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Abstract—A coherent imaging system images a frame or an object
onto a changing diffuser and projects the resulting pattern which
generally contains speckles. Using a spatial light modulator (SLM)
as the changing diffuser, the speckles in the pattern are suppressed
without the need for any other mechanisms. With M random phasor
arrays being displayed in the SLM during the integration time of a
detector, a suppression factor (Cf ) of speckles, 1/

√
M , is achievable

in the projected pattern, which is the sum of the intensity of M
uncorrelated patterns. This paper shows both theoretically and
in simulations that the Cf of the sum pattern was considerably
reduced when two elementary patterns with fully developed speckles
were negatively correlated. With the correlation coefficients of the
elementary patterns found at [−0.3, −0.25], the Cf of the sum
of 10 negatively-correlated speckle patterns was 48% lower than the
Cf of the sum of 10 uncorrelated speckle patterns. The negatively
correlated patterns can be implemented using spatial light modulators
or diffractive optical elements, and are used to suppress speckle noise
in digital holography, laser projection display, and holographic display
projections with relatively high efficiency.

1. INTRODUCTION

Coherent sources, such as laser, are advantageous in projecting images
due to their wider color gamut, higher resolution, and higher light
efficiency as compared to incoherent sources. However, the presence
of speckles, a random granular appearance in images resulting from
the interference of the coherent waves scattered from a rough object,
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degrades the image quality and leaves fine details irresolvable [1–3].
Although the speckles in the patterns have been successfully applied
to identify fine features of objects [3, 4], suppression of speckles has
been a critical issue and has been widely studied in coherent imaging.
Numerous methods have been proposed to reduce speckle noise: using
a source of multiple wavelengths, inserting a moving (vibrating or
rotating) diffuser or ground glass, coupling with a vibrating multimode
fiber, moving an optical aperture in the Fourier plane, and spatial
averaging in the detection plane (Readers may refer to references [3]
and [5] for critical reviews and categorization of the speckle suppression
methods).

Recently, a new technique of diffractive optical element (DOE)
has been widely employed to reduce speckle noise. Using DOEs
in laser scanning displays, the scanning spot was split into several
randomly-spread small spots [6], or modulated with phase arrays [7–
10]. In systems projecting full-frame images, the DOE functioned as
a changing diffuser to generate partially coherent illumination [11–
14]. In holographic projection displays, a phase-only DOE encoding a
target image was displayed in an LCoS spatial light modulator (SLM),
and the Fourier transform of the DOE, showing the target image, was
projected onto the screen [15–18]. Although static DOEs, such as in [7]
and [9], require spatial motion or rotation to reduce speckle noise,
most DOEs can be implemented using an SLM and take advantage of
the rapid display of a sequence of phase arrays of DOEs to suppress
speckles. The phase content of the DOE can be carefully calculated
and accurately realized by an SLM to provide effective de-correlation
of the light, resulting in low speckle noise.

To evaluate the intensity fluctuation resulting from speckles in
a speckle pattern, the speckle contrast C is commonly used, and is
defined as the ratio of the standard deviation to the mean of the
intensity of the pattern [1], as given by

C =
σ

Ī
, (1)

where Ī and σ are the mean and the standard deviation of the intensity,
respectively. The speckle contrasts of the speckle patterns with the
original phase uniformly distributed over [0, 2π] are always unity (i.e.,
σ = Ī). The patterns with suppressed speckle have a smaller C, and
the patterns with constant intensity (no speckled fluctuations) have
the minimum value of C, which is zero. When the intensities of M
uncorrelated speckle patterns, generated from M phasor arrays with
uniformly-distributed phase being sequentially displayed in an SLM,
are summed, the speckle contrast of the integrated sum is reduced to
1/
√

M [1–3, 5, 7, 12–16].
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Figure 1. Simplified geometry for imaging an object or a frame onto
a changing diffuser (intermediate plane) and projecting the resulting
pattern onto the image plane.

In a coherent imaging system, which uses an SLM as a changing
diffuser, the speckled image of an object is projected onto an
intermediate plane where the changing diffuser is located (214, [3]).
The intermediate image is modulated by the changing diffuser with a
random phase array, and is projected by a secondary optical imaging
lens onto the final imaging plane as shown in Figure 1. With a
number of random phase arrays appearing rapidly in the SLM, the
speckle noise in the final image, which is the sum of the corresponding
images integrated over time using CCD cameras, is reduced. This
paper shows that the speckles of the integrated image can be efficiently
reduced by identifying the correlation coefficients of the corresponding
images. In Section 2, the relationship between the speckle contrast
of the integrated sum of two fully-developed speckle patterns and
the correlation coefficients of the two individual patterns is derived.
Section 3 shows the simulation results in which the speckle contrasts
of the sums of two fully-developed speckle patterns are presented
with the corresponding correlation coefficients. The proposed method
is then applied to two-dimensional images with negative correlation
coefficients and the summed images with low speckle contrasts are
demonstrated. In addition, a scheme to produce a sequence of
speckle patterns based on successively negative correlation coefficients
is proposed to reduce the speckle contrast of their sum more efficiently.

2. THEORY OF SPECKLE CONTRAST VERSUS
CORRELATION COEFFICIENT

Speckle noise can be suppressed more effectively by an integrated sum
of multiple negatively correlated patterns, rather than uncorrelated



4 Hsu and Chu

speckle patterns. To obtain the relationship between the speckle
contrast and the correlation of two speckle patterns, we assume that I1

and I2 are the intensity arrays of two arbitrary speckle patterns. The
individual speckle contrasts of the patterns are given by Cm = σm/Īm

for m = 1 and 2, where σm and Īm are the standard deviation and
the mean of the intensity of pattern m, respectively. The correlation
coefficient of the two elementary patterns is defined as [19, 20]

ρ1,2 =
(I1 − Ī1)(I2 − Ī2)

σ1σ2
=

I1I2 − Ī1Ī2

σ1σ2
. (2)

Although different correlation functions are used to evaluate the
speckle noise [21–23], Equation (2) can be adopted to attain the speckle
contrast of the sum of two speckle patterns in terms of individual
speckle contrasts. The correlation coefficient ρ1,2 (or ρ for simplicity)
is bounded in the range of [−1, 1]. Assuming that the intensity sum
of the integration of two patterns is denoted by IS , which is given by
I1 + I2, the speckle contrast of the sum of the two patterns is modified
from (1), and written as

CS =
σS

ĪS
. (3)

By substituting Ī1 and Ī2 and further simplifying, the intensity mean
ĪS and the variance σ2

S are given by

ĪS = Ī1 + Ī2 (4)

and
σ2

S = I2
S − Ī2

S =
(
I2
1 − Ī2

1

)
+

(
I2
2 − Ī2

2

)
+ 2ρ1,2σ1σ2, (5)

respectively. Substituting (4) and (5) into (3) yields the speckle
contrast of the integrated pattern

CS =

√
C2

1 Ī2
1 + 2ρ1,2C1C2Ī1Ī2 + C2

2 Ī2
2

Ī2
1 + 2Ī1Ī2 + Ī2

2

. (6)

Note that the speckle contrast in terms of an intensity ratio can be
used to evaluate the effect of speckle suppression for the summed
pattern of multiple partially developed speckle patterns that are
uncorrelated [24]. Using Equation (6), however, will result in a direct
comparison of the summed pattern and the individual patterns with
speckles not only fully developed but also partially developed.

We now consider the case in which the elementary patterns have
equal mean intensities; i.e., Ī1 = Ī2. The speckle contrast is simplified
to

CS =

√
C2

1 + 2ρ1,2C1C2 + C2
2

4
. (7)
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To characterize the effect of speckle suppression using the sum of two
speckle patterns of equal mean intensity, we define the suppression
factor Cf as

Cf ≡ CS

Cavg
, (8)

where Cavg is the average of the speckle contrasts C1 and C2 of the
two elementary speckle patterns; i.e., Cavg = (C1 + C2)/2. Using (2)
and (7), Cf is written as

Cf =

√
1−

(
1− ρ1,2

2

)
C1C2

C2
avg

. (9)

Figure 2 shows the relationship between the suppression factor Cf

of the summed pattern and the correlation coefficient ρ of the two
corresponding elementary speckle patterns with equal mean intensities
(Ī1 = Ī2) and fully developed speckle (C1 = C2 = 1). For two
uncorrelated (or independent) patterns (ρ = 0) with fully developed
speckle, the suppression factor of their intensity sum Cf is equal
to 1/

√
2, which is consistent with the result in [1]. An extreme

case occurs when the two elementary patterns are identical; that is,
when ρ = 1 and Cf = 1, no speckles are suppressed because the
summed pattern is identical to the elementary patterns. For positively
correlated patterns (ρ > 0), the suppression factor is larger than 1/

√
2.

However, the negatively correlated patterns (ρ < 0) provide higher

Figure 2. Suppression factor Cf of the sum of two fully-developed
speckle patterns with equal mean intensity as a function of the
correlation coefficient ρ.
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efficiency in suppressing the speckle noise. In the extreme case of
negatively correlated patterns (ρ = −1), the suppression factor Cf

is zero, meaning that the integrated pattern contains no intensity
fluctuations; i.e., CS = 0, with the speckle noise being eliminated
completely. Note that the symbol ρ without the subscript represents a
general correlation coefficient for any two arrays, and the symbol ρm,n

represents a correlation coefficient for two specified patterns m and n.

3. SIMULATION RESULTS

To illustrate the general relationship between the suppression factor
Cf of the integrated pattern of two speckle patterns (with equal Ī, but
arbitrary C values) and their correlation coefficient ρ, we conducted a
simulation in which several million pairs of speckle patterns, resulting
from a uniform illumination with a uniformly-distributed phase, were
randomly generated using a method similar to that in Appendix G2 [3].
The suppression factors of their integrated sums were calculated and
are discussed.

3.1. Suppression Factor of the Sum of Two Fully-developed
Speckle Patterns

We first conducted a simulation in which several million pairs of one-
dimensional (1D) speckle patterns with a uniformly-distributed phase
were randomly generated. Using symbols similar to [3], the number
of samples per 1D array, N , and the number of samples per speckle,
k, were 256 and 4, respectively. Ten to twelve pairs of 1D speckle
patterns were randomly selected on every 0.01 interval of ρ. A total of
905 pairs of 1D speckle patterns were obtained with ρ ranging between
(−0.431, 0.591), and the intensity of each selected pair of elementary
speckle patterns was summed. The suppression factor Cf of the sum
with respect to ρ of the elementary patterns is shown in Figure 3
in which a solid curve, a segment of the curve in Figure 2, is also
plotted for comparison. The smallest ρ obtained was −0.431, and
the corresponding Cf was 0.535. In Equation (9), when the factor
C1C2/C2

avg < 1 for C1 6= C2, the sum pattern has a larger Cf than
the Cf at C1 = C2. This means that the lowest suppression result for
a certain ρ occurs when the speckle contrasts of the two elementary
patterns are equal. Figure 4 shows three pairs of speckle patterns with
positive, zero, and negative ρ′s and their corresponding sum obtained
from Figure 3.

We applied the speckle suppression method of negative correlation
to two-dimensional (2D) coherent imaging. Figure 5 shows the
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Figure 3. Suppression factor (Cf ) vs. correlation coefficient (ρ) for
905 pairs of one-dimensional (1D) 256-sample speckle patterns.

(a) (b) (c)

Figure 4. Speckle suppression of three pairs of 1D 256-sample speckle
patterns with (a) positive correlation (ρ = 0.591, Cf = 0.893), (b) zero-
correlation (ρ = −0.001, Cf = 0.707), and (c) negative correlation
(ρ = −0.431, Cf = 0.535).

simulation result of a 128-by-128-pixel original object consisting of
four square regions of different gray scales, the two elementary speckle
patterns with ρ = −0.113, and the sum of the two speckle patterns.

3.2. Suppression Factor of the Sum of Multiple
Fully-developed Speckle Patterns

Pairs of highly negatively correlated patterns are difficult to obtain
because of the negative exponential density functions of the intensity
distributions of fully-developed speckle patterns. However, a series of
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(a) (b)

(c) (d)

Figure 5. Speckle suppression of 2D negatively-correlated patterns
(N = 1282, k = 42). (a) Original object, (b) speckle pattern 1, (c)
speckle pattern 2, and (d) the sum of patterns 1 and 2 with ρ = −0.133.

speckle patterns with small negative ρ′s correlated to the sum pattern,
as found in the previous step, can be identified in a large number of
fully-developed speckle patterns. The integrated sum of the intensity
of these patterns suppresses speckle noise, as do two highly negatively
correlated speckle patterns. A scheme is developed to produce a series
of speckle patterns with successively negative ρ′s; the procedures are
listed below.

Step 1- Determine T , the number of searches for each elementary
pattern. T depends on N/k.

Step 2- Generate a fully-developed N -sample speckle pattern. Set it as
the initial sum pattern.

Step 3- Generate TN -sample speckle patterns with random phases,
and choose the one with the lowest correlation coefficient ρ to the
sum pattern obtained in the previous step.

Step 4- The new sum is generated by adding the intensities of the sum
and the chosen pattern.
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Step 5- Go to Step 3 for the next pattern until the set of speckle
patterns is obtained.

In the simulations, ten sets of random-phase arrays for generating
elementary speckle patterns with successively negative correlations
were obtained and each set contained ten (M = 10) 1D 1024-sample
phasor arrays. Each phasor array was identified in 1,000,000 (T )
randomly-generated arrays based on the ρ of the corresponding speckle
pattern and the sum pattern. In the negatively correlated patterns, the
ρ′s were generally in the range of −0.3 ∼ −0.25. Figure 6 shows the
mean (solid curve), the highest, and the lowest C ′

fs of 10 accumulated
patterns of the 10 sets of negatively correlated patterns. Table 1 shows
the averaged data of the ten sets of negatively correlated patterns. In
the table, the letter m denotes the results at Step m, and the capital
M denotes the accumulated result obtained by iteration from 1 to m.
The mean Cf of ten sets of ten such patterns is considerably lower
(48%) than that of the sum of uncorrelated patterns. For comparison,
another two 10 sets of speckle patterns (each containing 10 patterns)
were obtained in the simulation. In the first 10 sets (dashed curve) each
new elementary pattern was zero correlated (uncorrelated) to the sum
pattern by identifying the smallest absolute ρ identified in T randomly
generated patterns (Step 3). Here, |ρ| < 10−5 was obtained in all
cases. The dashed curve of the simulated results coincides with the
theoretical value of 1/

√
M , and the data are shown in Table 2. The

other 10 sets of speckle patterns were positively correlated by searching
for the largest ρ between the sum pattern and the speckle pattern in T

Cf

number of integrated patterns, M
0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

Figure 6. Suppression factor (Cf ) of the sum of multiple speckle
patterns with negative correlation ρ = −0.3 ∼ −0.25 (solid), un-
correlation ρ ∼ 0 (dashed), and positive correlation ρ = 0.3 ∼ 0.5
(dotted).
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Table 1. Averaged speckle suppression factors (Cf ) and correlation
coefficients (ρ) of ten sets of negatively correlated patterns. Each set
contains ten speckle patterns scattered from the phasor arrays with
the phase randomly distributed over [0, 2π]. Note that the symbol
Cm denotes the speckle contrast of the m-th pattern, ρM−1,m the
correlation coefficient of the m-th pattern and the pattern summed
from the 1st to (m − 1)-th patterns, CS(M) the speckle contrast of
the pattern summed from the first to m-th patterns, and Cf(M) the
suppression factor of the sum pattern of M speckle patterns.

m 1 2 3 4 5 6 7 8 9 10

Cm 0.951 0.927 0.967 0.929 0.923 0.987 0.950 0.957 0.917 0.946

ρM−1,m −0.262 −0.275 −0.286 −0.295 −0.287 −0.284 −0.290 −0.279 −0.294

CS(M) 0.571 0.426 0.334 0.275 0.237 0.208 0.185 0.169 0.153

Cf(M) 1.0 0.600 0.448 0.355 0.294 0.257 0.226 0.201 0.181 0.164

Table 2. Averaged speckle suppression factors (Cf ) and correlation
coefficients (ρ) of ten sets of uncorrelated (independent) patterns. Each
set contains ten speckle patterns scattered from the phasor arrays with
the phase randomly distributed over [0, 2π].

m 1 2 3 4 5 6 7 8 9 10

Cm 0.951 0.948 0.978 1.002 0.913 0.933 0.929 0.929 0.924 0.955

ρM−1,m (×10−6) −0.051 0.405 −0.050 0.375 −0.421 0.391 −0.040 0.518 −0.098

CS(M) 0.671 0.554 0.485 0.429 0.390 0.360 0.336 0.316 0.300

Cf(M) 1.0 0.706 0.583 0.511 0.451 0.410 0.378 0.353 0.332 0.315

randomly generated patterns. The dotted curve in Figure 6 shows the
Cf of the integrated pattern by adding speckle patterns with positive
ρ in the range of 0.3 ∼ 0.5.

According to the simulation results shown in Tables 1 and 2,
the Cf resulting from four negatively-correlated speckle patterns
(Cf ∼ 0.334) is 31% lower than the Cf (∼ 0.485) of the sum of
four uncorrelated patterns. It is also equivalent to the Cf of eight
uncorrelated speckle patterns (Cf ∼ 0.336). Therefore, when the
phasor arrays, used to generate negatively correlated patterns, appear
in the SLM with a limited frame rate, the speckle noise in the projected
image can be reduced much more than when using the uncorrelated
phasor arrays. In summary, negatively correlated patterns work more
effectively with double the efficiency of uncorrelated patterns because a
lower Cf can be achieved with only half the number of speckle patterns
when they are negatively correlated.
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4. CONCLUSION

In applications of coherent imaging such as digital holographic
microscopy, laser projection displays, and holographic display
projections, an SLM-type changing diffuser with elaborate phase
characteristics can generate speckle patterns to suppress speckle noise
and improve the image quality. The integration of the intensity of
multiple fully-developed speckle patterns is a promising method for
suppressing speckle noise. However, due to the limited frame rate of
SLM, only a few phasor arrays can be present so that the corresponding
speckle patterns are summed in a time integration to reduce the
speckle noise of an image. In general, the use of M uncorrelated
speckle patterns reduces the suppression factor (Cf ) to 1/

√
M . This

paper shows a 31% decrease in the suppression factor when using
four negatively correlated speckle patterns (ρ ∼ −0.274) compared
with four uncorrelated (ρ ∼ 0) patterns, and a 48% decrease in
the suppression factor when using ten negatively correlated speckle
patterns (ρ ∼ −0.284) compared with ten uncorrelated (ρ ∼ 0)
patterns.

The fully-developed speckle patterns with negative correlation and
un-correlation were scattered from the phasor arrays with a randomly
computer generated phase. The phasor arrays were displayed in the
phase-modulated SLM which was used as the changing diffuser, as
shown in Figure 1. In the application of holographic display [15–18],
the phase-only DOEs, designed by using numerical methods, generated
the diffractive images with negative correlation. Therefore, the merit
function in the numerical methods has to contain the correlation
coefficient in order to train the DOEs to generate the negatively
correlated images.

The relationship between the speckle contrast of the integrated
sum of two fully-developed speckle patterns and the correlation
coefficients of the two individual patterns is derived. In theory,
only two speckle patterns with high negative correlation are required
to completely eliminate speckle noise. However, when speckle is
fully developed, speckle patterns with high negative correlation are
difficult to obtain. An iterative scheme for searching for a series of
negatively correlated patterns is devised such that the speckle noise is
reduced with considerable efficiency. In future research, more efficient
methods will be developed to achieve phasor arrays that generate
highly negatively correlated speckle patterns to reduce speckle noise
with considerable efficiency.
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