Figure 8. RMS error of (a) azimuth and (b) elevation in the frequency
band 2 to 12GHz with step 50 MHz. Neural networks have been
trained with step 100 MHz. The maximum phase measurement error
is considered to be 35 degrees.

frequency mismatch between the incident signal and the trained neural
network. In the frequencies below 6 GHz this interpolation effect can
degrade the performance of the system up to 1 degree of RMS. By
decreasing the step of network training for the frequencies below 6 GHz,
this effect can be mitigated to some extent. For example, if the step is
reduced from 100 MHz to 50 MHz, the performance degradation due to
the interpolation effect would decrease to less than 0.5 degree of RMS
as it can be seen in the frequencies above 6 GHz.

Now, let consider a harsher situation and suppose that the
maximum phase measurement error can reach to 47 degrees. Figure 9
shows the RMS error of azimuth and elevation in the frequency band
of 2 to 12 GHz with the step 50MHz for the new condition. The
algorithm is still robust to this harsh situation. However, in higher
frequencies especially for azimuth DoA estimation some ambiguities
happens in the algorithm response which degrades the performance of
the system more than 1 degree of RMS. It should be noted that phase
measurement errors more than 47 degrees are rare in practical phase
measurement systems.
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Figure 9. RMS error of (a) azimuth and (b) elevation in the frequency
band 2 to 12GHz with step 50 MHz. Neural networks have been
trained with step 100 MHz. The maximum phase measurement error
is considered to be 47 degrees.

4. CONCLUSION

A comprehensive study was performed to investigate the performance
of wideband non-uniform circular array interferometer in a real time 3-
D direction finder. A generalized regression neural network was chosen
to map the phase relationships between antennas to DoA. Validation
was performed by comparing the results of GRNN method with ML
one. The phase measurement system was discussed and simulated and
the phase measurement error was studied. It was shown that with using
more samples, the effect of Gaussian noise on phase measurement error
decreased. Then, the effect of phase measurement error on estimating
the DoA was investigated and the performance of new interferometer
was examined. By using both non-uniform circular array and the DF
algorithm based on neural network, a very robust interferometer to
phase measurement errors was presented. The proposed interferometer
could easily tolerate phase measurement errors for even more than
35 degrees. Also, Frequency behavior of the system was examined and
it was shown that the frequency response of the system was acceptable
in the whole frequency band.
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