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Abstract—A regular cross terms algorithm is derived for the
parameter estimation of the multi-component polynomial phase signals
in additive white Gaussian noise. The basic idea is first to separate its
phase parameters into two sets by nonlinear proceduresand then each
set has half of the parameters in its auto-terms. Furthermore, using
two linear transforms to deal with the two signals respectively, the
phase coefficients of cross terms can be regulated for the identification
and elimination of false peaks caused by the cross terms. Simulations
are presented to illustrate the performance of the proposed algorithm.

1. INTRODUCTION

Polynomial phase signal (PPS) is a very important model to deal with
nonstationary signals, which have considerable technological applica-
tions in radar, wireless communications, seismologyneuroethologyetc.
For example, in synthetic aperture radar (SAR) [1–3], the relative
radar-target motion can cause a time-varying phase in the transmit-
ted signal. The continuous variation of the distance between radar
and target leads the instantaneous phase shift to a continuous func-
tion of time. Its phase estimation has received considerable attention
in the field of signal processing, as the Weierstrass’ theorem implies
that the continuous instantaneous phase can be well approximated by
a finite-order polynomial within a finite interval.

There are many methods to estimate the parameters for a PPS [4–
15]. The maximum-likelihood (ML) [4], and nonlinear instantaneous
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least squares (NILS) [7] estimators can provide very high estimation
accuracy, whose estimator variances achieve Cramér-Rao lower bound
(CRLB) asymptotically under additive white Gaussian noise [8].
But ML and NILS methods result in a P-dimensional search with
O(NP log2 N) operations when the order of phase is P . In [9], the
observed PPS with the order more than three is first converted to
another sequence by a signal transformation procedure, and then the
parameter search dimension is reduced by about half. The polynomial-
phase transform or the high-order ambiguity function (HAF) [9, 10]
or Polynomial Wigner-Ville distribution (PWVD) [14] can estimate
the PPS parameters by one-dimensional search via multiple nonlinear
operations on the received signal. For multi-component polynomial
phase signals (mc-PPSs), the cross terms between the components give
rise to undesired sinusoids in the high-order instantaneous moment
(HIM), which is the main problem strongly to affect algorithms based
on frequency estimation. The principle of demodulation of mono-
component PPS no longer works with mc-PPSs [16].

Many methods for mc-PPSs analysis are derived from the previous
methods for mono-component PPS or generalize the ones. The product
high-order ambiguity function (PHAF) [13], which is the extension
of HAF, improves the identification of the highest order polynomial
phase coefficients by using high-order multiple transform technique and
proper scaling. PWVD is also using high-order multiple transform
similarly. There have been a number of methods to generalize
existing classes of multilinear functions with a view to improving the
power and flexibility of analysis for PPS [16], such as the generalized
representation of phase derivatives (GRPD) [17], the generalized high-
order phase functions (GHOPF) [18].

For the cross term interference problem of multi-component, the
main methods used in the existing literatures are compressing the
cross term to reduce the interference; however, it can’t remove the
interference completely. Particularly, when two components share
high-order coefficients and other coefficients of the same order are
different from each other, some of the cross terms can also be converted
to sinusoids in HIM and they are indistinguishable from the auto-terms.
Then, the identifiability problem occurs seriously.

In this paper, cross terms are constructed regularly in order to
achieve completely the identification of auto-terms from cross terms.
The phase parameters of mc-PPSs are separated into two sets by
nonlinear proceduresand then each set has half of the parameters in its
auto-terms. And we introduce two linear transforms similar to chirp-
z transform to estimate the parameters of the two sets respectively
by searching the spectrum peak. If arbitrary two peaks satisfy some
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regular characteristic, for example, the symmetry around arbitrary
axis, they can be identified as cross terms. The proposed algorithm can
well detect mc-PPSs without the cross term interference completely,
especially for the case of 3rd or 4th order.

2. REGULAR CROSS TERMS

It will lead to serious cross term interference sometimes that high-order
mc-PPSs have been deal with by nonlinear algorithm. For example,
consider the estimation of multi-component cubic phase signals by
HAF:

x(t) =
∑N

i=1
Aie

j(ai+bit+cit
2+dit

3) + n(t), −∆t/2 ≤ t ≤ ∆t/2 (1)

where Ai, ai, bi, ci, di, i = 1, 2, . . .M denote the amplitude and phase
parameters corresponding the ith-component and n(t) is the additive
complex white Gaussian noise with zero-mean. The first order of HIM
can be expressed as

P1(t, τ) = x(t + τ)x∗(t− τ) =
∑N

i=1
A2

i e
j[(2biτ+2diτ

3)+4ciτt+6diτt2]

+
∑

1≤i,k≤N,i6=k

AiAke
j[φ0+φ1t+φ2t2+(di−dk)t3] + n′(t) (2)

where the first summation part denotes the auto-terms and the second
summation part denotes the cross terms. The first three orders of
phase coefficients of cross terms can be expressed as

φ0 = (ai − ak) + (bi + bk)τ + +(ci − ck)τ2 + (di + dk)τ3

φ1 = bi − bk + 2ciτ + 2ckτ + 3diτ
2 − 3dkτ

2

φ2 = ci − ck + 3diτ + 3dkτ.

From (2), it can appear that the number of the highest-order phase in
cross term is same with the auto-terms when di − dk = 0. As a result,
this cross term will be treated as an auto-term in the next order of
HAF and can not be identified.

We introduce a signal transformation procedure to convert mc-
PPSs to new functions which have symmetric cross terms. It is worth
mentioning that the similar signal transformation procedure is used to
simplify the phase of mono-PPS in [7]. Consider two new functions
x1(t) and x2(t):

x1(t) = x(t)x(−t) (3)

x2(t) = x(t)x∗(−t) (4)
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where * denotes the conjugate operator. Substitute (1) into (3) and
(4), then

x1(t) =
∑N

i=1
A2

i e
2j(ai+cit

2)

+
∑

1≤i,k≤N,i 6=k

AiAke
j[ai+ak+(bi−bk)t+(ci+ck)t2+(di−dk)t3]+n1(t)(5)

x2(t) =
∑N

i=1
A2

i e
2j(bit+dit

3)

+
∑

1≤i,k≤N,i 6=k

AiAke
j[ai−ak+(bi+bk)t+(ci−ck)t2+(di+dk)t3]+n2(t)(6)

where

n1(t) = n(−t)
∑N

i=1
Aie

j(ai+bit+cit
2+dit

3)

+n(t)
∑N

i=1
Aie

j(ai−bit+cit
2−dit

3) + n(t)n(−t)

n2(t) = n∗(−t)
∑N

i=1
Aie

j(ai+bit+cit
2+dit

3)

+n(t)
∑N

i=1
Aie

−j(ai−bit+cit
2−dit

3) + n(t)n∗(−t).

In Equation (5), the first summation includes N number of auto-terms
and the second summation includes N(N − 1) number of cross terms.
In order to estimate the 0th order and second order phase coefficients,
we divide the distribution of the cross terms into three cases according
to the relationship of the first order and third order coefficients of
different components.

(c1) All the third order coefficients are different from each other
(dk 6= di, ∀k, i = 1, . . . , N, k 6= i). All cross terms in this case have a
cubic phase that is different from the second order phase in the auto-
terms. As a result, the cross terms would not affect the detection of
auto-terms.

(c2) Some of the third order coefficients coincide (dk = di, bk 6=
bi, k 6= i) and the corresponding second order coefficients are different
(bk 6= bi, k 6= i). In this case, the k − i cross terms have the same
order phase with the auto-terms, which would affect the detection of
auto-terms. Since the first order phase coefficients of the two the cross
terms, i.e., (bk − bi) and (bi − bk), are opposite numbers of each other,
the cross terms appears in pairs with respect to the first order phase,
which can be removed by the symmetry.

(c3) Some of the highest order and the first order coefficients also
coincide (dk = di, bk = bi, k 6= i). In this case, the two cross terms
of k − i combine into one term and do not appear in the there is no
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symmetrical property to use. However, the highest order coefficient of
the k− i cross term is (ci + ck) that is the average of the highest order
coefficients of the two auto-terms, so the identification of these cross
terms need refer to the phase relationship of the k − i cross term and
the corresponding auto-terms.

Similarly, three cases are considered to estimate the 1 order and
3rd order phase coefficients according to the 0th order and second order
coefficients of different components.

(I) All the second order coefficients are different from each other
(ck 6= cm, ∀k, m = 1, . . . , N, k 6= m).

(II) Some of the second order coefficients coincide (ck = cm, k 6=
m) and the corresponding 0th order coefficients are different (ak 6=
am, k 6= m).

(III) Some of the second order and the 0th order coefficients also
coincide (ck = cr, ak = ar, k 6= r).

For the case of (c2), (c3), (II) and (III), by using appropriate
transforms, the relationships of the phase coefficients between auto-
terms and cross terms can be converted into the position relationships
of the corresponding peaks in the new transform domain. The
interferences of cross terms can be completely eliminated by the
symmetry and the estimation algorithm is discussed in the next section.

3. ESTIMATION ALGORITHMS

We introduce different transforms X1(u, α) and X2(u, β) to deal with
x1(t) and x2(t) respectively, which can be defined as

X1(u, α) =
∫ +∞

−∞
x1(t)ej(ut+t2 cot α)dt (7)

X2(u, β) =
∫ +∞

−∞
x2(t)ej(ut+t3 cot β)dt (8)

The kernel of X1(u, α) contains a quadratic phase that is suitable for
estimate the parameters of auto-terms in x1(t). Substitute (5) into (7),
and then

X1(u, α) =
∑N

i=1
A2

i e
2jai

∫ +∞

−∞
ej[ut+(cot α+2ci)t

2]dt

+
∑

1≤i,k≤N,i 6=k

AiAk

∫ +∞

−∞
ejϕ(t,u,α)dt

+
∫ +∞

−∞
n1(t)ej(ut+t2 cot α)dt (9)
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where ϕ(t, u, α) = ai+ak+(bi−bk+u)t+(ci+ck+cotα)t2+(di−dk)t3.
In (9), we can see that |X1(u, α)| would appear peaks in the place
of cotα = −2ci, u = 0, which are corresponding the N number of
auto-terms. The cross terms can not appear peaks on condition of
(c1). There can appear peaks in pairs with respect to the u axis
on condition of (c2). However, the pair of peaks combines into one
peak on condition of (c3). If there exist two peaks whose parameters
satisfy dk = dr and bk = br, there must exist a cross term peak
whose parameters satisfy ci = (ck + cr)/2, ai = (ak + ar)/2 and
Ai =

√
AkAr.

The similar analysis for |X2(u, β)| on condition of (I), (II) and
(III) can be obtained by the following equation:

X2(u, β) =
∑N

i=1
A2

i

∫ +∞

−∞
ej[(u+2bi)t+(cot β+2di)t

3]dt

+
∑

1≤i,k≤N,i6=k

AiAk

∫ +∞

−∞
ejϕ(t,u,β)dt

+
∫ +∞

−∞
n2(t)ej(ut+t3 cot β)dt (10)

where ϕ(t, u, β) = ai−ak+(bi+bk+u)t+(ci−ck)t2+(di+dk+cotβ)t3.
The flowchart of parameter estimation is shown in Fig. 1 as follows.
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Figure 1. Parameter estimation flowchart.

For the 3rd or 4th order mc-PPS, the proposed algorithm needs a
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2-dimensional maximization. When the order of mc-PPSs is N(N−1),
the corresponding parameter search dimension is dP/2e+ 1, where d·e
denotes the ceiling operator.

4. RESULT AND DISCUSSION

In this section, some simulations have been carried out to evaluate
the multi-PPSs parameter estimation performance of the proposed
algorithm in the presence of white Gaussian noise.

In the first experiment, we consider the multi-PPSs as sum of two
cubic signals with different coefficients corresponding (c1) and (I)

f1(t) =
∑2

i=1
Ai exp

[
j
(
ai + bit + cit

2 + dit
3
)]

+ n(t) (11)

where n(t) denotes complex white Gaussian noise with SNR = 0 dB.
The parameters are

A1 = 1, a1 = 0, b1 = 1.5, c1 = −1.98, d1 = 2.8;
A2 = 1, a2 = 0, b2 = 0, c2 = 1.58, d2 = −1.8.

The time range is (−1.25π, 1.25π) with 401 samples. Fig. 2 and Fig. 3
show the 3-D graphic of X1 and X2 respectively. As the highest order
coefficients of cross terms in X1 or the 2nd order coefficients of cross
terms in X2 are not zero, we can see that all peaks in Fig. 2 and Fig. 3
result from auto-terms.

However, other methods like HAF, PHAF or PWVD, can not
appear false peaks from cross terms effect. Fig. 4 shows the spectrum
of the 2nd order HAF of f1(t), where τ = 2. From Fig. 4, we can
see that there are two peaks corresponding two auto-terms and no
false peaks from cross terms. In Fig. 5, we compare the root mean
square error (RMSE) performance of HAF and the proposed method

Figure 2. The 3-D graphics of
X1.

Figure 3. The 3-D graphics of
X2.
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Figure 4. HAF of the sum
of two cubic PPSs whose phase
parameters have different third
order phase.
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Figure 5. RMSE versus SNR for
the parameters of d1.

Figure 6. The 3-D graphics of
X1 of f2(t).

Figure 7. The 3-D graphics of X2

of f2(t).

in parameter estimation of d1. As the proposed method involves only
second-order nonlinearities that is less than the fourth- or higher order
nonlinearities in the HAF algorithm, we can see that the performance
of proposed method is better than HAF in low SNR.

In the second experiment, we consider the multi-PPSs as sum of
two cubic signals which their phase coefficients satisfy d1 = d2 and
b1 6= b2 corresponding (c2)

f2(t) =
∑2

i=1
Ai exp

[
j
(
ai + bit + cit

2 + dit
3
)]

+ n(t). (12)

The parameters are
A1 = 1, a1 = 0, b1 = 50, c1 = 1.98, d1 = 3.9;
A2 = 1, a2 = 0, b2 = 0, c2 = −1.58, d2 = 3.9.

The 3-D graphic of X1 and X2 are shown in Fig. 6 and Fig. 7
respectively. In Fig. 6, we can see that there appear four peaks, two of
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Figure 8. HAF of the sum of two cubic PPSs whose phase parameters
have the same third order phase.

Figure 9. The 3-D graphics of X1

of f3(t).
Figure 10. The 3-D graphics of
X2 of f3(t).

which are symmetrical about the axis. According to the symmetry of
false peaks, the cross terms can be easily identified and the remaining
two peaks are corresponding to the auto-terms.

Generally, HAF, PWVD, PHAF or other nonlinear algorithms
have not obvious regular characteristic to identify the cross terms.
Fig. 8 shows the spectrum of the 2nd order HAF of f2(t) with τ = 3.4,
where we can see three peaks instead of one peak corresponding to the
two overlapping auto-terms.

In the third experiment, we consider the multi-PPSs as sum of
two cubic signals

f3(t) =
∑2

i=1
Ai exp

[
j
(
ai + bit + cit

2 + dit
3
)]

+ n(t) (13)

where the phase coefficients satisfy
A1 = 1, a1 = 0, b1 = 20, c1 = −1.38, d1 = 3.9;
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A2 = 1, a2 = 0, b2 = 20, c2 = 2.2, d2 = 3.9.

The 3-D graphic of X1 and X2 are shown in Fig. 9 and Fig. 10
respectively. As the first order phase coefficients coincide, we can see
that the two symmetric false peaks combine into a peak at the u-axis
in Fig. 9. There is one peak in Fig. 10, for the 1st and 3rd order
coefficients coincide.

5. CONCLUSION

A regular cross terms based method for the parameter estimation of
multi-PPSs in white Gaussian noise has been proposed. The phase
parameters are separated into two new signals by simple nonlinear
procedures. Both the two new signals have regular cross terms that
can be identified by two linear transform. In particular, the parameter
estimation of multi-component cubic signals is analyzed in detail.
Simulations illustrate that the proposed algorithm can well identify
and eliminate the cross term interference in the parameter estimation.
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