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WITH SLAB AND RECTANGULAR DIELECTRIC PRO-
FILES, AND APPLICATIONS
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Abstract—This paper presents a rigorous approach for the
propagation of electromagnetic (EM) fields along a helical waveguide
with slab and rectangular dielectric profiles in the rectangular cross
section. The main objective is to develop a numerical method for the
calculation of the output fields, for an arbitrary step’s angle and the
radius of the cylinder of the helical waveguide. The other objectives
are to present the technique to calculate the dielectric profiles and
their transverse derivatives in the cross-section and to demonstrate
the ability of the model to solve practical problems with slab and
rectangular dielectric profiles in the rectangular cross section of the
helical waveguide. The method is based on Fourier coefficients of the
transverse dielectric profile and those of the input wave profile. Laplace
transform is necessary to obtain the comfortable and simple input-
output connections of the fields. This model is useful for the analysis
of helical waveguides with slab and rectangular dielectric profiles in
the metallic helical waveguides in the microwave and the millimeter-
wave regimes. The output power transmission and the output power
density are improved by increasing the step’s angle or the radius of
the cylinder of the helical waveguide, especially in the cases of space
curved waveguides.

1. INTRODUCTION

Various methods for the analysis of curved waveguides have been
studied in the literature. The propagation of general-order modes in
curved rectangular waveguide examined by using asymptotic expansion
method [1]. A matrix formulation of the generalized telegraphist’s
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equation [2] used to obtain a general set of equations for a guide
of arbitrary cross section with curved axis. The matrix elements
involved mode-coupling coefficients which were obtained as rather
general integrals of the mode basis functions and the space variables.

Several methods of investigation of propagation were developed
for study of empty curved waveguide and bends [3–6]. The
results of precise numerical computations and extensive analytical
investigation of the angular propagation constants were presented for
various electromagnetic modes which may exit in waveguide bends of
rectangular cross section [3]. A new equivalent circuit for circular
E-plane bends, suitable for any curvature radius and rectangular
waveguide type was presented in Ref. [4]. An accurate and efficient
method of moments solution together with a mode-matching technique
for the analysis of curved bends in a general parallel-plate waveguide
was described in the case of a rectangular waveguides [5]. A rigorous
differential method describing the propagation of an electromagnetic
wave in a bent waveguide was presented in Ref. [6].

Slabs with more general refractive index distributions were
considered by Heiblum and Harris [7] and by Kawakami et al. [8],
using a WKB method [9]. These two papers consider the case when the
mode on the curved waveguide is not a small perturbation of a mode on
the straight guide, but was guided essentially by the outer boundary.
The modes of this nature are known as “edge-guided” modes. The
increase in radiation losses due to curvature for slightly leaky modes on
hollow dielectric or imperfect metallic waveguides, a sort of composite
of open and closed waveguide behavior, was investigated by Marcatily
and Schmeltzer [10].

An analytical method to study a general helix-loaded structure
has been published in Ref. [11]. The inhomogeneously-loaded helix
enclosed in a cylindrical waveguide operating in the fast-wave regime.
The tape-helix model has been used which takes into account the effect
of the space-harmonics, and is used particularly in the cases that the
structure is operated at high voltages and for high helix pitch angles.
The propagation characteristics of an elliptical step-index fiber with
a conducting helical winding on the core-cladding boundary [12] are
investigated analytically where the coordinate systems are chosen for
the circular and elliptical fibers. In their waveguides the core and the
cladding regions are assumed to have constant real refractive indices
n1 and n2, where n1 > n2. The fibers are referred to as the elliptical
helically cladded fiber and the circular helically cladded fiber.

Flow through a helical pipe with rectangular cross-section has
been studied in Ref. [13]. The objective was to establish a set of
mathematical equations in tensor form that can describe the flow
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through a helical duct. Spectral method has been used to solve the
non-linear partial differential equations, and the non-linear algebraic
equations have been solved by iterative method. A simple field analysis
has been developed in Ref. [14] for a helical slow-wave structure
symmetrically supported by rectangular shaped discrete dielectric
support rods partially embedded in the metal segments projecting
radially inward from a metal envelope for wideband traveling-wave
tubes. The closed form simplified expressions has been obtained by
combining the tape model dispersion relation for free-space helix with
the dielectric loading factor obtained for the loaded helix in the sheath
model. The analysis of a lossless helical slow-wave structure has been
proposed in Ref. [15] for the fundamental mode only, in order to predict
the transmission line parameters. The analysis has been developed
for the space-harmonic modes considering different radial propagation
constant over different structure regions.

An extensive survey of the related literature can be found
in the book on electromagnetic waves and curved structures [16].
Propagation in curved rectangular waveguides by the perturbation
techniques was introduced for a guide of cross section a × b whose
axis was bent to radius R. Likewise, the twisted coordinate
system with application to rectangular waveguides was introduced in
Ref. [16]. The other chapters were concerned with curved guides,
both rectangular and circular. Calculations were performed for the
propagation coefficient, reflection, mode-conversion, mode-coupling
and eigenfunctions for a variety of configurations by the asymptotic
method. The radiation from curved open structures is mainly
considered by using a perturbation approach, that is by treating
the curvature as a small perturbation of the straight configuration.
The perturbation approach is not entirely suited for the analysis of
relatively sharp bends, such as those required in integrated optics and
especially short millimeter waves.

An approximate method for predicting the field profile in a
curved dielectric waveguide of rectangular cross section was described
in [17]. For simplicity, the dielectric and free-space regions were
treated separately. Inside the dielectric waveguide, the transverse field
was expressed as an Airy function via a conformal transformation.
For away from the guide, the field was expressed in terms of
Hankel function of the second kind. This model can be applied to
guiding structures of rectangular cross section where the transverse
propagation constants can be obtained independently.

Several methods of propagation along the toroidal and helical
waveguides were developed in [18–23], where the derivation is based
on Maxwell’s equations. The methods in [18–23] employ toroidal or
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helical coordinates (and not cylindrical coordinates, such as in the
methods that considered the bending as a perturbation (r/R ¿ 1)).
The method in [18] has been derived for the analysis of EM wave
propagation along a toroidal waveguide with a circular dielectric profile
in the rectangular cross section. The method in [19] has been derived
for the propagation of EM field along a helical waveguide with a circular
dielectric profile in the rectangular cross section. The method in [20]
has been derived for the propagation of EM field along a toroidal
waveguide with a circular dielectric profile in the circular cross section.
The method in [21] has been derived for the propagation of EM field
along a helical waveguide with a circular dielectric profile in the circular
cross section. The method in [22] has been derived for the propagation
of EM field along a toroidal waveguide that consists of two bendings
with a circular dielectric profile in the circular cross section, and the
method for the two bendings was introduced, for small values of step
angles (δp) of the helical waveguide. The method in [23] has been
derived for the propagation of EM field along a helical waveguide that
consists of two bendings with a circular dielectric profile in the circular
cross section, and the method for the two bendings was introduced, for
arbitrary values of step angles.

The main objective of this paper is to develop a theoretical method
for the propagation of EM field along the helical waveguide with
rectangular dielectric profiles in the rectangular cross section. The
other objectives are to present the technique to calculate the dielectric
profiles and their transverse derivatives in the cross-section and to
demonstrate the ability of the model to solve practical problems with
rectangular dielectric profiles in the rectangular cross section of the
helical waveguide. This model provides us a numerical tool for the
calculation of the output fields and output power transmission for
an arbitrary step’s angle (δp) of the helical waveguide. The method
is based on Fourier coefficients of the transverse dielectric profile
and those of the input wave profile. This model is useful for the
analysis of dielectric waveguides in the microwave and the millimeter-
wave regimes. Note that in our method, we do not consider the
bending as a perturbation. The purpose of this study was to develop
transfer relations between the wave components at the output and
input ports of such helical waveguides as matrix functions of their
dielectric profiles. The following sections present the derivation of this
method for a helical waveguide with slab and rectangular dielectric
profiles in the rectangular cross section as function of the step’s angle
(δp) and the radius of the cylinder (R) of the helical waveguide. The
output power transmission is improved by increasing the step’s angle
or the radius of the cylinder of the helical waveguide, especially in the



Progress In Electromagnetics Research B, Vol. 34, 2011 81

cases of space curved waveguides.

2. THE DERIVATION

The geometry of the helical waveguide with a rectangular cross section
is shown in Fig. 1(a). The direction of the wave propagation is along
the axis of the helical waveguide. For small values of the step’s
angle (δp ¿ 1), the helical waveguide becomes a toroidal waveguide
(Fig. 1(b)), where the radius of the curvature of the helix can then be
approximated by the radius of the cylinder.

The axis of the helical waveguide is shown in Fig. 2(a). The
deployment of the helix is shown in Fig. 2(b), where R is the radius of
the cylinder, and δp is the step’s angle. We start by finding the metric
coefficients from the helical transformation of the coordinates.

The helical transformation of the coordinates is achieved by two
rotations and one translation, and is given in the form:
(

X
Y
Z

)
=




cos(φc) − sin(φc) 0
sin(φc) cos(φc) 0

0 0 1







1 0 0
0 cos(δp) − sin(δp)
0 sin(δp) cos(δp)




(
x
0
y

)

+




R cos(φc)
R sin(φc)
ζ sin(δp)


=




(R + x) cos(φc) + y sin(δp) sin(φc)
(R + x) sin(φc)− y sin(δp) cos(φc)

y cos(δp) + ζ sin(δp)


 , (1)

where ζ is the coordinate along the axis of the helical waveguide, R is
the radius of the cylinder, δp is the step’s angle of the helical waveguide
(see Figs. 2(a)–2(b)), and φc = ζ cos(δp)/R. Likewise, 0 ≤ x ≤ a and

(a) (b)

Figure 1. (a) The rectangular helical waveguide. (b) A general scheme
of the curved coordinate system (x, y, ζ).
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Figure 2. (a) Rotations and translation of the orthogonal system
(X, ζ, Z) from point A to the orthogonal system (X,Y, Z) at point K.
(b) Deployment of the helix.

0 ≤ y ≤ b, where a and b are the dimensions in the cross section of the
helical waveguide. Note that ζ sin(δp) = Rφc tan(δp).

Figure 2(a) shows the rotations and translation of the orthogonal
system (X, ζ, Z) from point A to the orthogonal system (X,Y, Z) at
point K . In the first rotation, the ζ and Z axes rotate around the X
axis of the orthogonal system (X, ζ, Z) at the point A, until the Z axis
becomes parallel to the Z axis (Z ‖ Z), and the ζ axis becomes parallel
to the X, Y plane (ζ ‖ (X, Y )) of the orthogonal system (X, Y, Z) at
the point K. In the second rotation, the X and ζ axes rotate around
the Z axis (Z ‖ Z) of the orthogonal system (X, ζ, Z) until X ‖ X and
ζ ‖ Y . After the two above rotations, we have one translation from
the orthogonal system (X, ζ, Z) at point A to the orthogonal system
(X, Y, Z) at the point K.

Figure 2(b) shows the deployment of the helix depicted in
Fig. 2(a). The condition for the step’s angle δp is given according
to

tan(δp) ≥
√

a2 + b2

2πR
, (2)

where the dimensions in the cross section are denoted as a and b, and
the radius of the cylinder is denoted as R.

The metric coefficients in the case of the helical waveguide
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according to Eq. (1) are:

hx = 1, (3a)
hy = 1, (3b)

hζ =

√(
1 +

x

R

)2
cos2(δp) + sin2(δp)

(
1 +

y2

R2
cos2(δp)

)

=

√
1 +

2x

R
cos2(δp) +

x2

R2
cos2(δp) +

y2

R2
cos2(δp)sin2(δp)

' 1 +
x

R
cos2(δp). (3c)

Furthermore, the third and the fourth terms in the root of the
metric coefficient hζ are negligible in comparison to the first and the
second terms when (x/R)2 ¿ 1. Nonetheless, the metric coefficient
hζ still depends on δp, the step’s angle of the helix (Fig. 2(b)). Note
that the metric coefficient hζ is a function of x and y, which causes a
difficulty in the separation of variables. Thus, the analytical methods
are not suitable for the helical or the curved waveguide. The separation
of variables is performed in this study, as a numerical method. The
case for small values of the step’s angle is given in Appendix A.

We assume that for most materials, the permeability µ is equal to
that of free space (µ = µ0). The wave equations for the electric and
magnetic field components in the inhomogeneous dielectric medium
ε(x, y) are given by

∇2E + ω2µεE +∇
(
E · ∇ε

ε

)
= 0, (4a)

and
∇2H + ω2µεH +

∇ε

ε
× (∇×H) = 0, (4b)

respectively. The transverse dielectric profile ε(x, y) is defined
as ε0(1 + χ0g(x, y)), where ε0 represents the vacuum dielectric
constant, g(x, y) is its profile function in the waveguide, and χ0

is the susceptibility of the dielectric material. The normalized
transverse derivatives of the dielectric profile g(x, y) are defined as
(1/ε(x, y))[(∂/∂x)ε(x, y)] and (1/ε(x, y))[(∂/∂y)ε(x, y)], respectively.
From the helical transformation of Eq. (1) we can derive the Laplacian
of the vector E (i.e., ∇2E), and obtain the wave equations for the
electric and magnetic fields in the inhomogeneous dielectric medium.
It is necessary to find the values of ∇ · E, ∇(∇ · E), ∇ × E, and
∇ × (∇ × E) in order to obtain the value of ∇2E, where ∇2E =
∇(∇ ·E)−∇× (∇×E). All these values are dependent on the metric
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coefficients (3a)–(3c). The expressions for∇·E, ∇×E, and∇×(∇×E)
are given in Appendix B.

The components of ∇2E are given by
(∇2E

)
x

= ∇2Ex − 1
R2h2

ζ

cos2(δp)Ex − 2
1

Rh2
ζ

cos2(δp)
∂

∂ζ
Eζ , (5a)

(∇2E
)
y

= ∇2Ey, (5b)
(∇2E

)
ζ

= ∇2Eζ − 1
R2h2

ζ

cos2(δp)Eζ + 2
1

Rh2
ζ

cos2(δp)
∂

∂ζ
Ex, (5c)

where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

1
h2

ζ

∂2

∂ζ2
+

1
Rhζ

cos2(δp)
∂

∂x
, (6)

and for hζ = 1 + (x/R)cos2(δp).
The wave Eqs. (4a) and (4b) are written in the form

(∇2E
)
i
+ k2Ei + ∂i(Exgx + Eygy) = 0, (7a)(∇2H

)
i
+ k2Hi + ∂i(Hxgx + Hygy) = 0, (7b)

where i = x, y, ζ. The local wavenumber parameter is given by
k = ω

√
µε(x, y) = k0

√
1 + χ0g(x, y), and the free-space wavenumber

is given by k0 = ω
√

µ0ε0. The expression (∇2E)x, for instance, is given
according to Eq. (5a).

The transverse Laplacian operator is defined as

∇2
⊥ = ∇2 − 1

h2
ζ

∂2

∂ζ2
. (8)

The metric coefficient hζ is a function of x, thus we defined

hζ = 1 + pζ(x), pζ(x) = cos2(δp)(x/R), (9a)

h2
ζ = 1 + qζ(x), qζ(x) = cos2(δp)(2/R)x. (9b)

The Laplace transform

ã(s) = L{a(ζ)} =
∫ ∞

ζ=0
a(ζ)e−sζdζ (10)

is applied on the ζ-dimension, where a(ζ) represents any ζ-dependent
variables and ζ = (Rφc)/ cos(δp).

Laplace transform on the differential wave equations is needed to
obtain the wave equations (and thus also the output fields) that are
expressed directly as functions of the transmitted fields at the entrance
of the waveguide at ζ = 0+. Thus, the Laplace transform is necessary
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to obtain the comfortable and simple input-output connections of the
fields.

By substitution of Eqs. (5a)–(5c) into Eqs. (7a) and (7b), by using
the Laplace transform (10), and multiply by h2

ζ , Eqs. (4a) are described
in the Laplace transform domain in the form

h2
ζ

(
∇2
⊥ +

s2

h2
ζ

+ k2

)
Ẽx+h2

ζ∂x

(
Ẽxgx+Ẽygy

)
+hζ

1
R

cos2(δp)∂x

(
Ẽx

)

− 2
R

cos2(δp)sẼζ =

(
sEx0 + E

′
x0

)
− 2

R
cos2(δp)Eζ0 , (11)

and similarly, the other equations are described in the Laplace
transform domain, where the transverse Laplacian operator is defined
according to (8), Ex0 , Eζ0 are the initial values of the corresponding
fields at ζ = 0, i.e., Ex0 = Ex(x, y, ζ = 0) and E

′
x0

= ∂
∂ζ Ex(x, y, ζ)|ζ=0.

The next steps are given in detail in Ref. [19], as a part of our
derivation. Let us repeat these steps, in brief.

1). A Fourier transform is applied on the transverse dimension

ḡ(kx, ky) = F{g(x, y)} =
∫

x

∫

y
g(x, y)e−jkxx−jkyydxdy, (12)

and the differential equations are transformed to an algebraic form in
the (ω, s, kx, ky) space.

2). The method of images is applied to satisfy the conditions
n̂ × E = 0 and n̂ · (5 × E) = 0 on the surface of the ideal metallic
waveguide walls, where n̂ is a unit vector perpendicular to the surface.

3). The metric coefficient hζ is a function of x (Eqs. (9a) and
(9b)). Thus the elements of the matrices P(0) and Q(0) are defined as:

p̄ζ
(o)
(n,m) =

1
4ab

∫ a

−a

∫ b

−b
pζ(x) e−j(n π

a
x+m π

b
y) dxdy, (13a)

q̄ζ
(o)
(n,m) =

1
4ab

∫ a

−a

∫ b

−b
qζ(x) e−j(n π

a
x+m π

b
y) dxdy, (13b)

and the matrices P(1) and Q(1) are defined as:

P(1) =

(
I + P(0)

)
, (13c)

Q(1) =

(
I + Q(0)

)
, (13d)
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where I is the unity matrix.
4). The differential equations are rewritten in a matrix form,

where the initial-value vectors, Êx0 , Êy0 , and Êζ0 are defined from
the terms (sĒx0 + Ē

′
x0

)/2s, (sĒy0 + Ē
′
y0

)/2s, and (sĒζ0 + Ē
′
ζ0

)/2s,
respectively.

The modified wave-number matrices are defined as

Dx ≡ K(0) + Q(0)K1(0) +
k2

oχ0

2s
Q(1)G +

jkox

2s
Q(1)NGx

+
1

2sR
cos2(δp)jkoxP(1)N, (14a)

Dy ≡ K(0) + Q(0)K1(0) +
k2

oχ0

2s
Q(1)G

+
1

2sR
cos2(δp)jkoxP(1)N +

jkoy

2s
Q(1)MGy, (14b)

Dζ ≡ K(0) + Q(0)K1(0) +
k2

oχ0

2s
Q(1)G

+
1

2sR
cos2(δp)jkoxP(1)N, (14c)

where the elements of the diagonal matrices K(0), M, N and K(1) are
defined as

K(0)
(n,m)(n′,m′)=

{[
k2

o−(nπ/a)2−(mπ/b)2+s2
]
/2s

}
δnn′δmm′ , (15a)

M(n,m)(n′,m′)=mδnn′δmm′ , (15b)
N(n,m)(n′,m′)=nδnn′δmm′ , (15c)

K(1)
(n,m)(n′,m′)=

{[
k2

o − (nπ/a)2 − (mπ/b)2
]
/2s

}
δnn′δmm′ , (15d)

where δnn′ and δmm′ are the Kronecker delta functions.
After some algebraic steps, the components of the electric field are

formulated as follows:

Ex =
{
Dx + α1Q(1)M1Q(1)M2 +

1
R

cos2(δp)Dζ
−1

(
− 1

2
Q(1)Gx +

1
2
α2Q(1)M3Q(1)M2 − 1

R
cos2(δp)I

)}−1

(
Êx0 −

1
sR

cos2(δp)Eζ0 − α3Q(1)M1Êy0 +
1
R

cos2(δp)Dζ
−1

(
Êζ0+

1
sR

cos2(δp)Ex0+
1
2s

Q(1)(GxEx0+GyEy0)−
1
2
Q(1)M3Êy0

))
, (16a)
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Ey = Dy
−1

(
Êy0 −

jkoy

2s
Q(1)MGxEx

)
, (16b)

Eζ = Dζ
−1

{
Êζ0 +

1
2s

Q(1)

(
GxEx0 + GyEy0

)

−1
2
Q(1)

(
GxEx + GyEy

)
− 1

R
cos2(δp)Ex +

1
sR

cos2(δp)Ex0

}
, (16c)

where: α1 = koxkoy

4s2 , α2 = jkoy

2s , α3 = jkox

2s , M1 = NGyDy
−1,

M2 = MGx, M3 = GyDy
−1.

These equations describe the transfer relations between the spatial
spectrum components of the output and input waves in the dielectric
waveguide. Similarly, the other components of the magnetic field are
obtained. The transverse field profiles are computed by the inverse
Laplace and Fourier transforms, as follows

Ey(x, y, ζ) =
∑
n

∑
m

∫ σ+j∞

σ−j∞
Ey(n, m, s)ejnkoxx+jmkoyy+sζds. (17)

The inverse Laplace transform is performed in this study by a direct
numerical integration on the s-plane by the method of Gaussian
Quadrature. The integration path in the right side of the s-plane
includes all the singularities, as proposed by Salzer [24, 25].

The ζ component of the average-power density of the complex
Poynting vector is given by

Sav =
1
2
Re

{
ExHy

∗ −EyHx
∗
}

, (18)

where the asterisk indicates the complex conjugate. The active power
is equal to the real part of the complex Poynting vector. The total
average-power transmitted along the guide in the ζ direction is given
by a double integral of Eq. (18). A Fortran code is developed using
NAG subroutines [26]. Several examples computed on a Unix system
are presented in the next section.

3. NUMERICAL RESULTS

This section presents several examples which demonstrate features of
the proposed mode model derived in the previous section. The method
of this model is based on Fourier coefficients, thus the accuracy of
the method is dependent on the number of the modes in the system.
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Further we assume N = M . The convergence of the solution is verified
by the criterion

C(N) ≡ log

{
max

(∣∣SN+2
av − SN

av

∣∣)
∣∣∣max

(
SN+2

av

)
−min (SN

av)
∣∣∣

}
, N ≥ 1, (19)

where the number of the modes is equal to (2N + 1)2. The order N
determines the accuracy of the solution. If the value of the criterion is
less then −2, then the numerical solution is well converged.

A comparison with the known transcendental equation [27] is
needed, in order to examine the validity of the theoretical model. We
derive the transcendental equation and the field Ey by the potentials
for TE10 mode. We confirm the validity of our model by comparison
of the numerically computed results with the results based on the
transcendental equation for a dielectric slab (Fig. 3).

Let us compare the theoretical model with the known analytical
theory. For the given dimensions a and d, we find the values Λ and
Ω according to the next transcendental equation for a dielectric slab
(Fig. 3). According to our theoretical model we can calculate Ey0(n,m)
and g(n,m) as follows:

Ey0(n,m) =
1

4ab

∫ a

−a

∫ b

−b
Ey(x, y, z = 0)e−j(n π

a
x+m π

b
y)dxdy,

and

g(n,m) =
1

4ab

∫ a

−a

∫ b

−b
g(x, y)e−j(n π

a
x+m π

b
y)dxdy.

The derivation of the transcendental equation [27] is given as follows.

 

 
  

 

 

y

 x
 t  td 

b

a 0

    ε0 ε0 
ε

Figure 3. A dielectric slab in a rectangular metallic waveguide.
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The potentials for TE10 mode (Fig. 3) are given according to



Ψ1 = C1 sin(kx1x)e−jkzz

Ψ2 =
[
C21 sin(kx2(x− (a

2 )) + C22 cos(kx2(x− (a
2 ))

]
e−jkzz

Ψ3 = C3 sin(kx3(a− x))e−jkzz

,

where kz is the propagation constant. The Dispersion-Equations



k2
x1 + k2

z = ω2µ0ε0 = k2
o

k2
x3 + k2

z = ω2µ0ε0 = k2
o

k2
x2 + k2

z = ω2µ0ε = k2
oεr

,

where kx1 = kx3.
From the symmetric solutions (C1 = C3, C21 = 0) for Ey and Hz

we obtain

Ey = −1
ε

∂ψ

∂z
= jkz

1
ε
ψ, Hz =

1
jωµε

∂2ψ

∂x∂z
= − kz

ωµε

∂ψ

∂x
.

By the continuity request in the regions x = t and x = a−t (see Fig. 3)
for Ey and Hz, and by division of the equations, one can obtain for
the symmetric case the transcendental equation

ν cot(νt) = µ tan(µd/2),

where ν ≡
√

k2
o − k2

z , µ ≡
√

k2
oεr − k2

z and (a− 2t)/2 = d/2.
For the symmetric solution (C1 = C3, C21 = 0) we obtain




Ey1 = j kz
ε0

sin(νx)e−jkzz 0 < x < t

Ey2 = j kz
ε0

sin(ν·t)
cos(µ(t−a/2)) cos

[
µ(x− a

2 )
]
e−jkzz t < x < t + d

Ey3 = j kz
ε0

sin [ν(a− x)] e−jkzz t + d < x < a

.

The solution for the dielectric slab modes based on transcendental
equation [27] is given as follows



Ey1 = j kz
ε0

sin(νx) 0 < x < t

Ey2 = j kz
ε0

sin(νt)
cos(µ(t−a/2)) cos [µ(x− a/2)] t < x < t + d

Ey3 = j kz
ε0

sin [ν(a− x)] t + d < x < a

, (20)

where ν ≡
√

k2
o − k2

z and µ ≡
√

εrk2
o − k2

z result from the
transcendental equation(

a

d
− 1

)
dµ

2
tan

(
dµ

2

)
− (tν) cot(tν) = 0,

and
∂

∂z
Ey(x, y, z)|z=0 = −jkzEy(x, y, z = 0).
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Let us denote Λ ≡ (d/2)µ and Ω ≡ tν. For the given dimensions a and
d, we find the values Λ and Ω according to the next transcendental
equation (

a

d
− 1

)
Λ tan Λ− Ωcot Ω = 0,

where Ω 6= kπ and Λ 6= (2k + 1)(π/2).
By addition and subtraction of the equations ν2 = k2

o − k2
z and

µ2 = εrk
2
o − k2

z we obtain

ko =

(
(2Λ/d)2 − (Ω/t)2

εr − 1

)1/2

, kz =

(
(2Λ/d)2 − εr (Ω/t)2

εr − 1

)1/2

.

Equation (20) were substituted as the initial fields into the
Eq. (16(b)) at z = 0+ in the practical case of the straight waveguide
(by letting R → ∞ or by taking δp = π/2) with the symmetrical slab
profile (Fig. 3). The result of the comparison between the theoretical
model with the known solution [27] is shown in Fig. 4(a), where εr = 9,
d = 3.3mm, and λ = 6.9 cm. The convergence of the numerical results
as a function of the matrix order is shown in Fig. 4(b). The comparison
is demonstrated for every order (N = 1, 3, 5, 7, and 9). The order
N determines the accuracy of the solution. The convergence of the
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Figure 4. (a) A comparison between amplitude results of the
theoretical model and the transcendental equation (a = 2b = 2 cm,
d = 3.3mm, εr = 9, and λ = 6.9 cm; (b). The convergence of our
theoretical results.
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solution is verified by the criterion (19) for the Ey component of the
fields (instead of Sav). If the value of the criterion is less then −2,
then the numerical solution is well converged. When N increases, then
Ey(N) approaches Ey. The value of the criterion between N = 7
and N = 9 is equal to −2.38 ' −2, namely a hundredth part.
The comparison between the theoretical mode-model and the known
model [27] has shown good agreement.

Note that we have two ways to compare between the results of
our mode model with the other methods. The first way is to compare
between the results of the output fields for every order (N = 1, 3, 5,
7, and 9) with the final solution of the known method. The second
way is to compare between the results of the output fields (according
to our model) for every two orders (N = 1, 3, N = 3, 5, N = 5, 7,
and N = 7, 9), until our numerical solution is well converged. This
way is efficient in the cases that we have complicated problems that
we cannot compare with the final solution of the known method.

3.1. A Rectangular Dielectric Profile in the Rectangular
Cross Section of the Metallic Helical Waveguide

The geometrical shape of a rectangular dielectric profile loaded in
the rectangular cross section of the metallic helical waveguide is
demonstrated in Fig. 5 for an inhomogeneous dielectric profile in the
cross section. The dimensions of the waveguide in the cross-section
are denoted as a and b. Further, the next examples will demonstrate
the results of the solutions in the case of a rectangular dielectric profile
loaded in the rectangular cross section of the metallic helical waveguide
(Fig. 5), for a = b = 2 cm.

In order to solve discontinuous problems in the cross section, the

ε εεo

x

y

0

b

a

d

c o

Figure 5. A rectangular dielectric profile loaded in the rectangular
cross section of the metallic helical waveguide.
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ωε function, “cap-shaped function” [28], is used. The ωε function
(Fig. 6(a)) is defined as

ωε(r) =

{
Cεe

− ε2

ε2−|r|2 |r| ≤ ε
0 |r| > ε

,

where the constant Cε is chosen to satisfy
∫

ωε(r)dr = 1.
The ωε function in the limit ε −→ 0 is shown in Fig. 6(b). The

dielectric profile g(x) and g(y) in this case of a rectangular dielectric
profile in the rectangular cross section (Fig. 5) are given by

g(x) =





0 0 ≤ x<(a−d−ε1)/2

g0 exp

[
1− ε1

2

ε1
2−[x−(a−d+ε1)/2)]2

]
(a−d−ε1)/2≤x<(a−d+ε1)/2

g0 (a−d+ε1)/2<x<(a+d−ε2)/2

g0 exp

[
1− ε2

2

ε2
2−[x−(a+d−ε2)/2)]2

]
(a+d−ε2)/2≤x<(a+d+ε2)/2

0 (a+d+ε2)/2 < x ≤ a

,

g(y) =





0 0 ≤ y < (b− c− ε1)/2

g0 exp

[
1− ε1

2

ε1
2−[y−(b−c+ε1)/2)]2

]
(b−c−ε1)/2≤y<(b−c+ε1)/2

g0 (b−c+ε1)/2<y<(b+c−ε2)/2

g0 exp

[
1− ε2

2

ε2
2−[y−(b+c−ε2)/2)]2

]
(b+c−ε2)/2≤y<(b+c+ε2)/2

0 (b + c + ε2)/2 < y ≤ a

.

The elements of the matrice g(n,m) are given according to Fig. 5, in

−ε ε
r

 −ε/2  ε/2 

−ε

=
0

r r 

   lim
0

 −ε/2

(a) (b)

ω ε (r)

ω ε (r)

ε

Figure 6. (a) The ωε function. (b) The ωε function in the limit
ε −→ 0.
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the case of b 6= c by

g(n,m) =

g0

ab

{∫ (a−d+ε1)/2

(a−d−ε1)/2
exp

[
1− ε1

2

ε1
2−[x−(a−d+ε1)/2)]2

]
cos

(
nπx

a

)
dx

+
∫ (a+d−ε2)/2

(a−d−ε1)/2
cos

(
nπx

a

)
dx

+
∫ (a+d+ε2)/2

(a+d−ε2)/2
exp

[
1− ε1

2

ε1
2 − [x− (a + d− ε2)/2)]2

]
cos

(
nπx

a

)
dx

}

{∫ (b−c+ε1)/2

(b−c−ε1)/2
exp

[
1− ε1

2

ε1
2 − [y − (b− c + ε1)/2)]2

]
cos

(
mπy

b

)
dy

+
∫ (b+c−ε2)/2

(b−c−ε1)/2
cos

(
mπy

b

)
dy

+
∫ (b+c+ε2)/2

(b+c−ε2)/2
exp

[
1− ε1

2

ε1
2 − [y − (b + c− ε2)/2)]2

]
cos

(
mπy

b

)
dy

}
.

The elements of the matrice g(n,m) are given according to Fig. 5, in
the case of b = c by

g(n,m) =

g0

ab

{ ∫ (a−d+ε1)/2

(a−d−ε1)/2
exp

[
1− ε1

2

ε1
2 − [x− (a− d + ε1)/2)]2

]
cos

(
nπx

a

)
dx

+
∫ (a+d−ε2)/2

(a−d−ε1)/2
cos

(
nπx

a

)
dx

+
∫ (a+d+ε2)/2

(a+d−ε2)/2
exp

[
1− ε1

2

ε1
2 − [x− (a + d− ε2)/2)]2

]
cos

(
nπx

a

)
dx

}

{∫ b

0
cos

(
mπy

b

)
dy

}
.

The derivatives of the dielectric profile are defined as

gx ≡ 1
ε(x, y)

∂ε(x, y)
∂x

=
∂[ln(1 + g(x, y))]

∂x
,

gy ≡ 1
ε(x, y)

∂ε(x, y)
∂y

=
∂[ln(1 + g(x, y))]

∂y
.
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Thus, the derivatives of the dielectric profile are calculated as follow

gx =





0 0 ≤ x < (a− d− ε1)/2

d
dx

{
ln

[
1 + g0 exp

[
1− ε1

2

ε1
2−[x−(a−d+ε1)/2)]2

]]}

(a− d− ε1)/2 ≤ x < (a− d + ε1)/2
0 (a− d + ε1)/2 < x < (a + d− ε2)/2

d
dx

{
ln

[
1 + g0 exp

[
1− ε2

2

ε2
2−[x−(a+d−ε2)/2)]2

]]}

(a + d− ε2)/2 ≤ x < (a + d + ε2)/2
0 (a + d + ε2)/2 < x ≤ a

,

gy =





0 0 ≤ y < (b− c− ε1)/2

d
dx

{
ln

[
1 + g0 exp

[
1− ε1

2

ε1
2−[y−(b−c+ε1)/2)]2

]]}

(b− c− ε1)/2 ≤ y < (b− c + ε1)/2
0 (b− c + ε1)/2 < y < (b + c− ε2)/2

d
dx

{
ln

[
1 + g0 exp

[
1− ε2

2

ε2
2−[y−(b+c−ε2)/2)]2

]]}

(b + c− ε2)/2 ≤ x < (a + d + ε2)/2
0 (b + c + ε2)/2 < y ≤ b

.

The main contribution of this paper is demonstrated in Fig. 7,
in order to understand the influence of the step’s angle (δp) and the
radius of the cylinder (R) on the output power transmission. The
output fields are dependent on the input wave profile (TE10 mode)
and the dielectric profile. Six results are demonstrated for six values
of δp (δp = 0, 0.4, 0.7, 0.8, 0.9, 1.0), where ζ = 15 cm, a = 2 cm,
b = c = 2 cm, d = 1.6 cm, λ = 3.75 cm, and εr = 1.5, in the practical
case of the slab dielectric profile (Fig. 5). For an arbitrary value of
R, the output power transmission is large for large values of δp and
decreases with decreasing the value of δp. On the other hand, for an
arbitrary value of δp, the output power transmission is large for large
values of R and decreases with decreasing the value of R. Note that for
small values of the step’s angle, the radius of curvature of the helical
waveguide can be approximated by the radius of the cylinder. In this
case, the output power transmission is large for small values of the
bending (1/R), and decreases with increasing the bending. Thus, this
model can be a useful tool to find the parameters (δp and R) which
will give us the improved results (output power transmission) of the
curved waveguide in the cases of space curved waveguides.

Figures 8(a)–(b) show the results of the output power density (Sav)
as function of εr in the case of the slab dielectric profile (a = 20 mm,
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Figure 7. The results of the output power transmission as a function
of 1/R, where R is the radius of the cylinder. Six results are
demonstrated for six values of δp (δp = 0.0, 0.4, 0.7, 0.8, 0.9, 1.0),
where ζ = 15 cm, a = 20 mm, b = c = 20mm, d = 16mm, λ = 3.75 cm,
and εr = 1.5.

b = c = 20 mm, and d = 16 mm), where εr = 1.5, 2.0, respectively.
Figs. 8(c)–(f) show the results of the output power density (Sav) as
function of εr in the case of the rectangular dielectric profile in the
rectangular cross section (a = b = 20 mm, and c = d = 16 mm),
where εr = 1.5, 1.6, 1.75, and 2.0, respectively. The other parameters
are given for the step’s angle (δp = 1) and the radius of the cylinder
(R = 0.26m), where ζ = 15 cm, and λ = 3.75 cm. The output fields are
dependent on the input wave profile (TE10 mode) and the dielectric
profile (Fig. 5).

Figure 9(a) shows the output amplitude and the output profile
shape for four values of εr = 1.5, 1.6, 1.75, and 2.0, respectively. The
output profile is shown in the same cross section of output transverse
profile of Fig. 8(a), where y = b/2 = 10mm. By changing only
the value of the parameter εr of the slab dielectric profile from 1.5
to 2.0, the output transverse profile of the power density (Sav) is
changed, and the amplitude of the output power density is changed
from 1W/m2 to 0.5 W/m2, as shown in Figs. 8(a)–(b). By changing
only the value of the parameter εr of the rectangular dielectric profile
in the rectangular cross section (Fig. 5) from 1.5 to 2.0, the output
transverse profile of the power density (Sav) is changed, and the
amplitude of the output power density is changed from 1.6W/m2 to
0.9W/m2, as shown in Figs. 8(c)–(f). The amplitude of the output
power density decreases with increasing the value of εr. These examples
demonstrate the influence of the slab and rectangular dielectric profiles
in the rectangular cross section of the helical waveguide, for arbitrary
step’s angle and the radius of the cylinder of the helical waveguide.
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Figure 8. The results of the output power density as function of εr in
the case of the slab dielectric profile (a = 20 mm, b = c = 20 mm, and
d = 16 mm). (a). εr = 1.5; (b) εr = 2.0. The results of the rectangular
dielectric profile in the rectangular cross section (a = b = 20 mm,
and c = d = 16 mm). (c) εr = 1.5; (d) εr = 1.6; (e) εr = 1.75; (f)
εr = 2.0. The other parameters are λ = 3.75 cm, δp = 1, R = 0.26m,
and ζ = 15 cm.

Figure 9(b) shows an example for the output profiles for N = 1,
3, 5 and 7, where εr = 1.5. The output results are demonstrated for
every order (N = 1, 3, 5, and 7). By increasing only the parameter of
the order from N = 1 to N = 7, then the output profile approaches to
the final output profile.

It is very interesting to understand the behaviour of the results
that are demonstrated in Figs. 7, 8(a)–(f), and 9(a)–(b) in the case of a
helical waveguide with slab and rectangular dielectric profiles with the
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Figure 9. (a) The output amplitude and the profile shape of the
central peak in the same cross section of Fig. 8(a) where y = b/2 =
10mm, in the case of the slab dielectric profile (a = 20 mm, b = c =
20mm, and d = 16 mm). The output modal profile is given for the
step’s angle (δp = 1) and the radius of the cylinder (R = 0.26m),
where ζ = 15 cm, λ = 3.75 cm, and for different values of εr. (b) The
output profile for N = 1, 3, 5, and 7, where εr = 1.5.

results in Ref. [19] in the case of a helical waveguide with the circular
dielectric profile. We can’t compare between the different methods,
but the behaviour of the results in Fig. 7 and in Ref. [19] shows that
for an arbitrary value of R, the output power transmission is large for
large values of δp and decreases with decreasing the value of δp. On the
other hand, for an arbitrary value of δp, the output power transmission
is large for large values of R and decreases with decreasing the value of
R. Thus, this model and the model in Ref. [19] can be a useful tool to
find the parameters (δp and R) which will give us the improved results
(output power transmission) of the curved waveguide in the cases of
space curved waveguides.

The influence of the parameter εr on the profiles and the amplitude
of the output power density (Sav) is demonstrated in Figs. 8(a)–(f),
and 9(a)–(b) and in Ref. [19] in the different cases. The examples
in Figs. 8(a)–(f) and 9(a)–(b) are demonstrated in the cases of a
helical waveguide with slab and rectangular dielectric profiles and
the examples in Ref. [19] are demonstrated in the case of a helical
waveguide with the circular dielectric profile. In spite of the differences,
the two methods refer to the propagation of EM fields along a
helical waveguide, for an arbitrary step’s angle (δp) and the radius
of the cylinder (R) in practical cases of the dielectric profiles in the
rectangular cross section.
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4. CONCLUSION

This paper presents a rigorous approach for the propagation of EM
fields along a helical waveguide with slab and rectangular dielectric
profiles in the rectangular cross section. The main objective was to
develop a numerical method for the calculation of the output fields,
for an arbitrary step’s angle (δp) and the radius of the cylinder of the
helical waveguide. This method was developed for a helical waveguide
(a space curved waveguide for an arbitrary value of the step’s angle
of the helical waveguide) with slab and rectangular dielectric profiles
in the rectangular cross section. The other objectives were to present
the technique to calculate the dielectric profiles and their transverse
derivatives in the cross-section and to demonstrate the ability of
the model to solve practical problems with slab and rectangular
dielectric profiles. These slab and rectangular dielectric profiles in
the rectangular cross section of the helical waveguide are examples
to practical problems with inhomogeneous dielectric profiles, in the
microwave and the millimeter-wave regimes.

The calculations are based on using Laplace and Fourier
transforms, and the output fields are computed by the inverse Laplace
and Fourier transforms. Laplace transform on the differential wave
equations is needed to obtain the wave equations (and thus also
the output fields) that are expressed directly as functions of the
transmitted fields at the entrance of the waveguide at ζ = 0+. Thus,
the Laplace transform is necessary to obtain the comfortable and
simple input-output connections of the fields. The output fields are
dependent on the input wave profile (TE10 mode) and the dielectric
profile.

The main contribution of this paper is demonstrated in Fig. 7, in
order to understand the influence of the step’s angle (δp) and the radius
of the cylinder (R) on the output power transmission. Six results are
demonstrated for six values of δp (δp =0, 0.4, 0.7, 0.8, 0.9, 1.0), where
ζ = 15 cm, a = 2 cm, b = c = 2 cm, d = 1.6 cm, λ = 3.75 cm, and
εr = 1.5, in the practical case of the slab dielectric profile (Fig. 5).
For an arbitrary value of R, the output power transmission is large for
large values of δp and decreases with decreasing the value of δp. On the
other hand, for an arbitrary value of δp, the output power transmission
is large for large values of R and decreases with decreasing the value of
R. Note that for small values of the step’s angle, the radius of curvature
of the helical waveguide can be approximated by the radius of the
cylinder. In this case, the output power transmission is large for small
values of the bending (1/R), and decreases with increasing the bending.
Thus, this model can be a useful tool to find the parameters (δp and R)
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which will give us the improved results (output power transmission) of
the curved waveguide in the cases of space curved waveguides.

Figures 8(a)–(b) show the results of the output power density (Sav)
as function of εr in the case of the slab dielectric profile (a = 20 mm,
b = c = 20 mm, and d = 16 mm), where εr = 1.5, 2.0, respectively.
Figs. 8(c)–(f) show the results of the output power density (Sav) as
function of εr in the case of the rectangular dielectric profile in the
rectangular cross section (a = b = 20 mm, and c = d = 16 mm),
where εr = 1.5, 1.6, 1.75, and 2.0 respectively. The other parameters
are given for the step’s angle (δp = 1) and the radius of the cylinder
(R = 0.26m), where ζ = 15 cm, and λ = 3.75 cm.

Figure 9(a) shows the output amplitude and the output profile
shape for four values of εr = 1.5, 1.6, 1.75, and 2.0, respectively. The
amplitude of the output power density decreases with increasing the
value of the parameter εr in the slab and rectangular dielectric profiles,
and the output transverse profile of the power density (Sav) is changed,
as shown in Figs. 8(a)–(f) and Fig. 9(a).

Figure 9(b) shows an example for the output profiles for N = 1,
3, 5, and 7, where εr = 1.5. The output results are demonstrated for
every order (N = 1, 3, 5, and 7). By increasing only the parameter of
the order from N = 1 to N = 7, then the output profile approaches to
the final output profile.

These examples demonstrate the influence of the slab and
rectangular dielectric profiles in the rectangular cross section of the
helical waveguide, for arbitrary step’s angle and the radius of the
cylinder of the helical waveguide. This model is useful for the
analysis of helical waveguides with rectangular dielectric profiles in
the microwave and the millimeter-wave regimes. This model can be a
useful tool to find the parameters (δp and R) which will give us the
improved results (output power transmission) of the curved waveguide
in the cases of space curved waveguides.

APPENDIX A.

For small values of the step’s angle δp(sin(δp) ' tan(δp) ' δp, cos(δp) '
1), condition (2) becomes δp ≥

√
a2 + b2/(2πR). For small values of

the step’s angle, the helical waveguide becomes a toroidal waveguide,
where the radius of the curvature of the helix can then be approximated
by the radius of the cylinder. In this case, the curved system (x, y, ζ)
in conjunction with the curved waveguide is shown in Fig. 1(b), and
the transformation of the coordinates Eq. (1) is given as a special case
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of the curved transformation of the coordinates, as follows

X = (R + x) cos

(
ζ

R

)
Y = (R + x) sin

(
ζ

R

)
Z = y,

and the metric coefficients are given by

hx = 1 hy = 1 hζ = 1 +
x

R
.

APPENDIX B.

The expression for ∇ · E is dependent on the metric coefficients as
follows

∇ ·E = divE=
1

hxhyhζ

[
∂

∂x

(
Exhyhζ

)
+

∂

∂y

(
hxEyhζ

)
+

∂

∂ζ

(
hxhyEζ

)]

=
1
hζ

[
∂Ex

∂x
hyhζ +

∂Ey

∂y
hζ +

∂Eζ

∂ζ
hy + Ex

∂

∂x

(
hyhζ

)]
.

The expression for ∇ × E is dependent on the metric coefficients as
follows

∇×E = curlE =
1

hxhyhζ




hxx̂ hyŷ hζ ζ̂
∂
∂x

∂
∂y

∂
∂ζ

hxEx hyEy hζEζ


 ,

and the expression for ∇× (∇×E) is given by

∇×
(
∇×E

)
=

1
hxhyhζ




hxx̂ hyŷ hζ ζ̂
∂
∂x

∂
∂y

∂
∂ζ

hx

(
∇×E

)

x

hy

(
∇×E

)

y

hζ

(
∇×E

)

ζ




.
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