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Abstract—This paper is a theoretical investigation and analysis of
the focal region fields of a hyperbolic focusing lens embedded in chiral
medium. Chiral-dielectric and dielectric-chiral interfaces are studied
and the behavior of waves after passing through these interfaces are
discussed. Geometric optics (GO) is used initially. However, it fails
around the focal region because it gives non-realistic singularity in this
region. So, Maslov’s method is used in the caustic region and the field
analysis is made. The effect of chirality variation on the amplitude of
the fields around the focal region is given and discussed.

1. INTRODUCTION

Geometrical optics is a technique which is used to determine the
radiation and scattering from objects with dimensions greater than the
wavelength. It is simple to apply and can be used to solve complicated
problems that don’t have exact solutions. The general expression for
the field calculation using GO is given as following [1]:

u(r) = E0(ξ, ζ)J−1/2 exp
{
−jk

(
s0 +

∫ t

t0

n2dt

)}
(1)

In the above equation, E0(ξ, ζ) is the initial value of the field
amplitude and J = D(t)/D(0), where D(t) = ∂(x,z)

∂(ξ,ζ) , is the Jacobian
transformation from ray coordinates (ξ, ζ) to cartesian coordinate (x,
z). In the focal region, GO solution of Equation (1) fails because
the tube of rays in which the intensity is being conserved has zero
cross section, i.e., J(t) = 0. Thus the GO field expression yields an
infinite field at this point. The failure of GO around the focal region
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is compensated by using the Maslov’s method [2]. This method uses
the simplicity of ray theory and the generality of Fourier transform to
predict the field around the caustic region. It uses a combination of
spatial domain and wave vector domain and gives rise to a hybrid space.
This eliminates the possibility of occurrence of singularity around the
caustic. General expression of Maslov’s method for field calculation is
given as [3]:

u(r) =

√
−k

2jπ

∫ ∞

−∞
A0(ξ)

(
D(t)
D(0)

∂qx

∂x

)− 1
2

e−jk{ns0+t−x(qx,z)qx+xqx}dqx

The expression D(t)
D(0)

∂qx

∂x can be calculated more simply as

D(t)
D(0)

∂qx

∂x
=

1
D(0)

∂(qx, z)
∂(ξ, t)

=
1

D(0)
∂qx

∂ξ

∂z

∂t
(2)

GO and Maslov’s method has been utilized by many authors to study
different focusing systems in the caustic region [10–19]. Focusing
system in this problem is the hyperbolic lens which is placed inside a
chiral medium. When chiral objects are placed together in such a way
that they are uniformly distributed and randomly oriented, they form
a homogeneous chiral medium. A chiral object is a three dimensional
object which can not be brought into congruence with its mirror image
by simple translation or rotation [4]. Chirality causes handedness and
handedness is responsible for optical activity in chiral medium. Optical
activity in chiral medium is the ability of its objects for rotating the
plane of polarization of linear polarized plane wave traveling through
the medium [4]. It causes the splitting of the incident wave into
right circularly polarized (RCP) and left circularly polarized (LCP)
waves. Optical activity depends upon the amount of samples of the
handed molecules. Thus, optical activity depends upon the distance
traveled inside the chiral medium [5]. Drude-Born-Fedorov (DBF) is
mostly utilized in describing the waves inside a chiral medium. This
representation is given as follows:

D = ε(E + β∇×E), B = μ(H + β∇× H) (3)

where ε, μ and β are the permittivity, permeability and the
chirality parameter, respectively. Solution of Maxwell’s equations by
using Equation (3) results in coupled differential equations. This
complication is resolved by using uncoupled differential equations for
E and H, which are obtained using the following transformation [6]:

E = QL − j

√
μ

ε
QR, H = QR − j

√
ε

μ
QL (4)



Progress In Electromagnetics Research M, Vol. 20, 2011 45

where QL and QR are LCP and RCP waves respectively which satisfies
the following equations:

(∇2 + n2
1k

2)QL = 0, (∇2 + n2
2k

2)QR = 0 (5)
where, n1 = 1/(1 − kβ) and n2 = 1/(1 + kβ) are equivalent refractive
indices for LCP and RCP waves respectively and k = ω

√
εμ [5].

In Section 2, phenomenon of refraction by two different interfaces
in chiral medium has been explained. Hyperbolic lens placed in chiral
medium is analyzed in Section 3. In Section 4, the discussion about
the fields around the focal region of hyperbolic focusing lens, placed
in chiral medium, has been studied using GO and Maslov’s method.
All the results are summarized and concluded in Sections 5 and 6,
respectively.

2. REFRACTION IN CHIRAL MEDIUM

In chiral medium, incident wave is divided into LCP and RCP waves.
They both have different refractive indices and have different angle of
refraction as well. Placing of hyperbolic focusing lens inside a chiral
medium has two issues regarding the refraction. When a combination
of RCP and LCP waves are incident then these two waves experience
two different boundaries. One is chiral-dielectric interface and the
other (after traveling through the lens) is dielectric-chiral interface.
Both of these boundaries are discussed latter in this section. Consider
a dielectric medium as a sandwiched between two chiral mediums as
shown in Figure 1.

2.1. Refraction at Chiral-dielectric Interface

Figure 2 shows that a combination of RCP and LCP waves are
obliquely incident on chiral-dielectric interface at an angle of θ1 and θ2

Figure 1. Chiral-dielectric-chiral interface.
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Figure 2. Waves traveling from chiral to dielectric medium [7].

with apparent wave number n1 and n2, respectively. These waves are
partially transmitted to the dielectric medium and partially reflected
back into the chiral medium. The refracted ray makes an angle θ3

with the normal (i.e., z-axis) in this case. Applying Snell’s law at the
boundary of both the interfaces results in following expression:

n1 sin θ1 = n2 sin θ2 = k1 sin θ3, (6)

where k1 = ω
√

ε1μ1. Both RCP and LCP are refracted as a single wave
inside the dielectric. This transmitted wave has less magnitude than
the incident RCP and LCP waves. Perfect transmission is considered
for desired analysis which occurs only when η = Z. Where

Z =

√
μ
ε√

1 + μ
ε β2

, η =
√

μ1

ε1
(7)

and μ, ε, β are the permeability, permittivity and chirality parameter.
While μ1, ε1 are permeability and permittivity of the dielectric
Medium. This above condition of absolute transmission occurs (for
μ = μ1) when ε1 = (ε + μβ2). Neglecting the reflection coefficients.
The transmission coefficients for general case of oblique incidence are
given as following [7]:(

E5‖
E5⊥

)
=
(

T11 T12

T21 T22

)(
E1

E2

)
(8)

In present case of the hyperbolic focusing lens vertical incidence occurs,
i.e., the angles θ1 = θ2 = θ3 = 0. The transmission coefficients then
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becomes:

T11 = −T22 =
2η

η + Z
, (9a)

T12 = T21 =
2η

η + Z
(9b)

The perpendicular and parallel components of the transmitted field
inside the dielectric medium is given as follows:

E5‖ =
2η

η + Z
(E1 + E2) (10a)

E5⊥ =
2η

η + Z
(E1 − E2) (10b)

The parallel and perpendicular field components of the transmitted
field given in Equations (10a) and (10b) will act as incident to the
dielectric-chiral interface.

2.2. Refraction at Dielectric-chiral Interface

When a plane wave is incident on the dielectric-chiral interface, it
is partially transmitted to the chiral medium and partially reflected
back to the dielectric medium as shown in Figure 3. By ignoring the

Figure 3. The incident, reflected and transmitted waves at an oblique
incidence at dielectric-chiral interface [8].
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reflection (i.e., taking the perfect transmission), the transmitted wave
into the chiral medium will split into two waves designated as LCP and
RCP waves, which will make an angle of θ1 and θ2 with the normal,
respectively. The magnitude of RCP and LCP waves, E01 and E02

respectively, are given as [8].(
E01

E02

)
=
(

T11 T12

T21 T22

)(
Ei⊥
Ei‖

)
(11)

The values of Ei⊥ and Ei‖ are given in Equations (10a) and (10b),
respectively. The values of all four transmission coefficients are given
as follows [8]:

T11=
−2i cos θi(g cos θi+cos θ2)

cos θi(1+g2)(cos θ1+cos θ2)+2g(cos2 θi+cos θ1 cos θ2)
, (12a)

T12=
2cos θi(cos θi+g cos θ2)

cos θi(1+g2)(cos θ1+cos θ2)+2g(cos2 θi+cos θ1 cos θ2)
, (12b)

T21=
2i cos θi(g cos θi+cos θ1)

cos θi(1+g2)(cos θ1+cos θ2)+2g(cos2 θi+cos θ1 cos θ2)
, (12c)

T22=
2cos θi(cos θi+g cos θ1)

cos θi(1+g2)(cos θ1+cos θ2)+2g(cos2 θi+cos θ1 cos θ2)
(12d)

where g in the above expressions is given as:

g =
√

μ1

ε1
β2 +

μ1ε

ε1μ
(13)

The angle of incidence and refraction for LCP and RCP waves, using
Snell’s law of refraction, are given as:

θ2 = sin−1

(
k sin θi

n2

)
, θ1 = sin−1

(
k sin θi

n1

)
(14)

So, RCP and LCP waves upon entering into the dielectric medium
through a chiral dielectric interface will become a single wave. This
wave will neither be RCP or LCP. Similarly, a wave passing through a
dielectric when enters chiral medium through dielectric chiral interface,
is divided into two waves of opposite handedness. The output waves
can be obtained by multiplying parallel and perpendicular components
of field inside dielectric with transmission coefficient matrix.

3. HYPERBOLIC LENS PLACED IN CHIRAL MEDIUM

A hyperbolic lens is a two dimensional structure with one of its surface
is plane and the other is hyperbolic. Consider a hyperbolic lens with
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Figure 4. Fields and parameters of a hyperbolic lens.

height d and placed at a distance a from x-axis as shown in Figure 4.
Waves are incident at the planar surface of the lens. They are refracted
by the lens and are converged at focal point of the lens. The surface
profile of the hyperbolic focusing lens is given as following [3]:

g(ξ) = ζ =
a

b

√
ξ2 + b2 (15)

where

ξ =
b2 sin(α)√

a2 cos2(α) − b2 sin2(α)
, ζ =

a2 cos(α)√
a2 cos2(α) − b2 sin2(α)

(16)

and (ξ, ζ) are the cartesian coordinates on the lens. A hyperbolic lens,
with one surface as hyperbolic and the other as planar, placed inside
the chiral medium (ε, μ, β) is shown in Figure 5. A combination of
LCP and RCP waves is normally incident on the hyperbolic lens. The
incident field is a combination of LCP and RCP waves. It has unit
amplitude and is traveling in chiral medium along positive z-axis as
given below [9]:

QL = exp(−jkn1z), QR = exp(−jkn2z) (17)
Vertical incidence occurs which makes incidence and refraction angle
equal to zero degree. Also, both RCP and LCP waves get unified into
one wave traveling through dielectric medium towards dielectric-chiral
interface [8]. The transmitted wave into the chiral medium makes an
angle α with normal to the hyperbolic surface. Lens will refract this
wave and chiral molecules will split it into two waves, LCP and RCP,
each making an angle α1 and α2 with normal to the hyperbolic surface.
A magnified view of the hyperbolic lens is shown in Figure 6.
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Figure 5. Hyperbolic lens placed in chiral medium.

Figure 6. Internal magnified view of the hyperbolic lens.

where

α1 = sin−1

(
n

n1
sin α

)
, α2 = sin−1

(
n

n2
sin α

)
(18)

4. CALCULATIONS OF FOCAL REGION FIELD USING
GEOMETRICAL OPTICS AND MASLOV’S METHOD

General solution for field using GO is given in Equation (1). To
evaluate the expression, the wave vector for two waves, i.e., LCP and
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RCP are to be calculated first. The wave vector of the refracted wave
can be calculated by using Snell’s Law of refraction. Its general form
is given as [3]:

q = npi +
√

1 − n2 + n2(piN)2N − n(piN)N, (19)

where N is normal to the hyperbolic surface, pi is the wave vector of
the incident wave and n is the refractive index of the lens material
which is normally a constant and is greater than unity for natural
dielectric lens. The wave vector of the incident waves, for both LCP
and RCP, is given as:

pi = iz (20)
The general expression for the normal to hyperbolic lens is given as
following:

N = sin αix + cos αiz (21)
Now the wave vector of Equation (19) can be calculated using
Equations (20) and (21) for LCP and RCP waves separately. The
values of qL (for LCP) and qR (for RCP) waves are given as follows:

qL = n1K(α) sin(α)ix + n1(n + K(α) cos(α))iz (22a)
qR = n2K(α) sin(α)ix + n2(n + K(α) cos(α))iz (22b)

where,
K(α) =

√
1 − n2 sin2 α − n cos(α) (23)

It should be noted here that the apparent wave numbers of both waves,
LCP and RCP, are making the difference. LCP and RCP waves make
different impact on the focal region because of the difference in the
phase velocities. Phase velocity is dependent on the wave number
which in turn is dependent on the chirality parameter (β) of the chiral
medium. Jacobian transformation is used to transform ray coordinates
to the cartesian coordinates. The value of Jacobian J(t) = D(t)

D(0) is given
as

J(t) = 1 +
t

Ξ

(
qz

∂qx

∂ξ
− qx

∂qz

∂ξ

)
, Ξ = qz − qx tan α (24)

where qx and qz have different values for LCP and RCP waves. The
Jacobian for both the waves is calculated from Equation (24) using
respective values of unknowns for LCP and RCP. Unknowns in the
Jacobian of Equation (24) for LCP wave:

∂qx

∂ξ
= n1AB (25)

and for RCP wave:
∂qx

∂ξ
= n2AB (26)
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A and B are given as follows:

A =

(
cos α(1 − 2n2 sin2 α)√

1 − n2 sin2 α
− n cos 2α

)
(27a)

B =
∂

∂ξ
α =

ab cos2 α

(ξ2 + b2)
3
2

(27b)

The phase of the field on a ray is equal to the product of the optical
path length of the ray from some reference point and the wave number
of the medium [1]. Hence the initial phases of both LCP and RCP
waves are given as following:

S0L = n1(c − ζ), S0R = n2(c − ζ) (28)

where c is the hyperbolic lens parameter. Substituting Equations (24)–
(27b) in Equation (1), the fields around the focal region of a hyperbolic
focusing lens using GO are obtained:

EL(r) = Et
0LJ

−1/2
L e−jk(S0L+t) (29a)

ER(r) = Et
0RJ

−1/2
R e−jk(S0R+t) (29b)

GO fails around the focal region. So, Maslov’s method is used to
calculate the fields around the focal region. The fields for LCP and
RCP waves are given as following:

EL(r) =

√
k

j2π

∫ T/2

−T/2
Et

0L(ξ)
(

JL
∂qxL

∂x

)−1/2

e−jkφLdqxL (30a)

ER(r) =

√
k

j2π

∫ T/2

−T/2
Et

0R(ξ)
(

JR
∂qxR

∂x

)−1/2

e−jkφRdqxR (30b)

4.1. Evaluation of Amplitude

The unknown terms in Equations (30a) and (30b) are given as
following:

dqxL = n1Adα, (31a)
dqxR = n2Adα, (31b)

JL
∂qxL

∂x
=

n1ABqzL

Ξ
, (31c)

JR
∂qxR

∂x
=

n2ABqzR

Ξ
, (31d)

D = n2

(
cos α(1 − 2n2 sin2 α)√

1 − n2 sin2 α
− n cos 2α

)
(31e)
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where the values of A and B are given in Equations (27a) and (27b).
The magnitudes of transmitted fields, for LCP and RCP waves, are
given as following:

Et
0L =

nn1 cos α

cos α + nn1

√
1 − n2 sin2 α

(32a)

Et
0R =

nn2 cos α

cos α + nn2

√
1 − n2 sin2 α

(32b)

4.2. Phase Function

The phase of LCP and RCP waves are given as:
φL = nn1(c − 2ζ) + n1K(α) sin α(x − ξ)

+z(nn1 + n1K(α) cos α) − n1 cos αK(α)ζ (33a)
φR = nn2(c − 2ζ) + n2K(α) sin α(x − ξ)

+z(nn2 + n2K(α) cos α) − n2 cos αK(α)ζ (33b)
The subtending angle T of lens is given by:

T = tan−1

(
d

2c

)
(34)

5. RESULTS AND DISCUSSION

Results of Equations (32a) and (32b) are plotted and analyzed for
different values of the chirality parameter (β). The values of different
parameters of hyperbolic lens are: ka = 14, kb = 18 and kd = 20.
Field intensity of LCP and RCP waves are given for β = 0, 0.1, 0.5
and for β = 1.3, 1.5, 1.7 in Figures 7–10.

Figure 7. Field intensity of LCP wave for β = 0, 0.1, 0.5.



54 Kayani et al.

It is seen that the amplitude of LCP and RCP waves increases
by increasing the chirality, in both the cases of weak (β < 1) and
strong (β > 1) chiral medium. It is because of the chiral-dielectric-
chiral interface. As we are considering only transmitted waves, while

Figure 8. Field intensity of RCP wave for β = 0, 0.1, 0.5.

Figure 9. Field intensity of LCP wave for β = 1.3, 1.5, 1.7.

Figure 10. Field intensity of RCP wave for β = 1.3, 1.5, 1.7.
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reflections are being ignored for the sake of simplification. Whereas
the reflection is also dependent upon the chirality as given in [7, 8]. So,
by increasing or decreasing the chirality parameter causes decrease or
increase in reflections. In other words transmission is being increased
or decreased.

6. CONCLUSION

Field patterns around the caustic region of a hyperbolic focusing lens
placed in chiral medium are obtained. Effect of chiral-dielectric-chiral
interface is studied and mathematical recipe of Maslov is used to find
the fields in the caustic region of hyperbolic lens. The effect of chirality
on the amplitude of the refracted fields around the focal region is shown
and discussed. It is observed that the intensity of field in the focal
region of hyperbolic focusing lens increases by increasing the chirality
(β) of chiral medium.
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