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Abstract—Inferring refractivity profiles from radar sea clutter is a
complex nonlinear optimization problem. Previous works treat this
problem as a model parameter estimation issue by using some idealized
refractivity models, such as the Log linear evaporation duct model,
bilinear model, and trilinear model, to describe the synoptic structure
of the real atmospheric conditions. However, these idealized models
can not describe the exact information of the refractivity profile.
Rather than estimating a few model parameters, this paper puts
forward possibilities of retrieving the refractivity values at each point
over height by variational adjoint approach for RFC measurement
geometry. The adjoint model is derived from the parabolic equation
method for a smooth, perfectly conducting surface and horizontal
polarization conditions. Evaporation duct profiles collected at East
China Sea are provided as the true refractive environment. The
performance of this approach is determined via simulations and is
evaluated as a function of: 1) the initial guess profile; 2) the
measurement noise; and 3) the spatial samples.

1. INTRODUCTION

Nonstandard electromagnetic propagation due to formation of lower
atmospheric sea duct is a common occurrence in maritime radar
applications. Under this condition, some fundamental system
parameters of seaborne radars can deviate significantly from their
original values which are specified by the standard refractive
conditions. These include extending the maximum operation range,
creating radar ‘holes’, and increasing sea surface clutter. However, this
unwanted clutter is a rich source of information about the atmospheric
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environment and can be used to determine the local refractive
conditions [1]. This technique is termed RFC, i.e., refractivity
from clutter, which has the advantages of using radar itself as the
remote sensing device and not needing additional hardware or extra
meteorological or electromagnetic measurements.

RFC is a complex inverse problem because the relationship
between refractivity values and radar sea clutter is clearly nonlinear
and ill-posed. It is difficult to get analytical solutions according to
current theories, and global optimization method might be a good
choice to get approximate solutions [2]. Based on the experiments
launched at Wallops Island (called Wallops98), many inversion
procedures of RFC have been developed. Tabrikian et al. used
a maximum a posteriori (MAP) approach to jointly estimate the
refractivity and the spatially varying backscatter cross section [3].
Rogers et al. inferred evaporation duct heights on the basis of the
assumptions of a range-independent environment and sea clutter radar
cross section by a nonlinear least squares inversion procedure [4].
Gerstoft et al. proposed the usage of genetic algorithm (GA) to
estimate refractivity. In their works, the authors presented a method
to model the range and height varying refractivity of the environment
using a total of 11 parameters [5], and some prior constraints were
imposed to increase the accuracy of results over the coverage area
of the radar [6]. Barrios utilized the rank correlation between the
observed clutter power and the density of modeled ray paths to
estimate surface-based duct parameters [7]. Vasudevan et al. exploited
the inherent Markovian structure of the fast Fourier transform
(FFT) to parabolic equation (PE) approximation and used a particle
filtering approach to retrieve range-dependent atmospheric refractivity
profiles [8]. Yardim et al. adopted Markov chain Monte Carlo (MCMC)
sampling approach, a hybrid GA-MCMC method and Kalman Filters,
respectively, to investigate RFC problem [9–11]. Through establishing
many pre-computed, modeled radar clutter returns for different
refractive environments in a database, Douvenot et al. inverted
refractivity profiles based on finding the optimal environment from the
database [12, 13]. Other researches on RFC techniques can be found
in the literatures [14–16].

Instead of determining the refractivity at each point over height
at a given range, all the methods mentioned above retrieve a few
parameters to describe a probable characterization of the refractive
index structure. The commonly used refractivity parameter models
include the Log linear evaporation duct model, bilinear model, and
trilinear model, see Fig. 1. However, using these idealized models can
not describe the exact information of the refractivity profile. Some
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Figure 1. The three typical duct parameter models. (a) Log linear
model. (b) Bilinear model. (c) Trilinear model.

small perturbations of the gradients of the refractivity profile are
discarded, which might be duct structures. Another important issue
of these methods is how to evaluate their performance under real
time. Operational applications necessitate short computation time,
less than ten minutes, to avoid error due to temporal evolution of
refractivity [12]. Large numbers of the forward model runs make them
impractical for real time operational use.

The adjoint method of control theory is known to give
accurate and efficient data assimilation processes in oceanography and
meteorology [17]. Using the adjoint of a forward propagation model has
the potential to sharply reduce the number of modeling runs. Based
on PE propagation model, the adjoint method has recently gained an
increasing interest in the ocean acoustics community [18, 19]. In 2010,
Zhao et al. have introduced this method into refractivity estimation
problems, where the source-receiver configuration is assumed to be
bistatic and the field measurements are observed from an array of radio
receivers [20]. Making use of variational adjoint approach to retrieve
the model parameters, in the process of solving the adjoint model, the
terminal observation information can be placed on the adjoint initial
or boundary conditions. This handling way has been adopted widely in
atmospheric data assimilation problems [17]. When the measurements
are observed within the computation domain, especially they are
distributed along a horizontal line (similar to RFC measurement
geometry), how to introduce the observation information into the
adjoint model is a very trouble problem, which enhances the difficulty
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of implementing the variational adjoint method. In the propagation
problem, the observation information obtained from RFC measurement
geometry can be introduced into the adjoint model by using Delta
function. In general, when Delta function is involved in an equation,
it is difficult to carry out numerical computations. Fortunately,
an efficient method to solve the PE model is the split-step Fourier
algorithm [21]. Making use of the solution to the forward model and
the property of the Delta function integral, the adjoint model can also
be solved by the split-step Fourier algorithm. The troublesome of Delta
function can be successfully overcome by the Fourier integral.

In this paper, the adjoint approach for refractivity estimation is
designed for RFC measurement geometry. The derivation of the adjoint
model is accomplished by an analytical transformation of the governing
differential equation, i.e., PE, in the continuous domain. After an
exact gradient of the cost function is computed, the optimal solution
of refractivity profile can be obtained by gradient-based iterations,
which makes the computation real time. Rather than estimating a few
refractivity parameters, the values of refractivity could be retrieved
at each point over height, which is helpful to describe the vertical
information of the refractivity in detail.

2. FORWARD MODEL

Before performing RFC estimations, a forward simulation of the
received radar sea clutter power Pr has to be computed. Using the
classical radar equation, the received radar sea clutter power Pr can
be modeled as a function of the one-way propagation loss Lloss from the
transmitter to the range cell, which in turn depends on the refractive
environment m in the troposphere [5]:

Pr(x,m) = −2Lloss(x,m) + 10 log10(x) + σ0(x) + C (1)

where σ0(x) is the radar cross-section (RCS) of the sea surface at range
x, and C is a constant that includes wavelength, transmitter power,
antenna gain, etc.. If these values are known (how to compute the
RCS accurately is a very difficult problem), Pr will be just determined
by the propagation loss term Lloss, and Lloss can be computed as [22]:

Lloss(x, z) = −10 log10

(
λ2 |u(x, z)|2

(4π)2x

)
(2)

where λ is the wavelength, and u is the electric field that can be
computed numerically using the split-step Fourier PE method. For
a smooth, perfectly conducting surface and horizontal polarization
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conditions, the PE model can be described as such an initial value
problem [23]:

∂2
zu + 2ik0∂xu + k2

0

(
m2 − 1

)
u = 0 (3a)

u(x, 0) = 0 (3b)
u(0, z) = φ(z) (3c)

where ∂x ≡ ∂/∂x and ∂z ≡ ∂/∂z. k0 is the free space wave number,
m = m(x, z) is the modified index of refraction, takes into account the
earth’s curvature and is defined by m = n+ z/ae, n being the index of
refraction and ae being the radius of the Earth. u(x, 0) = 0 represents
the boundary condition at z = 0, and u(0, z) = φ(z) gives the initial
field at the source range. In this paper, the transmitter simulates an
omni-directional source. It is set at a height of 15m and operating at
a frequency of 2 GHz.

Let u(xk, z) be the electric field at range xk and height z. Then,
the field at range xk+1 and height z, denoted by u(xk+1, z), can be
given by the split-step Fourier solution to PE as [24]:

u(xk+1, z)=exp
(
i
k0

2
(
m2−1

)
δx

)
F−1

{
exp

(
−i

p2δx

2k0

)
F [u(xk, z)]

}
(4)

where F [·] and F−1[·] are the Fourier transform and inverse Fourier
transform, respectively. δx is the range increment, given by δx =
xk+1 − xk. p is the transform variable often referred to as the vertical
wave number or spatial frequency. The Fourier transform pair is
defined as:

U(x, p) = F [u(x, z)] =
∫ Z

−Z
u(x, z) exp(−ipz)dz (5)

u(x, z) = F−1 [U(x, p)] =
1
2π

∫ P

−P
U(x, p) exp(ipz)dp (6)

Here, the transforms are written with limits of integration placed upon
z and p, since the discrete Fourier transform, by way of the FFT,
is actually used. Z and P can be determined by Nyquist’s criteria:
ZP = πN , where N is the transform size [25].

3. ADJOINT MODEL

As a theoretical investigation, the variational adjoint approach will be
induced based on the following three assumptions.

A. The spatial change of atmospheric refractivity is larger with
height than with range and generally the range variations can be
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Figure 2. A drawing of the RFC measurement geometry.

neglected. In open ocean conditions, it was found that calculations
of propagation enhancements based on a single profile were correct
in 86 percent of the cases [26]. Therefore, the refractive conditions
are considered laterally homogeneous, i.e., m = m(z).

B. Using PE method, the field values at all range and height points
can be obtained. However, the measured radar sea clutter power
is only one value at each range. Hence, it is typically approximate
the signal that is scattered at a given range from the PE field at
a designated height z0 near the surface [9–11]. A drawing of the
RFC measurement geometry is shown in Fig. 2.

C. Since the real measured radar data are not available, for simplicity
the electric field u is used to replace the radar sea clutter power Pr

in our simulations. The relationship between Pr and u has been
introduced in Section 2.

3.1. Tangent Linear Model

Set perturbations to m as:

m̃(z) = m(z) + αm̂(z) (7)

where m̂ is the Gâteaux derivative of m:

m̂ = lim
α→0

m̃−m

α
(8)

Taking u and ũ, respectively, as the solution of the model (3)
corresponding to m and m̃. Note û(x, z) is the Gâteaux derivative of
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u(x, z):

û = lim
α→0

ũ− u

α
(9)

Then, û satisfies the following tangent linear model:
∂2

z û + 2ik0∂xû + k2
0

(
m2 − 1

)
û + 2k2

0umm̂ = 0 (10a)
û(0, z) = 0 (10b)
û(x, 0) = 0 (10c)

3.2. Cost Function

Note uobs(x, z0) as the field measurement along the propagation
distance L, and the field predicted by the forward model is noted as
u(x, z0). Based on the standard matched field processing between a
measured field and the corresponding predicted field, the simplest cost
function J can be defined as:

J [m] =
1
2

∫ L

0

∣∣∣u(x, z0)− uobs(x, z0)
∣∣∣
2
dx = min! (11)

Define two inner products as follows:

〈f, h〉 =
∫ Z

0

∫ L

0
f · h̄dxdz (12)

(f, h) =
∫ Z

0
f · h̄dz (13)

where h̄ is the conjugate function of h.
The Gâteaux derivative of J [m] with respect to m̂ at point m is:

J ′[m; m̂] = lim
α→0

J [m̃]− J [m]
α

=
1
2

lim
α→0

∫ L
0

(∣∣ũ(x, z0)−uobs(x, z0)
∣∣2−∣∣u(x, z0)−uobs(x, z0)

∣∣2
)
dx

α

= Re
[∫ L

0

(
u(x, z0)− uobs(x, z0)

)
· ¯̂u(x, z0)dx

]
(14)

where Re[u] is the real component of a complex variable u.
On the other hand, from the definition of J ′[m; m̂]:

J ′[m; m̂] ≡ (∇mJ, m̂) (15)
Combining Eq. (14) with Eq. (15), the following equation can be

obtained:

Re
[∫ L

0

(
u(x, z0)− uobs(x, z0)

)
· ¯̂u(x, z0)dx

]
= (∇mJ, m̂) (16)
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3.3. Adjoint Model

The adjoint model can be obtained from the tangent linear model.
Multiply the conjugate of Eq. (10a) by the adjoint field w(x, z), and
then integrate it on the domain [0, L]× [0, Z]:
〈
w, ∂2

z û
〉
+ 〈w, 2ik0∂xû〉+ 〈

w, k2
0(m

2 − 1)û
〉
+

〈
w, 2k2

0umm̂
〉

= 0 (17)

where
〈
w, ∂2

z û
〉

=
∫ Z

0

∫ L

0
w · ∂2

z
¯̂u dxdz

=
∫ L

0

(
w · ∂z

¯̂u− ∂zw · ¯̂u
∣∣∣z=Z

z=0

)
dx +

〈
∂2

zw, û
〉

(18)

〈w, 2ik0∂xû〉 =
∫ Z

0

∫ L

0

(−2ik0w · ∂x
¯̂u
)
dxdz

= 〈2ik0∂xw, û〉 −
∫ Z

0

(
2ik0w · ¯̂u

∣∣∣x=L

x=0

)
dz (19)

〈
w, k2

0(m
2 − 1)û

〉
=

∫ Z

0

∫ L

0
k2

0(m
2 − 1) · w · ¯̂u dxdz

=
〈
k2

0(m
2 − 1)w, û

〉
(20)

〈
w, 2k2

0umm̂
〉

=
∫ Z

0

∫ L

0
2k2

0 ·m · m̂ · ū · wdxdz

=
〈
2k2

0mūw, m̂
〉

(21)

Substitute Eqs. (18)–(21) into Eq. (17) to obtain:
〈
∂2

zw + 2ik0∂xw + k2
0(m

2 − 1)w, û
〉

+
〈
2k2

0mūw, m̂
〉

+
∫ L

0

(
w · ∂z

¯̂u− ∂zw · ¯̂u
∣∣∣z=Z

z=0

)
dx−

∫ Z

0

(
2ik0w · ¯̂u

∣∣∣x=L

x=0

)
dz = 0 (22)

Referring to the initial boundary conditions of the tangent linear
model, the conjugate initial boundary conditions of the adjoint field
can be set as w(x, 0) = 0, w(x,Z) = 0, and w(L, z) = 0. Then, Eq. (22)
can be reduced to:〈

∂2
zw + 2ik0∂xw + k2

0

(
m2 − 1

)
w, û

〉
= − 〈

2k2
0mūw, m̂

〉
(23)

Next, how to introduce the observation information into the
adjoint model is the most important problem. From the above
derivation, the observation data are contained in Eq. (16), but they
are just distributed along a horizontal line at height z0. Comparing
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Eq. (16) with Eq. (23), we could use Delta function to modify the left
side of Eq. (16) as:

Re
[∫ L

0

(
u(x, z0)− uobs(x, z0)

)
· ¯̂u(x, z0)dx

]

= Re
[∫ Z

0

∫ L

0

(
u(x, z)− uobs(x, z)

)
· ¯̂u(x, z) · δ(z − z0)dxdz

]

= Re
[〈(

u(x, z)− uobs(x, z)
)

δ(z − z0), û(x, z)
〉]

(24)

Then, Eq. (16) can be written as:

Re
[〈(

u(x, z)− uobs(x, z)
)

δ(z − z0), û(x, z)
〉]

= (∇mJ, m̂) (25)

Take the real component of both side of Eq. (23):

Re
[〈

∂2
zw+2ik0∂xw+k2

0

(
m2−1

)
w, û

〉]
= −Re

[〈
2k2

0mūw, m̂
〉]

(26)

Let the left side and right side of Eq. (25) equal to the left side
and right side of Eq. (26), respectively. Then, the following adjoint
equation and the corresponding initial boundary conditions can be
obtained as:

∂2
zw+2ik0∂xw+k2

0(m
2−1)w =

[
u(x, z)−uobs(x, z)

]
δ(z−z0) (27a)

w(x, 0) = 0 (27b)
w(L, z) = 0 (27c)

Simultaneously, the gradient of the cost function J at point m can be
obtained as:

∇mJ = −2k2
0m

∫ L

0
Re [ū · w] dx (28)

With the gradient of the cost function, minimization could be
generally accomplished through the use of standard iterative gradient-
based methods:

mi+1 = mi −∇mJ |mi · ρi (29)

In this paper, an efficient quasi-Newton gradient technique (L-BFGS-
B) for large-scale bound constrained optimization is used for this
purpose, where ρi is a good approximation to the inverse Hessian
matrix [27].

3.4. Solution of the Adjoint Model

From Eq. (28), the exact gradient information depends on the solutions
of the forward model (3) and the adjoint model (27). Making use of the
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solution to the forward model and the property of the Delta function
integral, the adjoint model can also be solved by the split-step Fourier
algorithm:

W (xk, p) = exp
{

k2
0(m

2 − 1)− p2

2ik0
δx

}
·W (xk+1, p)

+
1

2ik0

∫ xk

xk+1

G(x, p)·exp
{
k2

0(m
2 − 1)− p2

2ik0
(x−xk)

}
dx (30)

and
w(xk, z) = F−1[W (xk, p)] (31)

where δx is the range increment, given by δx = xk+1−xk, which should
be identical to the range increment δx given in Eq. (4). However,
being different from the solution of Eq. (4), w(xk, z) is obtained by
integrating the adjoint model in the reverse direction. G(x, p) is the
Fourier transform of g(x, z), where

g(x, z) =
[
u(x, z)− uobs(x, z)

]
δ(z − z0) (32)
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Figure 3. Scheme of iteration process.
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and

G(x, p) = F [g(x, z)]

=
∫ Z

−Z

[
u(x, z)− uobs(x, z)

]
δ(z − z0) exp(−ipz)dz

=
[
u(x, z0)− uobs(x, z0)

]
exp(−ipz0) (33)

Here, it should be noted that the forward and inverse Fourier
transforms defined by Eq. (5) and Eq. (6) are written in continuous
forms, but with limits of integration placed upon z and p. An abrupt
truncation of the field in height will result in strong reflections from
the nonphysical upper boundary. A practical approach to this problem
is to add an ‘absorbing’ region above the maximum altitude of interest
where the field is attenuated smoothly to zero at height Z [24]. Here,
a cosine-tapered (Tukey) filter array [28] is used to filter the upper 1/4
of the field for this purpose.

The whole iteration process can be expressed as a flowchart in
Fig. 3, where ‘TC (termination condition) satisfied?’ means as long
as one of the following conditions are satisfied, the program will stop:
1) the cost function is less than a pre-given small positive number;
2) the gradient of the cost function approaches to zero; 3) the value of
the cost function no longer descends; and 4) the maximum iteration
number achieves.

4. NUMERICAL EXPERIMENTS AND ANALYSIS

Since the radar measured data are not available, numerical experiments
will be performed to test the theoretical results above.

In the propagation assessment, a quantity frequently used to
describe atmospheric refractive conditions is the modified refractivity
M , which is related to the modified index of refraction as follows:

M = 106 × (m− 1) (34)

In our simulations, an evaporation duct profile measured by low
altitude captive balloon at East China Sea is used to model as
the observed modified refractivity profile (see Fig. 4), and the
corresponding electric field at height 1 m computed by the split-step
Fourier PE propagation model is used as the observed radar data. The
transmitter simulating an omni-directional source operating at 2GHz
is set at a height of 15 m. In the implementation of the fast Fourier
transform, the transform size N is set to be the order of 64 to satisfy
N = 26, and the vertical increment in z-space is set to be 1 m.
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Figure 4. The observed modified refractivity profile.

The performance of the inversions is evaluated as a function of:
1) the initial guess profile; 2) the measurement noise; and 3) the spatial
samples.

4.1. Influence of the initial guess profile

The adjoint process is a local optimization method and the initial guess
has an impact on the inversion accuracy. If the initial guess is too far
from the correct solution, there is no mechanism for escaping a spurious
local minimum [18].

Three initial guess profiles are selected in this section. The first
is a linear profile with the typical gradient of 0.118M-units/m and the
M value of 350M-units at sea level. The second is a linear profile with
M value of 330 M-unints at sea level. The third is a statistical result
from the hydrometeorological data collected at East China Sea [29],
which is constructed using the Log linear evaporation duct formula
given by Hitney and Vieth [30] with an evaporation duct height of
9.1m and the M value of 339M-units at sea level. Fig. 5 to Fig.
7 give the retrieved results of the above three different initial guess
profiles, where the observed profile is shown as real line, the initial
guess profile is shown as dashed line, and the retrieved profile is shown
as dotted line. The left and the right subplots show the results for
different iteration numbers. A single iteration process consists of using
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Figure 5. Inversions for a linear initial guess profile with the typical
gradient of 0.118 M-units/m and the M value of 350 M-units at sea
level. (a) 100 iteration numbers. (b) 2153 iteration numbers.

the forward model to calculate a modeled electric field, and then using
the adjoint model to calculate a corrected refractivity profile. Here,
the propagation distance is 50 km, the range increment δx is 20 m, and
the constrained M value boundary is from 250 to 500 M-units.

From the above three Figures, it is clear that: 1) rather than
retrieving several refractivity model parameters, the adjoint approach
could retrieve the refractivity values at each point over height; 2) the
whole retrievals for Fig. 5 are corrupt. This is because the initial
guess profile for Fig. 5 is far from the true profile. Owing to the
value of the cost function no longer descends, the program terminated
at 2153 iteration numbers. Compared Fig. 5(a) with Fig. 5(b), the
retrieved results of 2153 iteration numbers is similar to that of 100
iteration numbers, which means that the retrievals have trapped into
a spurious local minimum; 3) the retrieved values above 50 m are poor.
The reason of this phenomenon is that using the fast Fourier transform,
the upper 1/4 field is filtered by the Tukey array; 4) the refractivity
at sea level is equal to the value of the initial profile. This is because
the lower boundaries of the forward and adjoint models are fixed to
zero; 5) when the initial guess profiles are fairish, different initial guess
profile requires different iteration numbers to get the optimal result.
Compared Fig. 6 with Fig. 7, at 100 iteration numbers, giving a better
initial profile could improve the inversions to some extent.
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Figure 6. Inversions for a linear initial guess profile with the typical
gradient of 0.118 M-units/m and the M value of 330 M-units at sea
level. (a) 100 iteration numbers. (b) 400 iteration numbers.
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Figure 7. Inversions for a Log linear initial guess profile. (a) 100
iteration numbers. (b) 400 iteration numbers.
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Figure 8 shows the base-ten logarithm of the cost function J at
iterations 1-400 for the latter two initial guess profiles. The black is
for the linear profile with gradient of 0.118 M-units/m and the M value
of 330 M-units at sea level. The red dashed line is for the Log linear
evaporation duct profile.

It is clear that the decreasing of the cost function produced by the
Log linear initial guess profile is faster than that produced by the linear
profile. However, when the inversion accuracy achieves to some extent,
the cost functions will decrease smoothly. In general, a favorable initial
guess profile can always be obtained from history observations and/or
from the output of numerical weather prediction model. Therefore, in
the following computations, only Log linear initial guess profile will
be considered and the maximum iteration number is set to be 400
(In Gerstoft et al.’s paper, the number of the forward model runs is
20000 [5], and Yardim et al.’s work requires more number of the model
runs [9]). By the way, with 400 iteration numbers, the computation
time is just approximate to 37.5 seconds. Our computation source is
ThinkPad R400 equipping with dual CPUs (P8600, 2.40GHz) and
2GB EMS memory bank.

4.2. Influence of the Measurement Noise

In practical operations, the available measurements are often
contaminated by some noise. Here, 10% and 20% additive white
Gaussian noise are added to the measured field to investigate the anti-
noise ability of the variational adjoint approach for RFC inversions.
The propagation distance is 50 km, and the range increment δx is
20m. Owing to the value of the cost function no longer descends,
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in 10% Gaussian noise case, the program terminated at 249 iterations.
While in 20% case, the program terminated at 232 iterations. Fig. 9
gives the retrieved profiles with the above two different additive noises.

Owing to the Gaussian noise added to measurements, the
inversions become ill-posed. The higher the Gaussian noise is added,
the larger intervals will be apart from the true values. However, the
retrievals fluctuate surrounding the observed profile. Previous studies
of the inverse problem have indicated that regularization technique
might be a good tool to deal with these ill-posed problems and make the
inversions stable [17]. However, several regularization terms, including
H1 mode and L2 mode, have been tried in this problem, but no one
has prominent improvement. H1 mode and L2 mode can be expressed
as [31]:

H1 =
{

u

∣∣∣∣
∫ Z

0

∫ L

0

(
|u|2 + |∂u/∂z|2

)
dxdz < +∞

}
(35)

L2 =
{

u

∣∣∣∣
∫ Z

0

∫ L

0
|u|2dxdz < +∞

}
(36)

In this paper, an alternative moving average filter called curve
fitting method is adopted. This filter can be realized by ‘smooth’
function in Matlab. Fig. 10 gives the filtered profile of the above
inversions (the value at sea level is not included).
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Figure 9. Inversions for different Gaussian noise. (a) 10% Gaussian
noise. (b) 20% Gaussian noise.
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Figure 10. The curve fitting results of Fig. 9. (a) 10% Gaussian noise.
(b) 20% Gaussian noise.

4.3. Influence of the spatial samples

Inversion accuracy of the adjoint approach is dependent on the
distributions of the observed data. If the observations are
extraordinarily insufficient, it is difficult to obtain qualified retrievals.
In the above simulations, the propagation distance is selected as 50 km,
and the range increment δx is 20 m. How about other geometries?
Fig. 11 gives the retrievals of 50 km propagation distance with 100 m
and 500 m range increment for the left and right subplots, respectively.
Fig. 12 gives the retrievals of 5 km propagation distance with 10 m and
50m range increment for the left and right subplots, respectively.

From the above two Figures, it is clear that at a given propagation
distance, the inversion accuracy is reducing with the increase of the
step range. This is because using the split-step Fourier algorithm to
solve the forward and adjoint model, the solutions depend on the
step range [24]. Another reason is that it is impossible to obtain
the analytical expression of Eq. (30), and the trapezoid formula is
adopted to give an approximation to the integral term. The shorter
range increment is selected, the more accurate approximation will be
obtained. Comparing Fig. 11(a) with Fig. 12(a), even though both
geometries have the same spatial samples and the latter has shorter
range increment, the performance in Fig. 11(a) is better than that
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Figure 11. Inversions for 50 km propagation distance with different
range increment. (a) 100m range increment. (b) 500 m range
increment.

320 330 340 350
0

10

20

30

40

50

60

70

 Modified Refractivity (M-units)

 H
e
ig

h
t 
(m

)

 

 

320 330 340 350
0

10

20

30

40

50

60

70

(a) (b)

Obs

Init

Inv

Figure 12. Inversions for 5 km propagation distance with different
range increment. (a) 10 m range increment. (b) 50 m range increment.



Progress In Electromagnetics Research B, Vol. 33, 2011 171

320 340 360
0

10

20

30

40

50

60

70

Modified Refractivity (M-units)

H
e
ig

h
t 
(m

)

 

 

320 330 340
0

10

20

30

40

50

60

70

320 340 360
0

10

20

30

40

50

60

70

Obs

Init
Inv

Figure 13. Inversions for different duct profiles.

in Fig. 12(a). This phenomenon indicates that extensively spatial
sampling could get more signal field characteristics, which is better
than the centralized sampling.

The retrievals on a couple of other duct profiles are shown in
Fig. 13. The propagation distance is 50 km, the range increment is
100m, and the maximum iteration number is 400.

5. CONCLUSION

The focus of this paper has been on estimating atmospheric refractivity
at each point over height from RFC geometry. The detailed derivation
of the adjoint model from PE is presented. Numerical simulations
are adopted to validate the feasibility of the theoretical algorithm.
The performance is evaluated as a function of: 1) the initial guess
profile (linear profiles with different M values at sea surface and
Log linear evaporation duct profile); 2) the measurement noise
(10% and 20% Gaussian noise); and 3) the spatial samples (50 km
propagation distance with 100 m and 500m range increment, and
5 km propagation distance with 10 m and 50 m range increment).
Refractivity profile estimation results are presented for evaporation
duct examples collected at East China Sea, which indicate that at
a fairish initial guess profile, and the propagation distance and range
increment are selected appropriately, the retrieved results can converge
to the observed profile with very high accuracy, and the anti-noise
ability of the algorithm is favorable.
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Through introducing the Delta function into the ajoint model
construction, we successfully developed variational adjoint approach
for atmospheric refractivity estimations using RFC geometry. Only
smooth, perfectly conducting surface and horizontally homogeneous
atmospheric conditions were discussed with simulations. Even though
promising, these results are preliminary and future work is required to
evaluate the performance of the method with real measured data, as
well as more complex environment conditions.
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