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Abstract—Systems that employ stimulating and implantable moni-
toring devices utilize inductive links, such as external and implanted
coils. The calculation of the mutual inductance and the magnetic force
between these coils is important for optimizing power transfer. This
paper deals with an efficient and new approach for determining the
mutual inductance and the magnetic force between two coaxial coils in
air. The setup is comprised of a thick circular coil of the rectangular
cross section and a thin wall solenoid. We use an integro-differential
approach to calculate these electrical parameters. The mutual induc-
tance and the magnetic force are obtained using the complete elliptic
integrals of the first and second kind, Heuman’s Lambda function and
one term that has to be solved numerically. All possible regular and
singular cases were solved. The results of the presented work have
been verified with the filament method and previously published data.
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The advantage of these proposed formulas for mutual inductance or
for the magnetic force is that they give the solution in the analytical
and the semi-analytical form either for regular cases or singular cases.
It is not case with already known methods in which it is necessary to
take particular care of these cases of consideration.

1. INTRODUCTION

Magnetically coupled coils are important in magnetically controllable
devices and sensors; in modern medicine and telemetric systems
applied in biomedical engineering (long–term implantable devices, such
as pacemakers, cochlear implants, defibrillators, and instrumented
orthopedic implants); and in conventional medical MRI systems,
superconducting coils, and tokamaks. In each of these applications,
it is necessary to calculate or measure the mutual inductance of
magnetically coupled coils. Mutual inductance is a fundamental
electrical engineering parameter for a coil that can be computed by
applying Neumann’s formula directly or by using alternate methods [1–
44]. The purpose of this paper is to present an integro-differential
solution for calculating the mutual inductance and the magnetic force
between two coaxial coils: one coil is a thin wall solenoid, and
the other is a thick circular coil of the rectangular cross section.
This calculation leads to accurate and new formulas expressed as a
combination of the complete elliptic integrals of the first and second
kind, Heuman’s Lambda function and one term with no analytical
solution. This term must be solved numerically, and in this paper, we
use Gaussian numerical integration because the kernel function of this
integral is a continuous function in all intervals of integration. The
formulas for mutual inductance and magnetic force presented in this
paper are suitable and easily applicable for calculations. They are
excellent alternatives to numerical methods because of their analytical
nature. Mutual inductance and magnetic force values computed using
the proposed approach closely match expected values from previously
published data. For the presented coil configuration, the mutual
inductance and the magnetic force have been calculated using an
integral approach [4]. Both approaches give the same formula for the
mutual inductance, but the formulas for the magnetic force differ. We
numerically show that these magnetic force formulas lead to the same
results in both regular and singular cases, despite their completely
different analytical expressions. This fact can be useful for calculating
the mutual inductance and the magnetic force between all possible
coil configurations (circular coils with rectangular cross sections, thin
wall solenoids, and pancakes), allowing selection between the integro-
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differential approach and the integral approach based on the approach
that best reduces all mathematical procedures and computation time.

2. BASIC EXPRESSIONS

From the basic formula [4] the mutual inductance of a system: thin wall
solenoid-thick circular coil with rectangular cross section, (see Fig. 1)
can be given by,
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Figure 1. Thin wall solenoid-Thick circular coil with rectangular cross
section.
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where µ0 = 4π×10−7 H/m — the permeability of free space (vacuum),
r, θ, z — the cylindrical coordinates,

r0 =
√

(zII − zI)2 + R2 + r2 − 2Rrcosθ

and N1, N2 are the total number of turns. The coils are in air.
The calculation of the magnetic force between these coils is closely
related to the calculation of their mutual inductance [1]. Because their
mutual energy is equal to the product of their mutual inductance and
the currents in their coils, the component of the magnetic force of
attraction or repulsion in any direction is equal to the product of
the currents multiplied by the differential coefficient of the mutual
inductance. The differential coefficient is taken with respect to that
coordinate. As is evident in [29–40], the magnetic force may be
calculated by simple differentiation in cases where a general formula
for the mutual inductance is available. This formula exists in our case,
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and the magnetic force between the coils can be calculated with the
following expression:

F = I1I2
∂M

∂z
(2)

where I1 and I2 are the coils’ currents, M is their mutual inductance
and z is the generalized coordinate. The magnetic force has only an
axial component because coils are coaxial. The generalized coordinate
z represents the axial coordinate, and the mutual inductance has to be
expressed in the function of this coordinate so that formula (2) can be
applied.

3. CALCULATION METHOD

In (1), the integrations are made over zI , zII , r and θ. The mutual
inductance of the mentioned system is [4],
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In [4], the expression for mutual inductance is given differently than (3)
in this paper. By inspection, it is possible to show that both lead to
the same analytical expression.

Expression (3) is directly applicable for each case of the calculation
except for the singular cases that appears when tn = 0, ρn 6= 1 or
tn = 0, ρn = 1 (k2

n = 1).
We have to distinguish two possible singular cases.
a) tn = 0, ρn 6= 1 (k2

n 6= 1)
In this case for Φn we obtain,
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b) tn = 0, ρn = 1 (k2
n = 1)

In this case for Φn we obtain,

Φn = −17
48

+
G

8
(5)

where G = 0.9159655941772411 . . ., is Catalina’s constant.
Applying (2) in the expression for the mutual inductance (3) the

magnetic force between two mentioned coils can be obtained as follows,

F = F0

n=8∑

n=1

(−1)nΨn (6)
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If we compare the expression for magnetic force (6) obtained by
differentiation to the expression obtained by direct integration [4],
we notice two completely different expressions. Because it is difficult
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to show mathematically that they lead to the same expression, we
will analyze the numerical exactness of these expressions to show
that they lead to the same results. We will confirm this statement
with a few examples to show that magnetic force can be calculated
with two differently derived expressions from the expression of the
corresponding mutual inductance. The previous expression can also be
used to calculate the magnetic force in the singular case that appears
for tn = 0, ρn 6= 1 or tn = 0, ρn = 1 (k2

n = 1).
We give final expressions for four possible singular cases:

a) z2 = z3 and R > R2 > R1 or R2 > R1 > R

Ψ5 = Ψ8 = 0 (7)

b) z2 = z3 and R = R1

Ψ5 = −π

3
, Ψ8 = −π

6
(8)

c) z2 = z3 and R1 < R < R2

Ψ5 = −π

3
, Ψ8 = 0 (9)

d) z2 = z3 and R = R1

Ψ5 = −π

6
, Ψ8 = −π

3
(10)

In (3) and (6), Φn and Ψn are dimensionless. K and E are complete
elliptic integrals of the first and the second kind [45, 46]. Λ0 is
Heuman’s Lambda function [45, 46].

4. EXAMPLES

To verify the validity of the presented expressions, we solve the
following example problems.

4.1. Example 1

Consider a thick circular coil with a rectangular cross section (the
first coil) and a thin wall solenoid (the second coil) for which the
mutual inductance will be calculated using the presented method and
the filament method [4]. The coil dimensions and number of turns are
as follows:

Presented approach:
First coil: R1 = 30 cm, R2 = 50 cm, z1 = −40 cm, z2 = 40 cm,

N1 = 100,
Second coil: R = 10 cm, z3 = −80 cm, z4 = 80 cm, N2 = 1000.
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Filament method [4]:
First coil: RI = R = 10 cm, a = (z4 − z3)/2 = 160 cm,N2 = 1000.
Second coil: RII = (R2 + R1)/2 = 40 cm, hII = (R2 − R1)/2 =

20 cm, b = (z2 − z1)/2 = 80 cm, N1 = 100.
Coils are coaxial (c = 0 cm).
Calculate the mutual inductance between these coils.
The presented approach (3) gives the mutual inductance,

MThisWork = 2.15868775mH

Execution time was 0.1099 seconds.
The mutual inductance has been obtained with Gaussian

numerical integration. Using the filament method [4], values for the
mutual inductance are given in Table 1. In addition, the corresponding
computational time and the discrepancy between the two calculations
are given (see Table 1). From Table 1, one can conclude that all results
obtained by the two approaches are in a good agreement. However,
to get the proposed approach’s result for mutual inductance using
the filament method, one has to make more subdivisions. These
subdivisions increase the computation cost. Also, we compared the
mutual inductance value obtained using the presented method with the
mutual inductance value obtained from the finite element calculation
(Software Flux, Cedrat).

To achieve high accuracy for these and other cases using FEM,
it is necessary to create a mesh in the model using many elements
and nodes that can increase computation time. Pre-processing time
to generate 16291 nodes and 8080 elements was 15 minutes, and the
computation time about 35 seconds. The mutual inductance was,

MFlux = 2.1586 mH

Table 1. Comparison of computational efficiency.

K/m/n

Subdivisions
MFilament

(mH)
Computational
Time (Seconds)

Discrepancy
(%)

5/5/5 2.16129158 0.073721 0.12062
15/15/15 2.15901922 1.718260 0.01536
30/30/30 2.15877344 13.014610 0.00397
40/40/40 2.15873636 29.918979 0.00225
55/55/55 2.15871363 80.338788 0.00120
70/70/70 2.15870379 164.762007 0.00074
85/85/85 2.15869866 312.806815 0.00051
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Thus, this value perfectly corresponds to the one obtained by the
presented method and the filament method, but the advantage of the
presented method is obvious regarding the computation time.

4.2. Example 2

In this example, we consider a thin wall solenoid and a thick circular
coil of the rectangular cross section. The thin wall solenoid touches
the thick circular coil; therefore, the distance between coils is zero.
The radius of the thin wall solenoid is equal to the inner radius of the
thick coil. (In the singular case, the radius of the thin wall is equal to
the outer radius of the thick coil.) The coil dimensions and number of
turns are as follows:

First coil: R1 = 30 cm, R2 = 50 cm, z1 = −40 cm, z2 = 40 cm,
N1 = 100,

Second coil: R = 30 cm, z3 = 40 cm, z4 = 120 cm, N2 = 100.
By inspection we obtain t5 = 0, ρ5 = 1 (k2

5 = 1) because
R = R1 = 30 cm and z2 = z3 = 40 cm. Applying (3) with the
modification (5), the presented approach gives,

M = 0.64126676mH

By the filament method [4], the mutual inductance is,

M = 0.64116332mH

If the second coil is given by R = 50 cm, z3 = 40 cm, z4 = 120 cm and
N2 = 100, by inspection we obtain t8 = 0 and ρ8 = 1 (k2

8 = 1).
Applying (3) with the modification in (5), the presented approach
gives,

M = 1.26240266mH

By the filament method [4], the mutual inductance is,

M = 1.262243210 mH

If the second coil is given by R = 40 cm, z3 = 40 cm, z4 = 120 cm, and
N2 = 100, by inspection we find t5 = t8 = 0, ρ5 6= 1 and ρ8 6= 1.
Applying (3) with the modification in (4), the presented approach
gives,

M = 0.99701346mH

By the filament method [4], the mutual inductance is,

M = 0.99682801mH

All results match closely, showing that formula (3) can be considered a
general formula for calculating the mutual inductance of the proposed
configuration, along with modifications (4) and (5) for regular or
singular cases.
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4.3. Example 3

Calculate the magnetic force between a thin wall solenoid and a thick
circular coil of the rectangular cross section. Coils have different
radiuses and lengths.

The coil dimensions and number of turns are as follows:
First coil: R1 = 30 cm, R2 = 50 cm, z1 = −10 cm, z2 = 10 cm,

N1 = 100, I1 = 1 A,
Second coil: R = 10 cm, z3 = −20 cm, z4 = 20 cm, N2 = 1000,

I2 = 1 A.
The distance between coil axes is c = (0− 30) cm.
From Table 2, we can see that formula (6), presented in this paper,

and formula [4] give the same results. Thus we confirm the validity
of both formulas for the magnetic force calculation obtained in two
different ways.

4.4. Example 4

In this example, we calculate the magnetic force if coils are in contact
at their bases. The magnetic force has been calculated along the

Table 2. Comparison of computational efficiency.

c (m) FThisWork (mN) F [4] (mN) Discrepancy (%)
0 0.00 0.00 -

0.02 1.08730357 1.08730357 0.00
0.04 2.15709787 2.15709787 0.00
0.06 3.19195682 3.19195682 0.00
0.08 4.17471591 4.17471591 0.00
0.10 5.08881123 5.08881123 0.00
0.12 5.91879279 5.91879279 0.00
0.14 6.65096959 6.65096959 0.00
0.16 7.27410015 7.27410015 0.00
0.18 7.78002703 7.78002703 0.00
0.20 8.16416584 8.16416584 0.00
0.22 8.42578622 8.42578622 0.00
0.24 8.56805054 8.56805054 0.00
0.26 8.59779762 8.59779762 0.00
0.28 8.52507684 8.52507684 0.00
0.30 8.36246095 8.36246095 0.00
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line where z2 = z3 = 0.2 cm and for r between 2 and 5 cm. Coils
are in contact on this line, and at these points we use formula (6)
taking into consideration singular cases (7)–(10). For the comparison,
we used the formula for calculating the magnetic force obtained by
integration [4] and the method presented in [22]. All results match
closely (see Table 3).

First coil: R1 = 3 cm, R2 = 4 cm, z1 = −2 cm, z2 = 2 cm,
N1 = 100, I1 = 1 A.

Second coil: R = r cm, z3 = 2 cm, z4 = 6 cm, N2 = 100, I2 = 1A.
Thus we confirm the validity of both formulas for the magnetic

force calculation obtained in two different ways for the treatment of
the singular cases. The formula (6) presented in this paper gives the
same results as those obtained from [4] (see Table 3).

4.5. Example 5

In the superconducting tokamak JT-60SC, we calculate the mutual
inductance between poloidal field coils (CS1 and EF3) for plasma
shaping, distributed around the vacuum vessel [47]. The coil
dimensions and number of turns are as follows:

(CS1): Rc = 0.901m, zc = 1.686m, ∆R = 0.381m, ∆z = 1.124m,
N1 = 418,

(EF3): Rc = 1.730m, zc = 3.346m, ∆R = 0.668 m, ∆z = 0.576m,
N2 = 432.

Table 3. Comparison of computational efficiency.

r (m) FThis Work (mN) F [4] (mN) F [22] (mN)
0.02 3.06163703 3.06163703 3.06163704
0.022 3.74119475 3.74119475 3.74119454
0.025 4.90868246 4.90868246 4.90868214
0.028 6.26378148 6.26378148 6.26378147
0.03 7.27660372 7.27660372 7.27693072
0.032 8.22700727 8.22700727 8.22706529
0.036 9.36772613 9.36772613 9.36841472
0.038 9.48577057 9.48577057 9.48643696
0.04 9.25276973 9.25276973 9.25352213
0.045 8.22746449 8.22746449 8.22746449
0.048 7.64324523 7.64324523 7.64324464
0.05 7.26952745 7.26952745 7.26952721
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If we interpret this configuration as a system consisting of a thin
wall solenoid with negligible cross section and a thick circular coil with
a rectangular cross section (the same configuration presented in this
paper), we have:

Thick coil of rectangular cross section (EF3): R1 = 1.396m,
R2 = 2.064m, z1 = 3.058m, z2 = 3.634m, N1 = 432.

Thin wall solenoid (CS1): R = 0.901 m, z3 = 1.124m, z4 =
2.248m, N2 = 418.

This assumption can be justified on the basis that the ratio of the
lateral over the radial length is more pronounced for coil (CS1) than
for coil (EF3).

Applying formula (3) of this paper, the mutual inductance
obtained is,

M = 60.6159mH

With finite element calculations (Software Flux, Cedrat), we obtain,

M = 60.6225mH

All of these results match, so we consider that the presented method is
valid, fast and accurate for calculating the mutual inductance in either
small or large coils.

5. CONCLUSION

New and accurate mutual inductance and magnetic force expressions
for a system comprised of a thin wall solenoid and a thick circular
coil of the rectangular cross section, in air, are derived and presented
in this paper. We propose new formulas for the magnetic force
calculation by differentiating the corresponding expression for mutual
inductance. All cases, regular and singular, have been incorporated
into this new formula. This novel approach can provide a suitable
alternative to modern numerical methods, such as the finite element
method or the boundary element method, because of its rapidity and
accuracy. The results are obtained over complete elliptic integrals of
the first and second kind. The results also involve Heuman’s Lambda
function and a single non-analytically solvable term. We solve this
term using Gaussian numerical integration because the kernel function
is a smooth function on all intervals of integration. The proposed
method can be used for a large scale of practical applications, such as
millimeter and submillimeter sized biomedical telemetric systems (e.g.,
for implanted, injected, or ingested devices) and superconducting coils.
Several examples confirm the validity of the presented method.
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Erratum to CALCULATION OF THE MUTUAL INDUC-
TANCE AND THE MAGNETIC FORCE BETWEEN A
THICK CIRCULAR COIL OF THE RECTANGULAR
CROSS SECTION AND A THIN WALL SOLENOID
(INTEGRO-DIFFERENTIAL APPROACH) by S. Babic,
C. Akyel, F. Sirois, G. Lemarquand, R. Ravaud, and V. Lemarquand,
in Progress In Electromagnetics Research B, Vol. 33, pp. 221–237,
2011

Equation (6) in this paper was presented incorrectly and the term
involving Ψn should be given by
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In equations (7) to (10) the expressions Ψ5 and Ψ8 were presented
incorrectly. They should be given by,

a) z2 = z3 and R2 > R1 > R or R > R2 > R1

Ψ5 = Ψ8 = 0 (7)

b) z2 = z3 and R = R1 < R2

Ψ5 = −π

6
, Ψ8 = −π

3
(8)

c) z2 = z3 and R1 < R < R2

Ψ5 = 0, Ψ8 = −π

3
(9)

d) z2 = z3 and R1 < R = R2

Ψ5 = 0, Ψ8 = −π

6
(10)


