
Progress In Electromagnetics Research, Vol. 120, 263–292, 2011

PARALLEL IMPLEMENTATION OF A 3D SUBGRID-
DING FDTD ALGORITHM FOR LARGE SIMULATIONS

A. Vaccari 1, *, A. Cala’ Lesina 1, L. Cristoforetti 2, and
R. Pontalti 1

1FBK-irst, REET Department, Trento, Italy
2PAT, Department of Education, University and Research, Trento,
Italy

Abstract—In a previous paper, we proposed and tested a robust and
efficient three-dimensional (3-D) subgridding algorithm for the FDTD
solution method of the Maxwell’s curl PDEs system. Its characteristic
feature is the straight, non-recursive, embedding of Yee grids — refined
by factors of 3, 5, 7 and even larger — within coarser ones. There, the
algorithm’s implementation was described with the traditional serial
programming approach. In the present paper, we propose and test its
parallel programming implementation. The goal is to make it suitable
and efficient for large scale electromagnetic simulations.

1. INTRODUCTION

The early Yee formulation [1] of the finite-difference time-domain
(FDTD) method [2] and its successive enrichments, such as the
pulsed FDTD method and the absorbing (ABC) or radiation (RBC)
boundary conditions for appropriate mesh truncation, are a powerful
tool in Computational ElectroMagnetics [3]. FDTD is a fully explicit
numerical solution method of the hyperbolic first order Maxwell’s
curl PDEs system. All the spatial values of the electromagnetic
field components are updated on the basis of their values at the
previous time step. A frequency domain analysis is not precluded,
because a semidiscrete Fourier Transform (DFT) can be performed
in-line. Due to the large sizes of the models, a straight encoding
of the FDTD method may result in long calculation time and thus
demands the increase of the computational efficiency. The basic

Received 30 June 2011, Accepted 31 August 2011, Scheduled 6 September 2011
* Corresponding author: Alessandro Vaccari (vaccari@fbk.eu).

264 Vaccari et al.

assumption is that increased mesh densities are introduced only in
sub-regions where they are really needed (mesh refinement — or
subgridding — algorithms) [4–7]. In a previous paper [8], we proposed
an efficient, non-recursive, 3-D subgridding algorithm for the FDTD
explicit method, incorporating a spatial filtering technique of the
numerical signals. Our algorithm enables the straight embedding
of finer meshes into coarse ones, which have larger space step by
factors of 3, 5, 7 or greater, while maintaining fairly good accuracy
and long term stability. Another step toward increased efficiency
stands in the realm of the High Performance Computing (HPC) with
the use of parallel or massive parallel machines which give access to
larger RAM and storage resources. MPI realizes the single-program
multiple-data (SPMD) programming approach: many instances of a
single program, the processes, are executed autonomously on distinct
physical processors of a cluster. This is a collection of interconnected
SMP (Symmetrical MultiProcessor) nodes, each of them with a certain
number of CPUs. Previous works on FDTD code parallelization by
means of the MPI Library are reported in [9–13]. These papers
describe 2-D or 3-D cartesian topologies of processes for the FDTD
grid decomposition, along with user defined MPI data structures for
data exchange at the subdomain boundaries. They also report some
performance analysis. We start from Section 2, which gives details
on how the MPI parallel version of our subgridding algorithm [8] is
implemented, in particular it is described how to dynamically allocate
the data structures in memory in order to have a fast access and
an efficient management of the data transition at the coarse/coarse,
refined/refined and coarse/refined domain interfaces. According to the
intrinsic modularity of this algorithm, all the code is object-oriented
C++ [14], which makes easier its understanding, development and
maintenance. Our domain decomposition is through slices, i.e., 1-
D. Section 3 analyzes quantitatively the performances of our parallel
code, as applied to some FDTD test configurations involving the
electromagnetic field human exposure. Section 4 deals with the
application of the parallel code to a fairly large FDTD simulation.
We assume cubic uniform grid cell shapes everywhere. The absorbing
boundary conditions are those described in [15].

2. MPI PARALLELIZATION STRATEGY FOR THE
SUBGRIDDING ALGORITHM

We start with a parallelepiped domainD, the coarser one, sampled with
a uniform space step δ and a corresponding time step τ = 0.5 × δ/co

satisfying the Courant stability criterion [16–18], co being the vacuum

Progress In Electromagnetics Research, Vol. 120, 2011 265

x

z

'

Z1

Z3

Z5

b

b b

b

middle z-slice

bottom z-slice

top z-slice

Huygens’ box

O

absorbing boundary

embedded subdomain

s-slice

s
-s

lic
e

Figure 1. 2-D view example of a D′ with L = 5. The ` = 3 z-slice is
empty.

light velocity. The resulting space lattice D consists of Nx ×Ny ×Nz

cubic Yee cells of edge size δ. D has to be augmented with extra cells
of the same size to get a bigger D′ parallelepiped lattice, in such a
way that the set D′ \ D is an external shell used to accommodate the
absorbing boundary conditions. We use a fixed number of b = 20 extra
cells for each face of D, so that the total memory cost for D′ amounts
to (Nx + 2b) × (Ny + 2b) × (Nz + 2b) Yee cells. The D′ domain is
partitioned (see Fig. 1) into L ≥ 1 subdomains, by “slicing” it along
the z-axis through cutting planes parallel to the xy coordinate plane.
Each one of the resulting L slices, referred to as a “z-slice”, will have
a thickness of given Z` > 0 cells in the z direction (1 ≤ ` ≤ L), such
that:

Z1 + Z2 + . . . + ZL = Nz + 2b.

Into each z-slice with index ` (1 ≤ ` ≤ L) a given number M` ≥ 0 of
sublattices can be embedded. Any two of them do not intersect and
all are strictly contained inside the z-slice intersection with D. The
various sublattices are characterized by a mesh refinement factor R`m

(1 ≤ ` ≤ L; 1 ≤ m ≤ M`). Their space and time steps are δ/R`m and
τ/R`m respectively so that the Courant limit remains unchanged. R`m

266 Vaccari et al.

ρ0

… … … … …

L

....

P-1

………

S
1,1

S
1,M1

S
L,ML

S
L,1

M
1

M
L

z-slices s-slices

Figure 2. Scheme of the process rank ρ assignment for z-slices and
s-slices.

are assumed to be odd integers: 3, 5, 7, . . . without loss of generality.
Every sublattice can be partitioned through cutting planes into S`m ≥
1 slices (called “s-slice”) along one, arbitrarily chosen, of the three
coordinate directions (see Fig. 1). If the positive integers T`mq are the
refined-cell thicknesses of the s-slices (1 ≤ q ≤ S`m), they have to be
chosen so that R`m is, for each q, a divisor of T`mq and consequently

C`m =
S`m∑

q=1

T`mq

R`m

gives the coarse-cell span, along the slicing direction, of the mth
sublattice in the `th z-slice. Each slice, being it of the z-type or of
the s-type, will be assigned to a single MPI process. The total number
P of processes required is therefore given by (see Fig. 2):

P = L +
L∑

`=1

M∑̀

m=1

S`m.

Each process executes the usual FDTD “bulk” algorithm on its own
lattice variables, inside a private local memory space. The overall
space-grid continuity is achieved by message passing data at the various
interfaces between the slices (cutting planes) and at the coarse/fine
mesh interfaces. The task of data sharing is accomplished by means
of MPI point-to-point communication routines. The FDTD bulk
algorithm cannot advance to the next time step, until the data sharing
in the whole space grid has been completed. In the MPI environment,
the rank ρ of each of the P processes (0 ≤ ρ ≤ P − 1) is assigned as
follows: processes with ρ = 0 to ρ = L−1 accommodate the L z-slices;
the process running the q′ s-slice, of the m′ sublattice, in the `′ z-slice
(1 ≤ q′ ≤ S`′m′), has rank:

ρ = L +
`′−1∑

`=1

M∑̀

m=1

S`m +
m′−1∑

m=1

S`′m + q′.

Progress In Electromagnetics Research, Vol. 120, 2011 267

Processes could be grouped into 1 +
∑L

`=1 M` disjoint subsets.
There is “intra-communication” between their members, but no “inter-
communication” between any two of the subsets. One of such subsets
is formed from the first L processes running the various z-slices; the
others are formed from the various S`m processes running all the s-slices
of the mth generic sublattice in the `th generic z-slice. Inside each of
the subsets, a process ρ communicates with its two neighbors ρ−1 and
ρ+1 only. It must share the tangential electric (E) and magnetic (H)
fields components of the Yee cells lying on its two boundary cutting
planes: the upstream one, π−, and the downstream one, π+. More
precisely, it sends H from π− to ρ−1 and E from π+ to ρ+1; it receives
E in π− from ρ − 1 and H in π+ from ρ + 1 (see Fig. 3). To avoid
deadlocks, this task is best accomplished by calling the Sendrecv MPI
routine. If ρ implements a first or last s-slice, then MPI::PROC NULL
is passed to the routine, instead of ρ − 1 or ρ + 1 respectively. The
subgridding algorithm [8] is now described through the following cyclic
sequence of steps (E and H denote the fields in the coarse grid, e and
h denote the fields in the refined grid):
(1) Storing of the current time step tangential coarse E field

up down

ρ +1

tangential E

π + π
 −

message passing data

ρ

tangential H

Figure 3. Data sharing at the cutting plane between two s-slices (2D
view).

268 Vaccari et al.

components.
(2) Updating of the coarse bulk E field values (using also the H values

in step (10) below). Add excitations if any.
(3) Updating of the coarse E field Discrete Fourier Transforms.
(4) Updating of the coarse bulk H field values (normal components

to the coarse/refined interfaces included). Add excitations if any.
(5) Updating of the interior refined e field values.
(6) Calculation of the refined tangential e field components by bilinear

space interpolation (needed to fill in missing refined locations) and
linear time inter/extra-polation (needed to get values at refined
times). The valued stored in step (1) and those obtained in step (2)
are used.

(7) Updating of the refined e field Discrete Fourier Transforms.
(8) Updating the refined h field values.
(9) Repeat steps from (5) to (8) R times (R being the refinement

factor).
(10) Application of the spatial filtering technique to a subset

(corresponding to the coarse grid sampling) of the refined
tangential h field components and storing of the values.

(11) Repetition of steps from (1) to (10): an FDTD iteration.

Extra communication is then required at the coarse/fine grid
interfaces (see Fig. 4). To this end, each z-slice manages the data
sharing for all the s-slice interfaces of every sublattice it contains. In
turn, a process ρ running a s-slice has to know the rank of the z-slice
in which it is contained. Tangential E values on the interfaces have
to be passed from the coarse side to the refined one and a space-time
interpolation must be performed. In our parallelized implementation,
the interpolation task is left to the process receiving the data, after the
program has returned from the MPI Recv call. Moreover, the refined
side has to pass part of its tangential H interface values, back to the
coarse one. Such values have to undergo a “spatial” filtering procedure,
according to formula (5) of [8], before they can be used in the FDTD
bulk algorithm of the coarse side. Such task is left again to the refined
side and then the program calls the MPI Send function. The functional
scheme for the parallel version of the subgridding algorithm [8] is shown
in Fig. 5 (labels 1, 2, 1′, 2′, A, B, A′, B′ in the figure will be referenced
later on in Subsections 3.3 and 3.4).

Before the FDTD algorithm is entered, initial data for antenna
structures or target complex permittivities are loaded from binary
files. There is a data file for every sublattice. The loaded data
are partitioned and dispatched to the appropriate s-slice processes by

Progress In Electromagnetics Research, Vol. 120, 2011 269

x y

z

O

a
b
c

d

a

b
c

c
b
c
b refined

Yee cell

coarse
Yee cell

(a) (b)

(c) (d)

x

y

Legend (uppercase = coarse grid; lowercase = fine grid):

E x

H x

special h used to update E on the interface

E y

H y

E z

H z

ex

hx

ey

hy

ez

hz

yz

special h used to update E on the interfacezy

e and Ey y e and Ez z h and Hxx

Figure 4. Fields layout at a coarse/fine grid interface in the yz-plane
with a mesh refinement factor R = 5.

means of pointers. Additional initial data files are loaded, one for each
z-slice: they contain parameters for the numbers of cells, numbers of
sublattices, numbers of slices, placement of the sublattices, filtering
order, and so on. At the end, the resulting data are collected from the
various slices and packed, in such a way that there is a file of results for
the D domain and each of its refined subdomains. As far as accuracy is
concerned, we use the λmin/10÷λmin/20 criterion [3], where λmin is the
shortest wavelength of interest in the response spectrum. This should
assure an accuracy amounting to at least 5%. In early subgridding
tests with experimental to analytical comparison, we found [8] an

270 Vaccari et al.

z-slice FDTD time iteratio n

coarse grid – δ , τ

s-sl ice FDTD time iter atio n

refined grid – R = 3, 5, 7, …

 receives H at the various

coarse/fine interfaces

 sends-receives H to/from

neighboring z-slices

 bulk FDTD E update

 E plane wave excitation

(if any)

 E = 0 ground planes

enforcement (if any)

 sends E at the various

coarse/fine interfaces

 sends-receives E to/from

neighboring z-slices

 bulk FDTD H update

DFT update

 sends H at his

coarse/fine interface

 H spatial filtering at his

coarse/fine interface

 receives E at his

coarse/fine interface

 holds E at his coarse/fine

interface for space-time

interpolation

 sends-receives H to/from

neighboring s-slices

 bulk FDTD E update

 E space-time interpolation

at his coarse/fine interface

 E antenna excitation (if any)

 E = 0 ground planes

enforcement (if any)

 sends-receives E to/from

neighboring s-slices

 bulk FDTD H update

 DFT update

re
p

e
a

te
d

 R
 t

im
e

s

w

it
h

 t
im

e
-s

te
p

 τ
 /
Rto

 n
e
ig

h
b

o
ri
n

g
 z

-s
lic

e
s

to
 n

e
ig

h
b

o
ri
n

g
 s

-s
lic

e
s
 o

f
a
 g

iv
e
n

 s
u

b
-d

o
m

a
in

 i
n
s
id

e
 a

 g
iv

e
n
 z

-s
lic

e

from other
s-slices

to other
s-slices

 H plane wave excitation

(if any)

A A’

B B’

1

2 1’

2’

Figure 5. Parallel FDTD functional scheme for the subgridding
algorithm [8].

accuracy of about 3% or better for canonical objects 20 space step
apart from the outer boundary of the FDTD grid, where Higdon-Mur
absorbing boundary conditions [19] were imposed. We also did not
found any relevant effect of the coarse/refined transition boundaries,
if an adequate spatial filtering order is used, provided that the stencil
of the filtering procedure involves homogeneous Yee cells only. For

Progress In Electromagnetics Research, Vol. 120, 2011 271

problems of electromagnetic field interaction with complex structures
then, the subgridding should be applied only to those space regions
where the local value of the relative permittivity reduces the local
wavelength and thus the local space step value needed for a satisfactory
accuracy.

2.1. Dynamic Memory Allocation and User Defined MPI
Types for the Parallel Subgridding Algorithm

This subsection gives basic information about memory management
specific of our MPI parallel implementation of our subgridding
algorithm [8]. In the C++ encoding we use pointers and dynamic
memory allocation to implement the data structures for the electric
and magnetic field components lattice variables. In fact, no previous
knowledge of the actual size of the model is available before
compilation. Let then F be a generic field component and suppose
we want for it a 3-D lattice of (M +1)× (N +1)× (P +1) points along
the x, y and z axes respectively. As has been seen in Section 2, data
corresponding to the faces of parallelepipeds embedded in the F lattice
have to be exchanged between pairs of processes at the coarse/fine grids
interfaces. From the viewpoint of either the sender or receiver, the best
way to do this is by defining new MPI types [20, 21], derived from
the original MPI::FLOAT one. Such definitions require additional
parameters, used by MPI to recognize regular patterns of subsets of F
and to group and collect them out of F in a Send routine, or to fill
in F appropriately with an incoming data flush in a Recv routine. In
defining those new types, it is important to keep in mind the original
ordering of the F array, that is to say the contiguity pattern of its
memory locations (by appropriately changing the above lines of code,
one could equally well allocate memory for F to accommodate different
orderings).

• For a face parallel to the xy-plane, consisting of m × n lattice
points and lower left vertex at I, J , K (0 < I, J ; I +m < M ; J +n <
N ; 0 < k < P), one can create the derived type by invoking the
method Create vector with parameters values: count = n blocks, each
of blocklength = m and with a stride = M of old types between the
blocks. The whole face can then be sent or received in a single call,
starting at the address &F [K][J][I].

• For a face parallel to the xz-plane, consisting of m × p lattice
points and lower left vertex at I, J , K (0 < I, K; I+m < M ; K+p <
P ; 0 < j < N), one can invoke again the Create vector method, with
parameters values: count = p blocks, each of blocklength = m and
with a stride = M × N of old types between the blocks. The whole
face can then be sent or received in a single call, starting at the address

272 Vaccari et al.

&F [K][J][I].
• Data in a face parallel to the yz-plane, having n×p lattice points

and lower left vertex at I, J , K (0 < J, K; J + n < N ; K + p <
P ; 0 < i < M), could be sent in p chunks, each starting at the address
&F [K + k][J][I], 0 ≤ k ≤ p. Each chunk would correspond to an MPI
derived type with count = n, blocklength = 1 and stride = M . The
drawback of such a choice is that it requires p calls to the Send and
Recv routines, with the bad side effect of amplifying the latency time
by the same factor p. A better way is to create a derived MPI type by
invoking the method Create indexed [20, 21]. Create vector does not
work here, because the parameters must be constant integers. With
Create indexed one can specify an array of blocklengths and, instead of
a constant stride, an array of corresponding displacements, in units of
the old type from the starting location.

3. PARALLEL SUBGRIDDING ALGORITHM
PERFORMANCE ANALYSIS

To analyze the parallel subgridding algorithm implementation
performances, we defined three 3D FDTD test configurations, here
conventionally referred to as T1, T2 and T3.

• T1 has an outer D′ domain with a single z-slice (L = 1). D ⊂ D′
has Nx = 200, Ny = 100, Nz = 100 coarse Yee cells with a space step of
1.4 cm. It embeds a single subdomain (M1 = 1) made of 875×252×147
Yee cells with a space step of 0.2 cm., corresponding to a refinement
factor R1,1 = 7. The latter models a standing human male body
through the complex permittivity (dielectric constant in Farad/m and
electric conductivity in Siemens/m) values, at a frequency of 2 GHz, of
its anatomical structures. The human has its feet on a ground yz plane
and is exposed to a x linearly polarized electromagnetic plane pulse of
that frequency, impinging on it along the decreasing z direction. Such
a model, without subgridding, was developed and used in [22]. The
refined space step value has been chosen to get a good accuracy at the
anatomical space scale for the given wavelength. If one uses this space
step value for the entire model, there would be an increase by a factor
of about 18 in the memory and simulation time requests.

• T2 has the same outer D′ domain than T1. It embeds two
subdomains (M1 = 2). One modeling a commercial Radio Base Station
antenna, made of 700 × 154 × 112 Yee cells with a space step of
0.2 cm. The antenna operates at a frequency of 1862.5 MHz and is
made of a double array (for a double polarization of ±45◦) of radiating
elements, each array consisting of 8 dipole pairs. Moreover, there is
a metallic shield in the back. The other subdomain models the above

Progress In Electromagnetics Research, Vol. 120, 2011 273

 x

 y

z

antenna

subdomain

ground plane

body subdomain

Figure 6. Schematic of the T2-T3 FDTD test configurations.

mentioned standing human male body on a grounded yz plane, made
of 875×252×147 Yee cells with a space step of 0.2 cm. Both sublattices
have the same refinement factor: R1,1 = R1,2 = 7. T2 increases the
complexity of T1 by adding an e.m. source-containing sublattice. Now
the human body is not in a plane wave regime, but exposed to the
antenna electromagnetic near field (see Fig. 6).

• T3 is the same as T2, but realized with two z-slices (L = 2): one
for each of the sublattices (M1 = M2 = 1). From a serial programming
point of view, there is no difference between T2 and T3. However, in
parallel programming, T3 adds complexity to T2, because one more
process is required in the D′ modelization. T3 has been introduced
here to test the z-slice communication, which also affects the absorbing
boundary conditions [15] implementation.

The parallel runs of T1, T2 and T3 are made with variable s-slice
numbers (S`m) for the embedded sublattices. Also, various possible
slicing directions (along the x or y or z axes) are taken into account.
The code was compiled and executed on three types of systems, here
conventionally referred to as WS, SP5 and BCX.

• WS is a dual processor Linux workstation, with two 3GHz
XeonTM EM64T Hyper-Threading TechnologyTM CPUs, having a
cache size of 1024 kB each and sharing a 6 GB memory space. Each
CPU is treated by the operating system as two virtual processors.
Installed are the GNU C++ ver. 3.4.6 compiler and the MPICH2 ver.
0.4 implementation [23] of the Message Passing API.

• SP5 is an IBM SP Cluster 1600, made of 64 SMP nodes

274 Vaccari et al.

interconnected through a Federation High Performance Switch with
a bandwidth of 2GB/s. Each node contains 8 IBM Power5 1.9GHz
processors, for a total of 512 CPUs: 60 of the nodes have 16 GB of
shared memory, the remaining 4 have 64 GB. Installed are the IBM
AIX ver. 5.3 operating system and the IBM xlC C++ serial compiler.
SP5 has the IBM Parallel Operating Environment (POE) and the
LoadLeveler job management system to submit and schedule batch
jobs. The SP5 peak performance amounts to 3.89 Tflop/s.

• BCX is an IBM BCX Cluster, made of 1280 SMP nodes,
each containing 2 AMD OpteronTM 2.6 GHz Dual Core processors
(i.e., 4 cores per node) and with 8 GB of shared memory, for a total
of 5120 cores. The nodes are interconnected through an Infiniband
network with a bandwidth of 5 GB/s. Installed is the Intel C++
serial compiler iCC. The OpenMPI (not to be confused with OpenMP)
implementation of the Message Passing API can be used [24]. The
queuing system is LSF. The BCX peak performance amounts to
26.6Tflop/s.

3.1. Profiling the Serial Version. OpenMP Loop-level
Parallelism

The T1 and T2-T3 test configurations ran for 1200 time iterations
using the serial code version of the subgridding algorithm [8] on a
single processor (remember that T2 and T3 coincide in this case). T1

required about 1.8 GB of memory, while T2-T3 took about 2.4GB of
memory. The running times reported in Table 1 refer to the program
calculation kernels only. In fact, times for initial data loading and final
results output are negligible. A lot of time is spent (the top of list) in
the space loop structures which update, in the refined grid, the: a) time
domain values of the electric fields by the finite difference equations
(44.66% of the total execution time); b) time domain values of the
magnetic fields by the finite difference equations (25.41% of the total
execution time); c) Discrete Fourier Transform values of the electric
field (19.45% of the total execution time). The results obtained varying
the number of threads are listed in Table 2. Inside each SMP node,

Table 1. Mean serial execution time for 1200 FDTD time iterations
(sec).

SP5 BCX WS

T1 3.0× 104 (' 8.3 h) 4.9× 104 (' 13.6 h) 3.7× 104 (' 10.3 h)
T2-T3 4.0× 104 (' 11.1 h) 6.3× 104 (' 17.6 h) 4.6× 104 (' 12.8 h)

Progress In Electromagnetics Research, Vol. 120, 2011 275

Table 2. Mean SP5 OpenMP execution times for 1200 time iterations
(sec).

Nr. of threads T1 T2-T3

2 1.5× 104 (' 4.2 h) 2.1× 104 (' 5.8 h)
3 1.1× 104 (' 3.1 h) 1.8× 104 (' 5.0 h)
4 9.8× 103 (' 2.7 h) 1.3× 104 (' 3.6 h)
5 8.8× 103 (' 2.4 h) 1.1× 104 (' 3.1 h)
6 8.0× 103 (' 2.2 h) 9.1× 103 (' 2.5 h)
7 6.6× 103 (' 1.8 h) 8.7× 103 (' 2.4 h)
8 5.9× 103 (' 1.6 h) 8.4× 103 (' 2.3 h)

the CPUs can share a common address space using the multi-threading
OpenMP method [25, 26]. So one can specify more processes than the
physical processors for tuning up the parallel code before running it
on a bigger machine.

3.2. MPI Parallel Runs. Communication Overhead

The T1, T2 and T3 test configurations ran for 1200 time iterations
using the previously described parallel MPI implementation of the
subgridding algorithm [8], with a varying number of processors and
different sublattice decompositions, i.e., slicing directions. Actually,
the sublattice decompositions here considered are a “longitudinal”
one, made of s-slices which cut the subdomains through planes
perpendicular to the body or antenna height (yz planes in Fig. 6,
corresponding to a x slicing direction) and a “transversal” one, made of
s-slices which cut the subdomains through planes parallel to the body
or antenna height (xy planes in Fig. 6, corresponding to a z slicing
direction). The former, hereafter referred to as the Longitudinal Slicing
(LS, see left of Fig. 7), involves an interface exchange area between
neighboring s-slices of 252 × 147 (human) or 154 × 112 (antenna)
Yee cells. The latter, hereafter referred to as the Transversal Slicing
(TS, see right of Fig. 7), involves an interface exchange area between
neighboring s-slices of 875× 252 (human) or 700× 154 (antenna) Yee
cells. As to the coarse cell s-slice thicknesses T`mq = T`mq/R`m, their
values are all chosen to be about the same, within ±1 or ±2. This
way, we are trying to avoid large imbalances in the processor loading.
For example, in the TS slicing of the human body sublattice with
S`m = 5 s-slices, we alternate 3 s-slices of thickness 5 with 2 s-slices of
thickness 3. This gives a total of C`m = 21 coarse cells which amount,

276 Vaccari et al.

x

subdomain s-slice

interface

s-slice

(a) (b)

Figure 7. Schematic of the human male model (a) LS and (b) TS
slicings.

for a refinement factor of R`m = 7, to the given 147 refined cells along
the z-axis. In the human body LS slicing with S`m = 35 s-slices, we
shuffle 20 s-slices of thickness 4 with 15 s-slices of thickness 3, for a
total of C`m = 125 coarse cells which amount, for a refinement factor
of R`m = 7, to the given 875 refined cells along the x-axis. There is,
however, a lower limit for the s-slice thickness. A thickness T`mq < 2
(1 ≤ q ≤ S`m, for fixed ` and m) would make unapplicable the spatial
filtering procedure [8] at the coarse/fine interface. As can be seen
from Fig. 8 the T1 configuration has been tested for a wide range of
s-slice numbers and for both LS and TS decompositions. A number of
s-slices equal to 0 means serial execution: the values are taken from
Table 1. Parallel MPI executions start with a number of s-slices at least
equal to 1, which means a single embedding coarse FDTD lattice —
the z-slice — and an embedded uncut refined FDTD sublattice, i.e.,
two processes which communicate between them at the coarse/fine
interface. One sees LS is faster than TS. This is due to the bigger
amount of data passed between processes in TS slicing. From Fig. 8,
it is also apparent the saturation effect due to the communication
overhead with increasingly P . In Fig. 9 the T2 and T3 models are

Progress In Electromagnetics Research, Vol. 120, 2011 277

SP5 - T1 - LS slicing

SP5 - T1 - TS slicing

E
x
e

c
u

ti
o

n
 t

im
e

 (
X

 1
0

^4
 s

e
c
) 3.5

3

2.5

2

1.5

1

0.5

0

s-slices number

0 1 2 3 4 5 6 7 8 9 10 15 253035 363738 394045 50 55 6020

Figure 8. LS-TS comparison for
the T1 test model on SP5.

SP5 - T2 - LS slicing

SP5 - T3 - TS slicing

E
x
e
c
u
ti
o
n
 t
im

e
 (

X
 1

0
^4

 s
e
c
) 1.6

1.4

1.2

1

0.8

0.6

0.4

0

s-slices number

3 4 7 9 10 15 20 25 30 40 50 65 70 75 80 85 90 95100105 11060

0.2

Figure 9. T2-T3 test models
comparison for LS on SP5.

compared for LS only. They are more complex than T1, including the
extra antenna subdomain. For T2, P is given by the number read on
the horizontal axis plus one and for T3, P is given by the horizontal
axis value plus two. This explains the faster behavior of the T3 model
compared with that of T2. Both Figs. 8 and 9 evidence fluctuations
due to the non-exclusive access to the computing machine.

3.3. Scalability Analysis

This Subsection deals with the analysis of the expected performances
of the proposed MPI parallel implementation of the subgridding
algorithm [8] and their comparison with the numerical experiments
in the previously two Subsections. Let Ω be the input size [20] of the
FDTD model, which in our case is given by the pair:

Ω = (Ωc , Ωs) =

(
Ωc ,

N∑

i=1

Ωs,i

)

where Ωc refers to the outer embedding coarse grid size and Ωs,i to the
ith sublattice refined grid size with N ≥ 1 (N =

∑L
`=1 M`) the total

sublattice number inside it. Then:

Ωc = N ′
x ×N ′

y ×N ′
z

where primed quantities include the extra 20 + 20 cells needed for the
absorbing boundary conditions [15], and:

Ωs,i = nx,i × ny,i × nz,i

where nρ,i are refined sizes (ρ = x, y, z and i = 1, . . . ,N). Let Tσ(Ω)
and Tπ(Ω, P) be the serial and parallel running times respectively (the
latter referring to the slowest of P ≥ 2 processes on separate physical
processors) of the subgridding algorithm [8]. Important parameters of

278 Vaccari et al.

interest to measure performances ([20, 21, 27, 28]) are the speedup S:

S(Ω, P) ≡ Tσ(Ω)
Tπ(Ω, P)

(1)

and efficiency of process utilization E :

E(Ω, P) ≡ S(Ω, P)
P

=
Tσ(Ω)

P × Tπ(Ω, P)
. (2)

Taking into account message-passing communication overhead but, as
already pointed out, discarding any input/output or initialization code
time contributions, we have [20]:

Tσ(Ω) = T calc
σ (Ω) (3)

and
Tπ(Ω, P) = T calc

π (Ω, P) + T comm
π (Ω, P) . (4)

Moving data among processes is a task which is a priori more expensive
than local calculation times. In fact, the cost of a single Send/Recv
pair with α floats of data transmitted may be written as [20, 21]:

τla + α× τbw (5)

where τla is the latency time (a start-up time needed to initiate
a message) of the MPI communication system, while τbw depends
inversely on the communication bandwidth and its units in (5) are
sec/float. Commonly one has: τla À τbw & τfp, where τfp is the
typical cost of an arithmetic floating point operation. It is also useful
to introduce a P processes total overhead To with respect to ideal
parallelism:

To(Ω, P) ≡ Tπ(Ω, P)− Tσ(Ω)
P

. (6)

Through To, (2) can be rewritten as:

E(Ω, P) =
[
1 + P

To(Ω, P)
Tσ(Ω)

]−1

. (7)

According to [20] we will then say that a parallel program is scalable if
it, as Ω and P vary, admits a suitable To(Ω, P) adjustment that keeps
efficiency E constant and as close to 1 as possible. The complexity of
the bulk FDTD algorithm plus the electric field DFT updating code is
O(N3), where N is a typical grid linear size. Since 39 or 42 (single
precision) floating point operations (sums and multiplications) are
required per FDTD time iteration per vacuum and dielectric/metallic

Progress In Electromagnetics Research, Vol. 120, 2011 279

cell respectively. We have for an average estimate of Tσ in (3)
(accounting for about the 94% of the total computation time):

Tσ(Ω) ≡ T calc
σ (Ω) '

[
42

N∑

i=1

Ri Ωs,i + 39Ωc

]
τfp , (8)

where Ri is the refinement factor of the ith sublattice (for each coarse
FDTD time iteration, there are Ri FDTD time iterations inside the
ith sublattice). Turning now to Tπ in (4) and differentiating between
coarse grid calculations (c extra subscript) and refined grids (i.e.,
sublattices) calculations (s extra subscript), for a parallel code running
with P processes (P ≥ N + L) we can write:

T calc
π,c (Ω, P) ' 39Ωc τfp

L
(9)

and

T calc
π,s (Ω, P) ' 1

P − L

[
42

N∑

i=1

Ri Ωs,i

]
τfp (10)

respectively. By introducing the average number Γ of s-slices per
sublattice:

Γ ' P − L

N ,

(L will depend on P through N and Γ), we deduce the following
three contributions for the communication time overhead per FDTD
iteration. The first one:

T comm
π,c (Ω, P) = 2× 4 (L− 1)

(
τla + N ′

x N ′
y τbw

)
(11)

is for the coarse grid computations (labels 1 and 2 in the left column
of Fig. 5). The second one:

T comm
π,s (Ω, P) = 2× 4 (Γ− 1)

N∑

i=1

Ri (τla + nα,i nβ,i τbw) (12)

for the refined grid computations (labels 1′ and 2′ in the right column
of Fig. 5). The third contribution is:

T comm
π,both (Ω, P)=6

[
N Γ τla+

N∑

i=1

(
nx,i ny,i+nx,i nz,i+ny,i nz,i

R2
i

)
τbw

]
(13)

and affects both the coarse and refined grid computations (labels AA′
and BB′ in Fig. 5). As previously pointed out, these data are passed
efficiently by means of suitable data templates. We thus have:

Tπ,c(Ω, P) = T calc
π,c (Ω, P) + T comm

π,c (Ω, P) + T comm
π,both (Ω, P)

280 Vaccari et al.

and

Tπ,s(Ω, P) = T calc
π,s (Ω, P) + T comm

π,s (Ω, P) + T comm
π,both (Ω, P) .

We now formulate the general criterion which would give our parallel
subgridding algorithm optimal scalability:

Tπ,c(Ω, P)
(1)
= Tπ,s(Ω, P)

(2)
=

Tσ(Ω)
P Et

(14)

where Et is a target value (necessarily Et < 1), for the attainable
efficiency E(Ω, P) (2) or (7). The first equation of system (14) will make
all of the P processes (of both kind, those running z-slice calculations
and those running s-slice calculations) to take, on average, an equal
running time. The second equation in (14), on the other hand, should
reduce the overhead To(Ω, P) — as defined in (6) — according to the
chosen value Et for E(Ω, P). Table 3 summarizes the values for the size
parameters just introduced. From them one can easily deduce that (8)
evaluates to:

Tσ(Ω) ' 9.71× 1009 × τfp (15)

for the T1 test model. For the T2-T3 test model it evaluates to:

Tσ(Ω) ' 1.33× 1010 × τfp . (16)

Comparing with the results of Table 1, which hold for 1200 FDTD
time iterations, empirical estimates for τfp are obtained. We also
got values for τla and τbw by looking at elapsed times when running
ad hoc MPI pieces of code. The values found are: We then
proceed to extrapolate, accordingly to the above analysis, the expected
performances of the algorithm proposed by applying it to the three
general test configurations T1, T2 and T3 previously mentioned. We
point out here that, with the values in Table 3 and Table 4, we are
not able to satisfy the first constraint in the general criterion (14) and
always get:

Tπ,s(Ω, P) > Tπ,c(Ω, P) ,

meaning the coarse embedding grid code runs faster than that for
the refined grids, with a limiting parallel execution time, per FDTD
iteration, given by the middle member Tπ,s of (14). For the T1, T2

cases it has the general form:

Tπ(Ω, P) ≡ Tπ,s(Ω, P) =
a

P − 1
+ b (P − 1) + c , (17)

while for the T3 case it has the general form:

Tπ(Ω, P) ≡ Tπ,s(Ω, P) =
a

P − 2
+ b (P − 2) + c . (18)

Progress In Electromagnetics Research, Vol. 120, 2011 281

Table 3. Size parameter values for the paper test models.

Size Param. T1 T2 T3

N ′
x 20 + 200 + 20 20 + 200 + 20 20 + 200 + 20

N ′
y 20 + 100 + 20 20 + 100 + 20 20 + 100 + 20

L 1 1 2
N ′

z 20 + 100 + 20 20 + 100 + 20 (20 + 50) + (50 + 20)
N 1 2 2

nx,1 875 875 875
ny,1 252 252 252
nz,1 147 147 147
R1 7 7 7
nx,2 – 700 700
ny,2 – 154 154
nz,2 – 112 112
R2 – 7 7

Table 4. Floating point, latency and bandwidth time.

τfp τla τbw

SP5 ' 2.5 nsec ' 40 µsec ' 2 nsec/float
BCX ' 4.2 nsec ' 200 µsec ' 4 nsec/float
WS ' 3.0 nsec – –

where a, b, c are coefficients depending on the model size, on τfb, τla and
τbw. Asymptotically both these two times grow linearly with P , thus
indicating that the communication overhead ends up overwhelming the
speedup achievable by reducing further and further the s-slice bulk
sizes.

T1 test model: here we have N = 1 and L = 1 (thus implying
Γ = P − 1), with P ≥ 2. The coefficients in (17) amount to:

a = 9.53× 109 × τfp sec.
b = (56× τla + 2074464× τbw) sec.
c = (−56× τla + 10242× τbw) sec.

By means of (15) and (17), expressions for the efficiency E(Ω, P) and
the speedup S(Ω, P) = P E(Ω, P) can be calculated as functions of P ,
starting from their definitions (1), (2). Graphs of Tπ(Ω, P), efficiency

282 Vaccari et al.

measured

theoretical

E
x
e
c
u
ti
o
n
 t
im

e
 p

e
r

F
D

T
D

 i
te

ra
ti
o
n
 (

s
e
c
)

30

25

20

15

10

5

number of processes

2 12 22 32 42

0

52 62

Figure 10. T1 test model timing
on SP5.

measured

theoretical

E
ff
ic

ie
n
c
y

number of processes

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.8

0.9

1

2 12 22 32 42 52 62

Figure 11. T1 test model
efficiency on SP5.

S
p

e
e

d
u

p

number of processes

30

20

10

0

40

50

measured

theoretical

2 12 22 32 42 52 62

Figure 12. T1 test model
speedup on SP5.

measured

theoretical
E

x
e

c
u

ti
o

n
 t

im
e

 p
e

r
F

D
T

D
 i
te

ra
ti
o

n
 (

s
e

c
)

number of processes

12

8

4

0

10

6

2

4 14 24 34 44 54 64 74 84 94 104

Figure 13. T2 test model timing
on SP5.

and speedup are shown in Figs. 10, 11 and 12 under the “theoretical”
label. From those expressions, values for PSmax , Emax, PEmax and Smax

are obtained by deriving with respect to P . Omitting cumbersome
calculations, we get for the SP5 and BCX machines the following
results:

PEmax Emax PSmax Smax

SP5 ' 13 ' 0.91 ' 61 ' 30.8
BCX ' 11 ' 0.89 ' 45 ' 23.0

to which corresponds the following times per FDTD iteration:

Tπ(PSmax) Tπ(PEmax)
SP5 ' 0.79 sec ' 2.0 sec
BCX ' 1.8 sec ' 4.2 sec

It would be possible to get a better efficiency, say E = 0.95, by
increasing ad hoc the size Ωc of the coarse embedding grid and/or
reducing the size Ωs,1 of the embedded refined sublattice, to force the
Tπ,s and Tπ,c equalization in the first equation of system (14).

Progress In Electromagnetics Research, Vol. 120, 2011 283

T2 test model: here we have N = 2 and L = 1 (thus implying
Γ = (P − 1)/2), with P ≥ 3. The set of coefficients in (17) is now:

a = 1.31× 1010 × τfp sec.
b = (62× τla + 1520176× τbw) sec.
c = (−112× τla − 2968154× τbw) sec.

Going on as in the T1 case, we get:

PEmax Emax PSmax Smax

SP5 ' 16 ' 0.92 ' 78 ' 39.5
BCX ' 13 ' 0.90 ' 56 ' 28.1

Tπ(PSmax) Tπ(PEmax)
SP5 ' 0.84 sec ' 2.3 sec
BCX ' 2.0 sec ' 4.9 sec

Relevant graphs are shown in Figs. 13, 14 and 15.
T3 test model: here we have N = 2 and L = 2 (thus implying

Γ = (P − 2)/2), with P ≥ 4. The set of coefficients in (18) is now:

a = 1.31× 1010 × τfp sec.
b = (62× τla + 1520176× τbw) sec.
c = (−112× τla − 2968154× τbw) sec.

Going on as in the T1 case, we get:
comm. PEmax Emax PSmax Smax

SP5 ' 19 ' 0.87 ' 79 ' 39.5
BCX ' 16 ' 0.84 ' 57 ' 28.1

comm. Tπ(PSmax) Tπ(PEmax)
SP5 ' 0.84 sec ' 1.98 sec
BCX ' 1.98 sec ' 4.28 sec

E
ff

ic
ie

n
c
y

measured

theoretical

number of processes

0.6

0.4

0.2

0

0.5

0.3

0.1

4 14 24 34 44 54 64 74 84 94 104

0.9

0.7

1

0.8

Figure 14. T2 test model
efficiency on SP5.

p
e

e
d

u
p

number of processes

25

15

5

0

20

10

4 14 24 34 44 54 64 74 84 94 104

40

30

45

35

measured

theoretical

Figure 15. T2 test model
speedup on SP5.

284 Vaccari et al.

Relevant graphs are shown in Figs. 16, 17 and 18. Also for T2

and T3 configurations it would be possible to calculate more efficient
sizings, as has been mentioned for the T1 case, by forcing Tπ,s and
Tπ,c equalization in the first equation of system (14). To end this
Subsection, we point out that the scattering and jaggedness in the
measured “experimental” data shown in the graphs along with their
“theoretical” counterparts are due to non-reproducibility, mainly from
a lack of exclusive access to the computing machine. The constant
loading of the computing machine by extraneous jobs concretizes in an
extra amount of overhead time To, other than that arising simply from
the non instantaneous communication between processes. Although
unpredictable (and apart the possibly uncorrected estimates for τla,
τbw and τfp), such effect let one to appreciate the fairly good efficiency
and scalability of the proposed parallelization algorithm, once the most
suitable amount of slicing has been chosen for a given geometry and
model complexity.

E
x
e
c
u
ti
o
n
 t
im

e
 p

e
r

F
D

T
D

 i
te

ra
ti
o
n
 (

s
e
c
)

number of processes

6

4

2

0

5 15 25 35 45 55 65 75 85 95 105

10

12

8

measured

theoretical

115

Figure 16. T3 test model timing
on SP5.

5 15 25 35 45 55 65 75 85 95 105 115

measured

theoretical

E
ff

ic
ie

n
c
y 0.6

0.4

0.2

0

0.5

0.3

0.1

0.9

0.7

1

0.8

number of processes

Figure 17. T3 test model
efficiency on SP5.

number of processes
5 15 25 35 45 55 65 75 85 95 105 115

measured

theoretical

S
p
e
e
d
u
p

35

25

15

5

45

30

20

10

0

50

40

Figure 18. T3 test model speedup on SP5.

Progress In Electromagnetics Research, Vol. 120, 2011 285

3.4. Load Balancing. Nonblocking Communication

With a better load balancing — a fine tuning of the amount of work
made by each process — one may hope to lower further the overhead
time To (6), by reducing the idle time contribution due to a lack
of synchronism between processes execution. A good way to achieve
such a reduction is, if the program structure allows it, by overlapping
computation and communication. This is accomplished by using the
nonblocking MPI::Isend and MPI::Irecv routines [20, 21, 27, 28], were
the I prefix stands for “Immediate” return, in place of the more
common blocking ones, i.e., MPI::Send and MPI::Recv. As already
pointed out, however, the FDTD algorithm iteration cycle is poorly
prone to such an overlapping, because the field values are passed among
the processes in a domain decomposition context, and are immediately
used in the difference equations. As a consequence, a little gain is got
from the use of the nonblocking communication functions. The better
strategy remains an optimal choice of the size parameter values, so that
the processes happen to be evenly loaded. The only point in the task
list of Fig. 5 which could suit a “small” communication/computation
overlapping is that labeled B′ in the right column. After the Recv call,
an R sequence of sub-cycles (R being the refinement factor) iterating
on the refined sublattice grid is started. The first of such iterations
could indeed start immediately without waiting the Recv completion,
at least until the space-time interpolation routine is called. Hence the
Recv completion can be slightly forward shifted. The better way to
load balancing the code is by the fullfillment, as much as possible, of
the criterion (14), particularly with respect to the size of the coarse
grid relatively to the embedded refined ones, because a great amount
of inefficiency is seen by processes running coarse grid computations
spending a lot of time in communication. Keeping in mind that the
subgridding is fixed, i.e., not dynamically varying during the code
runs, a rough criterion for load balancing is to remember, given the
refinement factor R, that the flop number in the refined grid is R4

greater than the flop number in the coarse one.

4. A LARGE FDTD NUMERICAL EXPERIMENT

In this Section we apply the above described parallel version of
the subgridding algorithm [8] to a moderately large FDTD model,
made of five standing men on a perfectly conducting ground plane
and exposed to the e.m. near field of an antenna (Fig. 19). The
constitutive elements of the model are the same as those previously
used in the test configurations T1, T2 or T3, but now arranged to
give an estimated serial execution time of ' 216 sec per FDTD

286 Vaccari et al.

140 cm

70 cm

y axis

0
0140 cm280 cm z-slice #2 z-slice #1

z axis

Electric Field Magnitude (Volt/meter)

5001

5 3

2

1

4

29.4 cm

22.4 cm

12.6 cm

29.9 cm

29.4 cm

12.6 cm

28 cm

12.6 cm12.6 cm

28 cm

4
4

.8
 c

m

5
0

.4
 c

m

5
4

.6
 c

m
3

0
.8

 c
m

a
n

te
n

n
a

Figure 19. Top view of a plane from the outer coarse lattice
with information about geometry and displacements of the various
embedded refined sublattices for the antenna and the humans. Log.
scale.

iteration on BCX, and of ' 129 sec per FDTD time iteration on
SP5. The modeled space volume has sizes of: 2.80m (Height, along
x-axis) ×1.40m (Width, along y-axis) ×2.80m (Depth, along z-axis)
and thus, assuming that 1200 FDTD iterations suffice to stimulate
every part of the computational domain by the excitation antenna
signal — for good frequency domain results via Semi-Discrete Fourier
transforms —, about 72 hours (3 days) on BCX and about 43 hours
(1.8 days) on SP5 should be required for completing the calculations
with conventional sequential programming. The parallel execution of
the model uses 2 z-slices (like the T3 test), each taking 100 coarse cells
along the z-axis. Each z-slice contains 3 sub-lattices, each refined
by a factor of 7 with respect to the coarse cubic cells which have
an edge of 1.4 cm. Five sub-lattices contain, at a refined level, the
relative dielectric constant and conductivity (Siemens/m) data values
for the standing man (875 × 252 × 147 cubic cells), conformed to the
anatomical structures as described in [22]. The remaining one contains
data for the antenna metallic structures (700× 154× 112 cubic cells).
On the final field values, we also perform some energetic checks, both
to assess the reliability of the numerical calculations for dosimetric

Progress In Electromagnetics Research, Vol. 120, 2011 287

Figure 20. Three planes from the coarse grid. Perspective back view.
Log. scale.

analysis and as an inspection of the goodness of the numerical solution,
being lacking for such a complex model the analytic reference solution.
For pure MPI code the running time results are shown in Table 5,
from which we can see how the parallelization technique here proposed
allows for a strong shortening of the execution FDTD times and with
a fairly good scalability. In Table 6 it is summarized the mentioned
power balance check at the antenna working frequency of 1862.5MHz
(human relative dielectric constants and conductivities are given for
this frequency value too). The first row gives the total e.m. power
emitted by the antenna, in equilibrium with the loads represented by
the five humans in front to it. That value is the real part of the
complex Poynting vector flux on a parallelepiped surface completely
surrounding the antenna inside the refined sub-lattice (five refined
cells apart from its outer surface). The second row gives the e.m.
power leaving the computational domain. Of the two value in the
row, the first is the real part of the complex Poynting vector flux on
a parallelepiped surface completely surrounding the antenna and the
humans inside the coarse lattice (five coarse cells apart from its outer

288 Vaccari et al.

surface). The second value is obtained by means of a near-to-far field
transformation — a Kirchhoff integral formula [29] implementation —
and an integration over the 4π sterad angle at an extrapolated infinite
distance from the center of the model. Rows from the third to the
seventh have values of the e.m. power absorbed by the human loads.
The absorbed power can be calculated in either of two ways.

The first value is obtained as the real part of the complex Poynting
vector inflow on a parallelepiped surface completely surrounding the
human inside the refined sub-lattice (five refined cells apart from its
outer surface). The alternative is to calculate the power dissipation
in the sub-regions where the electric conductivity σ 6= 0, as σ‖ ~E‖2/2
and summing (integrating) up. The eighth row gives the total amount
of e.m. absorbed power. The ninth row gives the sum of the e.m.
powers absorbed and leaving the volume space under consideration, a
value which has to equal the e.m. power emitted from the antenna.
As can be seen, a fairly good result is obtained (within the 3% of the
emitted power reference), despite the single precision floating point
format, the absorbing boundary conditions effect, the coarse/refined

Table 5. MPI parallel execution times for 1200 FDTD iterations (sec).

proc.s: 105 + 2 # proc.s: 140 + 2 # proc.s: 350 + 2

BCX 4, 137 (' 1.15 h) 3, 862 (' 1.07 h) 1, 934 (' 0.54 h)
SP5 2, 470 (' 0.69 h) N/A N/A

Table 6. Power balance (Watt) for the large FDTD numerical
experiment.

Emitted Poynting (antenna-refined) 79.96 79.96

Escaped Poynting/Kirchhoff (outer-coarse) 43.57 43.56

Absorbed Poyn./Dissip. (sublatt.1-refined) 6.03 6.02
Absorbed Poyn./Dissip. (sublatt.2-refined) 1.44 1.44
Absorbed Poyn./Dissip. (sublatt.3-refined) 1.55 1.55
Absorbed Poyn./Dissip. (sublatt.4-refined) 12.72 12.63
Absorbed Poyn./Dissip. (sublatt.5-refined) 12.22 12.13

Subtotal Absorbed (1 to 5) 33.96 33.77

Subtotal Absorbed + Escaped 77.53 77.33

Deviation from Emitted 2.43 (3%) 2.63 (3.2%)

Progress In Electromagnetics Research, Vol. 120, 2011 289

mesh sizes coupling (with filtering) effect, the 1200 FDTD iterations
(which become 1200 × 7 = 8400 inside the refined sub-lattices)
cumulative truncation error effect. Fig. 20 is a perspective view of
three simultaneous mutually perpendicular planes from the coarse
domain. The test has given good accuracy and performance results and
the algorithm could be proposed for solving accurately the problems
described in [30] and [31] with bigger sizes.

5. CONCLUSION

The present paper starts on the ground of a subgridding algorithm
for the three-dimensional (3-D) FDTD numerical solution method of
the Maxwell’s equations, proposed in a preceding paper [8] by the
authors and there described using a serial programming approach.
Now a parallel code version of the same algorithm is proposed, for very
large size FDTD calculations. This parallel version of the subgridding
algorithm exploits a C++ object-oriented programming approach, for
ease of maintenance and improvement. The parallelization is made
by means of an MPI API implementation. To keep the parallel
part of the code at the speed level of the bulk FDTD calculations,
suitable user defined MPI data types were introduced, along with an
adequate domain decomposition of the coarse and refined meshes and
their interfaces organization. The main concept of our subgridding
algorithm is that a shorter space-step is chosen only in sub-regions
where an accurate discretized description of the geometrical surface
details is needed, or sub-regions where the wavelength is shortened
by the presence of high permittivity media. It is assumed that such
sub-regions are embedded in homogeneous, isotropic, air-like regions
where the accuracy criterion is easily verified with a larger space step.
The subgridding is thus confined to volumes of minimum possible
extent. For a given coarse/fine ratio (which we assume the best from
the viewpoint of the geometrical/electrical constraints), the shortest
simulation time is achieved with an accurate load balancing obtained
by an appropriate domain decomposition (slicing). The execution time
depends also on the cluster network bandpass, due to data exchange
between processes executing contiguous domain portions. There is
no limitation on the number of slices decomposing a given domain,
but it is shown that, for a given initial size, there is an optimum
of slices beyond which communication overwhelms computation. Our
parallel code has been tested with moderately large FDTD models and,
although affected by a lack of exclusive access to the cluster, shown to
give fairly good speedup and scalability, which are also analyzed from
a theoretical point of view.

290 Vaccari et al.

REFERENCES

1. Yee, K. S., “Numerical solution of initial boundary value problems
involving Maxwell’s equations in isotropic media,” IEEE Trans.
Antennas Propagat., Vol. 14, 302–307, May 1966.

2. Taflove, A., “Application of the finite-difference time-domain
method to sinusoidal steady-state electromagnetic penetration
problems,” IEEE Trans. Electromagnetic Compatibility, Vol. 22,
191–202, Aug. 1980.

3. Taflove, A. and S. C. Hagness, Computational Electrodynamics:
The Finite-difference Time-domain Method, 3rd edition, Artech
House, Norwood, MA, 2005.

4. Okoniewski, M., E. Okoniewska, and M. A. Stuchly, “Three-
dimensional subgridding algorithm for FDTD,” IEEE Trans.
Antennas Propagat., Vol. 45, 422–429, Mar. 1997.

5. Yu, W. and R. Mittra, “A new subgridding method for finite
difference time domain (FDTD) algorithm,” Microwave Opt.
Technol. Lett., Vol. 21, No. 5, 330–333, Jun. 1999.

6. Wang, B., Y. Wang, W. Yu, and R. Mittra, “A hybrid 2-D ADI-
FDTD subgridding scheme for modeling on-chip interconnets,”
IEEE Transactions on Advanced Packaging, Vol. 24, No. 4, 528–
533, Nov. 2001.

7. Marrone, M., R. Mittra, and W. Yu, “A novel approach to deriving
a stable hybridized FDTD algorithm using the cell method,”
IEEE International Symposium on Antennas and Propagation,
Columbus, OH, Jun. 2003.

8. Vaccari, A., R. Pontalti, C. Malacarne, and L. Cristoforetti, “A
robust and efficient subgridding algorithm for finite-difference
time-domain simulations of Maxwell’s equations,” J. Comput.
Phys., Vol. 194, 117–139, 2003.

9. Guiffaut, C. and K. Mahdjoubi, “A parallel FDTD algorithm
using the MPI library,” IEEE Antennas and Propagat. Mag.,
Vol. 43, No. 2, 94–103, Apr. 2001.

10. Yu, W., Y. Liu, T. Su, N. Huang, and R. Mittra, “A robust parallel
conformal finite-difference time-domain processing package using
the MPI library,” IEEE Antennas and Propagat. Mag., Vol. 47,
No. 3, 39–59, Jun. 2005.

11. Chen, X., M. Cracraft, Y. Zhang, J, Zhang, J. Drewniak, B. Ar-
chambeault, and S. Connor, “An Efficient Implementation of Par-
allel FDTD,” IEEE International Symposium on Electromagnetic
Compatibility, 2007. EMC 2007, Honolulu, HI, Jul. 2007.

Progress In Electromagnetics Research, Vol. 120, 2011 291

12. Yu, W., X. Yang, Y. Lin, L. Ma, T. Su, N. Huang, R. Mittra,
R. Maaskant, Y. Lu, Q. Che, R. Lu, and Z. Su, “A new direction
in computational electromagnetics: Solving large problems using
the parallel FDTD on the BluGene/L supercomputer providing
teraflop-level performance,” IEEE Antennas and Propagat. Mag.,
Vol. 50, No. 2, 26–44, Apr. 2008.

13. Liu, Y., Z. Liang, and Z. Yang, “A novel FDTD approach
featuring two-level parallelization on PC cluster,” Progress In
Electromagnetics Research, Vol. 80, 393–408, 2008.

14. Josuttis, N. M., The C++ Standard Library. A Tutorial and
Reference, Addison-Wesley, 1999.

15. Gedney, S. D., “An anisotropic perfectly matched layer-absorbing
medium for the truncation of FDTD lattices,” IEEE Trans.
Antenna Propagat., Vol. 44, No. 12, 1630–1639, Dec. 1996.

16. Courant, R., K. O. Friedrichs, and H. Lewy, “Über di partiellen
differenzenglei-chungen der mathematischen physik,” Math. Ann.,
Vol. 100, 32–74, 1928, German Original Paper.

17. Courant, R., K. O. Friedrichs, and H. Lewy, “On the partial
difference equations of mathematical physics,” IBM Jour. of Res.
and Dev., Vol. 11, 215–234, 1967, English Translation of the
Original Paper.

18. Taflove, A. and M. E. Brodwin, “Numerical solution of
steady-state electromagnetic scattering problems using the time-
dependent Maxwell’s equations,” IEEE Trans. Microwave Theory
Tech., Vol. 23, 623–630, Aug. 1975.

19. Mur, G., “Absorbing boundary conditions for the finite
difference approximation of the time domain electromagnetic field
equations,” IEEE Trans. Electromagn. Comp., Vol. 23, 377–382,
Nov. 1981.

20. Pacheco, P. S., Parallel Programming with MPI, Morgan
Kaufmann Publishers, San Francisco, 1997.

21. Gropp, W., E. Lusk, and A. Skjellum, Using MPI. Portable
Parallel Programming with the Message-passing Interface, 2nd
edition, The MIT Press, Cambridge, Mass., 1999.

22. Mazzurana, M., L. Sandrini, A. Vaccari, C. Malacarne,
L. Cristoforetti, and R. Pontalti, “A semi-automatic method
for developing an anthropomorphic numerical model of dielectric
anatomy by MRI,” Physics in Medicine and Biology, Vol. 48,
No. 19, 3157–3170, 2004.

23. http://www.mcs.anl.gov/mpi, for the MPICH Implementation of
the MPI Libraries.

292 Vaccari et al.

24. http://www.open-mpi.org/, the OpenMPI Implementation of the
MPI Libraries Official Web Site.

25. http://www.openmp.org, the OpenMP Official Web Site.
26. Chandra, R., L. Dagun, D. Kohr, D. Maydan, J. McDonald, and

R. Menon, Parallel Programming in OpenMP, Morgan Kaufmann
Publishers, San Francisco, 2001.

27. Quinn, M. J., Parallel Programming in C with MPI and OpenMP,
McGraw-Hill, 2003.

28. Karniadakis, G. E. and R. M. Kirby II, Parallel Scientific
Computing in C++ and MPI, Cambridge University Press, 2005.

29. Jackson, J. D., Classical Electrodynamics, 3rd edition, Wiley,
1998.

30. Hirata, A., H. Sugiyama, and O. Fujiwara, “Estimation of core
temperature elevation in humans and animals for whole-body
averaged SAR,” Progress In Electromagnetics Research, Vol. 99,
53–70, 2009.

31. Islam, M. T., M. R. I. Faruque, and N. Misran, “Design analysis
of ferrite sheet attachment for SAR reduction in human head,”
Progress In Electromagnetics Research, Vol. 98, 191–205, 2009.

