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POTENTIAL GENERATED BY ROTATING CHARGED
CYLINDERS

T.-C. Toh*
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Abstract—The potential field generated by two charged cylindrical
perfect electrical conductors sandwiching a dielectric plane of finite
thickness, and the influence of the dielectric plane on the field,
is analysed. In particular, the field profile is examined when the
cylinders are (i) rotating at some constant angular velocities, and
(ii) surrounded, respectively, by uniform dielectric tubes of finite
thickness.

1. INTRODUCTION

A toy model is developed to study the potential field generated by two,
infinitely long, charged cylindrical perfect electrical conductors (PEC)
sandwiching an infinite dielectric plane of finite thickness. This has
obvious applications in the colour laser printer industry. An immediate
application of this work is to determine the force exerted on small
charged particles between a charged cylinder and the dielectric plane;
more precisely, the dynamics of transferring charged particles from a
rotating cylinder onto a moving dielectric plane, where the dielectrics
are assumed to be imperfect. In particular, it provides a foundational
framework for studying toner transfer on a photoconductor onto a belt
in a laser printer — this work is pursued elsewhere.

The paper is organized as follows. Section 2 examines the
potential generated by charged PEC cylinders in the absence of a
tubular dielectric of finite thickness surrounding the PEC cylinders.
Charged cylinders having constant angular velocities are investigated
in Section 3, along with the presence of dielectric tubes of finite
thickness surrounding the charged cylinders. Section 4 concludes the
paper.
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2. ELECTROSTATIC TOY MODEL

In this section, the charged cylinders are assumed to be PEC
surrounded by an infinitesimally thin insulation. The cylinders and the
dielectric plane are assumed to be surrounded by air. The dielectric
plane separating the two cylinders is assumed to be a perfect dielectric
of thickness h and electric permittivity ε. The axes of the cylinders are
parallel to the z-axis. Since the cylinders and dielectric are of infinite
extent, the 3D Dirichlet problem of determining the potential reduces
to a 2D Dirichlet problem. Thus in this paper, Laplace’s equation is
solved in 2D. Set D = R × [−1

2h, 1
2h], R̃

2
+ =

{
(x, y) ∈ R2 : y > 1

2h
}

and R̃
2
− =

{
(x, y) ∈ R2 : y < −1

2h
}
. Cf. Fig. 1 below.

2.1. Proposition

Let C± =
{

(x, y) ∈ R̃
2
± : x2 + (y − δ± ∓ 1

2h)2 ≤ a2±
}

be PEC disks of
radii a± respectively, for some fixed δ− < 0 < δ+, where |δ±| > a±.
Given (R̃

2
±, ε0) and the strip (D, ε), if the potential ϕ satisfies the

following boundary condition

ϕ =
{

ϕ+ on ∂C+,
ϕ− on ∂C−,

(1)
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Figure 1. Two charged cylinders separated by a dielectric medium
D.
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then, ϕ on Ω = R2 − (C+ ∪ C−) is given by

ϕ =





− 1
2πε0

λ̃+ln
√

x2+(y−ỹ+)2− 1
2πε0

λ̃
(1)
+ ln

√
x2+(y+ỹ+ − h)2 +

− 1
2πε0

λ̃
(2)
+ ln

√
x2 + (y + ỹ+ + h)2+

− 1
2πε0

λ̃′−ln
√

x2+(y−ỹ−)2− 1
2πε0

λ̃′′−ln
√

x2+(y−ỹ−)2,onΩ+,

− 1
2πε

{
λ̃′+ ln

√
x2 + (y − ỹ+)2 + λ̃+ ln

√
x2 + (y − ỹ+)2

+λ̃
(2)
+ ln

√
x2 + (y + ỹ+ + h)2

}
+

− 1
2πε

{
λ̃′− ln

√
x2 + (y − ỹ−)2 + λ̃− ln

√
x2 + (y − ỹ−)2

+λ̃
(2)
− ln

√
x2 + (y + ỹ− − h)2

}
, onD,

− 1
2πε0

λ̃′+ ln
√

x2 + (y − ỹ+)2 − 1
2πε0

λ̃′′+ ln
√

x2 + (y − ỹ+)2+

− 1
2πε0

λ̃− ln
√

x2+(y−ỹ−)2− 1
2πε0

λ̃
(1)
− ln

√
x2+(y+ỹ−+h)2+

− 1
2πε0

λ̃
(2)
− ln

√
x2 + (y + ỹ− − h)2, onΩ−.

(2)

where Ω± = R̃
2
± − C±, y± = ±

√
δ2± − a2±, and ỹ± = y± ± 1

2h are the

y-coordinates for the equivalent charges {λ̃±, λ̃′±, λ̃′′±, λ̃
(1)
± , λ̃

(2)
± } defined

by

λ̃
(2)
+ = 2ε

ε+ε0

{
ε+ε0
ε−ε0

+ ε−ε0
ε+ε0

ln
∣∣∣ỹ++

3
2h

∣∣∣
ln

∣∣∣ỹ+− 1
2h

∣∣∣

}−1

λ̃+ ≡ α̃+λ̃+,

λ̃′+ =
(

ε+ε0
ε−ε0

α̃+ − 1
)

λ̃+ = −λ̃
(1)
+ and

λ̃′′+ = (1− α̃+)λ̃+,

λ̃
(2)
− = 2ε

ε+ε0

{
ε+ε0
ε−ε0

+ ε−ε0
ε+ε0

ln
∣∣∣ỹ−− 3

2h
∣∣∣

ln
∣∣∣ỹ−+

1
2h

∣∣∣

}−1

λ̃− ≡ α̃−λ̃−,

λ̃′− =
(

ε+ε0
ε−ε0

α̃− − 1
)

λ̃− = −λ̃
(1)
− and λ̃′′− = (1− α̃−)λ̃−,

λ̃+ =
(
ϕ− − γ̃−

γ̃+
ϕ+

)(
β̃− − γ̃−

γ̃+
β̃+

)−1
and

λ̃− = 1
γ̃+

(
ϕ+ − β̃+λ̃+

)
, with

β̃+ = − 1
2πε0

{
ln |a+|+

(
1− ε+ε0

ε−ε0
α̃+

)
ln |2y+ − a+|

+α̃+ ln |2(y+ + h)− a+|} ,
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γ̃+ = − 1
2πε0

ε+ε0
ε−ε0

α̃+ ln |y+ − y− + h− a+| and

β̃− = − 1
2πε0

ε+ε0
ε−ε0

α̃− ln |y− − y+ − h + a−| ,
γ̃− = − 1

2πε0

{
ln |a−|+

(
1− ε+ε0

ε−ε0
α̃−

)
ln |2y− + a−|

+α̃− ln |2(y− − h) + a−|} .

Proof. Set ∂D± =
{
(x, y) : y = ±1

2h
}
, and let δ± be the distance of

the center of C± above ∂D± respectively. Then, potential ϕ satisfies
Laplace’s equation ∆ϕ = 0 on Ω = R2− (C+ ∪C−), together with the
following boundary conditions: (1) and

ε0∂yϕ|
y=−1

2h− = ε∂yϕ|
y=−1

2h+ , (3)

ε∂yϕ|
y=

1
2h− = ε0∂yϕ|

y=
1
2h+ , (4)

ϕ|
y=−1

2h− = ϕ|
y=−1

2h+ , (5)

ϕ|
y=

1
2h− = ϕ|

y=
1
2h+ . (6)

Now, recall that a charged cylinder of radius a+, a distance δ+

away from the origin along the y-axis can be represented by a line
charge λ̃+ at a distance y+ =

√
δ2
+ − a2

+ away from the origin along

the y-axis [1, 2]. The image λ̃
(1)
+ of λ̃+ on ∂D+ on is considered first,

and then followed by the image λ̃
(2)
+ corresponding to the reflection of

λ̃+ on ∂D−. By the method of images, the potential ϕ+ resulting from
λ̃+ is:

ϕ+ =− 1
2πε0

λ̃+ln
√

x2+(y−ỹ+)2− 1
2πε0

λ̃
(1)
+ ln

√
x2+(y+ỹ+−h)2 +

− 1
2πε0

λ̃
(2)
+ ln

√
x2 + (y + ỹ+ + h)2 on Ω+,

ϕ+ =− 1
2πε λ̃

′
+ ln

√
x2 + (y − ỹ+)2 − 1

2πε0
λ̃+ ln

√
x2 + (y − ỹ+)2 +

− 1
2πε0

λ̃
(2)
+ ln

√
x2 + (y + ỹ+ + h)2 on D,

ϕ+ =− 1
2πε0

λ̃′+ln
√

x2+(y−ỹ+)2− 1
2πε0

λ̃′′+ln
√

x2+(y−ỹ+)2 on R̃
2
−,

where λ̃′+, λ̃′′+, λ̃
(1)
+ , λ̃

(2)
+ are determined as a function of λ̃+ via the

boundary conditions on ∂D±, and ỹ+ = y+ + 1
2h is the y-coordinate

of the equivalent charge λ̃+. The corresponding y-coordinates of the
image charges λ̃

(1)
+ (λ̃(2)

+ ) relative to ∂D+(∂D−) is y+ − h(y+ + h),
respectively.
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Applying condition (3) yields λ̃
(2)
+ = λ̃+ − λ̃′′+ whilst

condition (4) yields λ̃
(1)
+ = −λ̃′+. The boundary condition (5)

gives λ̃
(2)
+ = −λ̃+ + ε

ε0
λ̃′′+ +

(
ε
ε0
− 1

)
ln|y++h|

ln|y+| λ̃′+, and λ̃′+ =

−λ̃+ + ε+ε0
ε−ε0

λ̃
(2)
+ . Furthermore, (6) gives λ̃′+ = ε−ε0

ε0
λ̃+ + ε

ε0
λ̃

(1)
+ +

ε−ε0
ε0

ln |ỹ++
3
2h|

ln |ỹ+− 1
2h|

λ̃
(2)
+ . Whence, substituting λ̃

(1)
+ = λ̃+ − λ̃′+ yields

λ̃′+ = ε−ε0
ε+ε0

λ̃+ + ε−ε0
ε+ε0

ln |ỹ++
3
2h|

ln |ỹ+− 1
2h|

λ̃
(2)
+ . In particular, λ̃

(2)
+ =

2ε
ε+ε0

{
ε+ε0
ε−ε0

+ ε−ε0
ε+ε0

ln |ỹ++
3
2h|

ln |ỹ+− 1
2h|

}−1

λ̃+ ≡ α̃+λ̃+, λ̃′+ = ( ε+ε0
ε−ε0

α̃+ − 1)λ̃+ =

−λ̃
(1)
+ , λ̃′′+ = (1− α̃+)λ̃+.
To complete the proof, ϕ is solved for λ̃− in the absence of λ̃+.

Clearly, the proof follows that of λ̃+ mutatis mutandis. In particular,
with a little bit of thought, it can be seen from the symmetry that
ϕ+ → ϕ− under the following transformation:

λ+ → λ−, y+ → y− and h → −h.

The complete solution is obtained by superposing the respective
potentials from the line charges:

ϕ =





ϕ+|Ω+ + ϕ−|Ω+ onΩ+,
ϕ+|D + ϕ−|D onD,
ϕ+|Ω− + ϕ−|Ω− onΩ−,

where f |X denotes the restriction of a function f to the space X.
Lastly, the boundary condition (1) is required to express λ̃±

as functions of ϕ±. Indeed, it will suffice to consider the point
(0, y+ + 1

2h − a+) ∈ C+ as ϕ± are constants on ∂C±. From (1),
ϕ(0, y+ + 1

2h− a+) = ϕ+. Hence, solving it gives ϕ+ = β̃+λ̃+ + γ̃+λ̃−,
where

β̃+ = − 1
2πε0

{
ln|a+|+

(
1− ε+ε0

ε−ε0
α̃+

)
ln|2y+−a+|+α̃+ ln |2(y++h)−a+|

}
,

γ̃+ = − 1
2πε0

ε+ε0
ε−ε0

α̃+ ln |y+ − y− + h− a+| .
Likewise, at the point (0, y−− 1

2h+a−) ∈ C−, ϕ(0, y−− 1
2h+a−) =

ϕ−. Hence, solving for the expression gives ϕ− = β̃−λ̃+ + γ̃−λ̃−, where

β̃− = − 1
2πε0

ε+ε0
ε−ε0

α̃− ln |y− − y+ − h + a−| ,
γ̃− = − 1

2πε0

{
ln|a−|+

(
1− ε+ε0

ε−ε0
α̃−

)
ln|2y−+a−|+α̃− ln|2(y−−h)+a−|

}
.
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Thus, solving for the pair of equations yield λ̃+=(ϕ−−γ̃−
γ̃+

ϕ+)(β̃−−γ̃−
γ̃+

β̃+)−1

and λ̃− = 1
γ̃+

(ϕ+−β̃+λ̃+), as desired.
A plot of the above potential for a+ = 30 mm, a− = 15 mm,

h = 0.5mm, δ± = ±500µm, ϕ+ = 500 V and ϕ− = −1000 V, where
ε = 2ε0, is presented in Fig. 2 below.

2.2. Corollary

Given conditions described in Proposition 2.1, the potential difference
across D at y = ±1

2h is given by

δϕ =− 1
2πε

{
ε+ε0
ε−ε0

ln
√

x2 + y2
+ + ln

√
x2 + (y+ + 2h)2 − 2ε

ε−ε0

×ln
√

x2 + (y+ + h)2
}

α̃+λ̃+ + 1
2πε

{
2ε

ε−ε0
ln

√
x2 + (y− − h)2

+− ε+ε0
ε−ε0

ln
√

x2 + y2
+ − ln

√
x2 + (y+ + 2h)2

}
α̃−λ̃−,

where the coefficients were defined in Proposition 2.1. In particular,
lim

x→∞ δϕ → 0.
Corollary 2.2 is evident, and the last statement follows

immediately from ε+ε0
ε−ε0

+ 1 = 2ε
ε−ε0

.

distance (cm)distance (cm)
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)

Electrostatic potential of 2 charged cylinders

Figure 2. Potential resulting from two infinite charged cylinders.
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2.3. Corollary

Suppose D is moving at a constant velocity v = vex. Then, the
potential ϕ induces a displacement current density through D given
by j(x) = ε

hv∂xδϕ(x). Explicitly,

j(x) = − 1
2π

x
hvλ̃+α̃+

{
ε+ε0
ε−ε0

1
x2+y2

+
+ 1

x2+(y++2h)2
− 2ε

ε−ε0

1
x2+(y++h)2

}
+

− 1
2π

x
hvλ̃−α̃−

{
2ε

ε−ε0

1
x2+(y−+h)2

− ε+ε0
ε−ε0

1
x2+y2

−
− 1

x2+(y−+2h)2

}
.

Proof. From Q = CV , where Q,C, V are charge, capacitance and
voltage respectively, let Q̃ = C̃V denote the charge density (charge
per unit area), where C̃ is the capacitance per unit area on D. Then,

j = d
dt

Q̃ = −C̃
∫ 1

2h

−1
2h

∂tE · dl is the current density across D. Now,

observe that C̃ = ε
h and ∂tE = ∂xEdx

dt
= −v∂x∇ϕ. Hence,

−
∫ 1

2h

−1
2h

∂tE·dl=v

∫ 1
2h

−1
2h

∂x∂ȳϕ̂(x, ȳ)dȳ=v∂x(ϕ(x, 1
2h)−ϕ(x,−1

2h))=v∂xδϕ,

and the result thus follows from Corollary 2.2.

3. EXTENSION OF THE MODEL

There are two parts to this section: the incorporation of (i) constant
rotation about the axes of the cylinders, and (ii) surrounding each
cylinder with a uniform tubular dielectric of finite thickness. Suppose
that C± has an angular velocity of ω±. Let λ± denote the surface
charge density of C±. Then, the axial rotation generates a surface
current density given by

J± = λ± v = ρ±ω±a±

( − sin θ
cos θ

)
,

Consequently, the vector potential [3, p. 238] or [4] is

A± =





1
2µ0λ±ω±a±r

( − sin θ
cos θ

)
for r ≤ a±,

1
2µ0λ±ω±

a3
±
r

( − sin θ
cos θ

)
for r > a±,

(7)

at any point (r, θ). From B± = ∇ × A±, in cylindrical coordinates,
B± = ez

1
r∂r(rA±,θ) gives

B± =
{

µ0λ±ω±a± onx2 + (y − δ± − 1
2h)2 ≤ a2±,

0 otherwise. (8)
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Thus, as expected, there is an absence of magnetic field in Ω
since the rotating, charged, infinite cylinder is equivalent to an infinite
solenoid carrying a constant current. Hence, the electric field remains
the same as the non-rotating case: ∂tA = 0. That is, ∂tB± = 0 ⇒
∇×E = 0 ⇒ E = −∇ϕ and the following trivial result is established.

3.1. Proposition

Given the conditions stated in Proposition 2.1, suppose C± rotate
about their respective centers at constant angular velocities ω±. Then,
the potential ϕ on Ω is independent of ω± and is defined by (2). In
particular, the electric field remains the same also.

Note that if the surface charge density is not uniform, that is, if
ρ+ = ρ+(θ), as will be the case if C± were surrounded by a uniform
tubular dielectric, then the above results do not hold. So, suppose that
∂C± are surrounded by a tubular layer of dielectric of thickness d±
with electric permittivity ε± respectively, and set â± = a±+d±. Next,
define Ĉ± =

{
(x, y) : x2 + (y − δ̂± − 1

2h)2 ≤ â2±
}

, where δ̂− < 0 < δ̂+

and |δ̂±| is the distance of the center of Ĉ± to the plane ∂D±. The
resultant potential field as a result of the dielectric layer is given below.

3.2. Lemma

Under the conditions given in Proposition 2.1 wherein C± is
surrounded by some dielectric medium (Ĉ± − C±, ε±), the solution
ϕ̂ on Ĉ+ ∪ Ĉ− is given by

ϕ̂ =





− 1
2πε+

λ̂+ln
√

x2+(y−ŷ+)2− 1
2πε+

λ̂
(1)
+ ln

√
x2+(y+ŷ+−h)2+

− 1
2πε+

λ̂
(2)
+ ln

√
x2 + (y + ŷ+ + h)2+

− 1
2πε−λ̂

′−ln
√

x2+(y−ŷ−)2− 1
2πε− λ̂′′−ln

√
x2+(y−ŷ−)2 on Ĉ+,

− 1
2πε+

λ̂′+ln
√

x2 + (y − ŷ+)2− 1
2πε+

λ̂′′+ln
√

x2+(y−ŷ+)2+

− 1
2πε− λ̂−ln

√
x2+(y−ŷ−)2− 1

2πε− λ̂
(1)
− ln

√
x2+(y+ŷ−+h)2+

− 1
2πε− λ̂

(2)
− ln

√
x2 + (y + ŷ− − h)2 on Ĉ−,

(9)

where ŷ± = w± ± 1
2h, w± = ±

√
δ̂2± − â2±, and â± is the radius of

Ĉ±. Finally, λ̂
(2)
± = α̂±λ̂±, λ̂′± =

(
ε+ε±
ε−ε± α̂± − 1

)
λ̂± = −λ̂

(1)
± and
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λ̂′′± = (1− α̂±)λ̂±, where α̂+ = 2ε
ε+ε+

(
ε+ε+

ε−ε+
+ ε−ε+

ε+ε+

ln
∣∣∣ŷ++

3
2h

∣∣∣
ln

∣∣∣ŷ+− 1
2h

∣∣∣

)−1

and

α̂− = 2ε
ε+ε−

(
ε+ε−
ε−ε− + ε−ε−

ε+ε−

ln
∣∣∣ŷ−− 3

2h
∣∣∣

ln
∣∣∣ŷ−+

1
2h

∣∣∣

)−1

.

Proof. Without loss of generality, it may be assumed initially that
the spaces Ω± have electric permittivities ε± respectively. Then, the
solution ϕ of Proposition 2.1 on Ĉ± becomes ϕ̂ with the following
replacement: α± → α̂± = α±|ε0=ε± , δ± → δ̂± , a± → â± and h → −h.

The next result involves solving the Laplace equation in an
inhomogeneous dielectric medium. The proof relies implicitly on the
fact that the axes of the two cylinders are symmetric about the x-
axis. The ploy is to conformally transform the difficult problem
in the original coordinate system into a simpler problem in a new
coordinate system whereby the two circles in the original system form
two concentric circles in the new coordinate system such that the x-
axis is transformed into a concentric circle lying in the annulus. The
Dirichlet problem then becomes a simple matter to solve when ε+ 6= ε−.

The proof of Lemma 3.3 is an extension of various works found
in the literature wherein the potential are induced by either a point
charge outside of two dielectric spheres [5] or some uniform electric
field at infinity outside of two dielectric spheres via bispherical
coordinates [6, 7]. Thus whilst solutions exist for solid spheres, it is
difficult to find explicit solutions for cylinders.

3.3. Lemma

Let Ω̂ = Ω̂+ ∪ Ω̂−, where the pair of spaces (Ω̂±, ε±) are
defined by Ω̂+ =

{
(x, y) ∈ R2 − Ĉ+ : y > 1

2h
}
− Ĉ+ and Ω̂− =

{
(x, y) ∈ R2 − Ĉ− : y ≤ 1

2h
}
−Ĉ−. Suppose further that

√
δ̂2
+ − â2

+ =√
δ̂2− − â2− is satisfied, where δ̂± are the respective distances from the

centres of Ĉ± to the points (0,±1
2h). Then, the solution of Laplace’s

equation ∆ϕ = 0 on Ω̂ satisfying the following boundary conditions

ϕ =
{

f(θ) on ∂Ĉ+,

g(θ) on ∂Ĉ−,
(10)

ε+∂yϕ|
y=

1
2h+ = ε−∂yϕ|

y=
1
2h− , (11)
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lim
y→ 1

2h+
ϕ = lim

y→ 1
2h−

ϕ, (12)

ϕ → 0 as |r| → ∞, (13)
is given by

ϕ =





− 1
2πε+

{
a0 + b0ln r′ +

∑
n>0 (anr′n+bnr′−n) cos nθ′

+(cnr′n + dnr′−n) sin nθ′} on Ω̂+,
− 1

2πε−

{
a′0+b′0ln r′+

∑
n>0 (a′nr′n+b′nr′−n) cos nθ′

+(c′nr′n+d′nr′−n) sinnθ′} on Ω̂−,

(14)

where

(r′, θ′) =

(√(
2r2

0
r

)2
+r2

0− 4r3
0

r cosθ, arccos (2r2
0/r) cos θ−r0√

(2r2
0/r)2+r2

0−(4r3
0/r) cos θ

)
,

b0 =
{
ε+

∫ 2π

0
f(θ)dθ−ε−

∫ 2π

0
g(θ)dθ

}{(
2ε+

ε− −1
)
lnr′++ln r′−

}−1
,

a0 = −ε+

∫ 2π

0
f(θ)dθ − b0 ln r′+,

a′n = 1
2

(
ε−
ε+

+ 1
)

an + 1
2

(
ε−
ε+
− 1

)
bnr′−2n

+ and

b′n = 1
2

(
ε−
ε+
− 1

)
anr′2n

+ + 1
2

(
ε−
ε+

+ 1
)

bn,

c′n = 1
2

(
ε−
ε+

+ 1
)

cn + 1
2

(
ε−
ε+
− 1

)
dnr′−2n

+ and

d′n = 1
2

(
ε−
ε+
− 1

)
cnr′2n

+ + 1
2

(
ε−
ε+

+ 1
)

dn,

an =
{
G1−

(
βr′n−+αr′−n

−
)

F1r
′n
+

}{
α

(
r′n−−r′−n

− r′2n
+

)

+β
(
r′−n
− − r′n−r′2n

+

)}−1
,

bn = F1r
′n
+ − anr′2n

+ ,

cn =
{
G2−

(
βr′n−+αr′−n

−
)

F2r
′n
+

}{
α

(
r′n−−r′−n

− r′2n
+

)
+β(r′−n

−

−r′n−r′2n
+ )

}−1
,

dn = F2r
′n
+ − cnr′2n

+ ,

F1 = −2ε+

∫ 2π

0
f(θ) cosnθdθ and F2 = −2ε+

∫ 2π

0
f(θ) sin nθdθ,

G1 = −2ε−
∫ 2π

0
g(θ) cosnθdθ and G2 = −2ε−

∫ 2π

0
g(θ) sin nθdθ.
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Figure 3. Transformation under the inversion of a circle in polar
coordinates.

Proof. Using the inversion of a circle transformation [5, Section 2],
ζ : (r, θ) 7→ ( c

r , θ), the Dirichlet problem can be converted to a simpler
one; cf. Fig. 3 below, where r′± is the new radii of Ĉ± in the new
coordinate system under the ζ-transformation, and the x-axis X is the
translated axis defined by X = {(x, 1

2h) : −∞ < x < ∞}.
The constant c = 2r2

0, where r0 ≡
√

δ̂2± − â2± is the radius of
the circle of inversion. This defines the radius of the x-axis in the
new coordinate system. Now, by choosing O as the origin for the
center of inversion where the circle of radius r0 intersects the y-
axis,† the two circles are transformed into concentric circles in the
new frame — cf. Fig. 3, where O is the origin of (r, θ) whilst O∗ is
the origin of the ζ-space (r∗, θ), and the center O′ of the concentric
circles to O∗ is of length r0, with r∗ = c

r . Here, Ĉ∗± = ζ(Ĉ±) and in

particular, Ω̂∗± = ζ(Ω̂±). Under the transformation, r∗+ = r0
δ̂++â+−r0

δ̂++â++r0

and r∗− = r0
δ̂−+â−+r0

δ̂−+â−−r0
. Finally, translate the origin O∗ to O′ under

τ : (r∗, θ) 7→ (r′, θ′) defined by [5, p. 1162] r′ =
√

r∗2 + r2
0 − 2r0r∗ cos θ

and cos θ′ = r∗ cos θ−r0√
r∗2+r2

0−2r0r∗ cos θ
.

Note that the translation τ preserves distance; hence, r′± = r∗± is
the radius of Ĉ ′±(= Ĉ∗±) as can be easily verified. In particular, it is a
conformal transformation as angles are also preserved.

† The choice of the origin O determines the outer circle of the annulus in the new coordinate
system and it depends on which circle the origin O lies in. In the above proof, the origin
lies in the lower circle and hence, the lower circle forms the outer boundary of the annulus:
see Fig. 3 below.
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Under the conformal transformation τ ◦ζ, the equivalent Dirichlet
problem is:

∆′ψ′ = 0 on Ω̂′ ≡ τ ◦ ζ(Ω̂) = Ω̂′+ ∪ Ω̂′−
subject to

ψ′ =
{

f(θ) for r′ = r′+,
g(θ) for r′ = r′−,

ε+∂r′ψ
′|r→(R′)− = ε−∂r′ψ

′|r′→(R′)+ and lim
r→R′+

ψ′ = lim
r→R′−

ψ′,

where ∆′ = ∂2
r′ +

1
r′∂r′ +

(
1
r′

)2
∂2

θ is the Laplacian with respect to the
new coordinate system defined by τ ◦ ζ.

The solution for the annulus is well-known; cf. [8, p. 273] or [9,
p. 203]:

ψ′ =





− 1
2πε+

{
a0 + b0 ln r′ +

∑
n>0 (anr′n + bnr′−n) cos nθ

+
(
cnr′n + dnr′−n

)
sinnθ

}
on Ω̂′+,

− 1
2πε−

{
a′0 + b′0 ln r′ +

∑
n>0 (a′nr′n + b′nr′−n) cos nθ

+
(
c′nr′n + d′nr′−n

)
sinnθ

}
on Ω̂′−,

where, for n = 0,

H1 ≡ −ε+

∫ 2π

0
f(θ)dθ = a0 + b0 ln r′+ and

H2 ≡ −ε−
∫ 2π

0
g(θ)dθ = a′0 + b′0 ln r′−,

and for n > 0,

F1 ≡ −2ε+

∫ 2π

0
f(θ) cos nθdθ = an(r′+)n + bn(r′+)−n,

F2 ≡ −2ε+

∫ 2π

0
f(θ) sin nθdθ = cn(r′+)n + dn(r′+)−n,

G1 ≡ −2ε−
∫ 2π

0
g(θ) cos nθdθ = a′n(r′−)n + b′n(r′−)−n,

G2 ≡ −2ε−
∫ 2π

0
g(θ) sinnθdθ = c′n(r′−)n + d′n(r′−)−n.

The condition ε+∂r′ψ|r′→(R′)− = ε−∂r′ψ|r′→(R′)+ yields b0 = b′0,

anr′n−1
+ − bnr′−(n+1)

+ = a′nr′n−1
+ − b′nr′−(n+1)

+ , (15a)

cnr′n−1
+ − dnr′−(n+1)

+ = c′nr′n−1
+ − d′nr′−(n+1)

+ , (15b)
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and the continuity requirement yields a0 + b0 ln r′+ = ε+

ε− (a′0 +
b′0 ln r′+),

a′nr′n+ + b′nr′−n
+ = ε+

ε−

(
a′nr′n+ + b′nr′−n

+

)
, (16a)

c′nr′n+ + d′nr′−n
+ = ε+

ε−

(
c′nr′n+ + d′nr′−n

+

)
. (16b)

Whence, substituting a′0 = ε−
ε+

a0+
(

ε−
ε+
− 1

)
b0 ln r′+ into H2, together

with H1, give

b0 =
{

ε+

∫ 2π

0
f(θ)dθ−ε−

∫ 2π

0
g(θ)dθ

}{(
2ε+

ε− − 1
)

ln r′++ln r′−
}−1

,

a0 = −ε+

∫ 2π

0
f(θ)dθ − b0 ln r′+;

whilst the two pairs (15a), (16a) and (15b), (16b) give:

a′n = 1
2

(
ε−
ε+

+ 1
)

an + 1
2

(
ε−
ε+
− 1

)
bnr′−2n

+ and

b′n = 1
2

(
ε−
ε+
− 1

)
anr′2n

+ + 1
2

(
ε−
ε+

+ 1
)

bn,

c′n = 1
2

(
ε−
ε+

+ 1
)

cn + 1
2

(
ε−
ε+
− 1

)
dnr′−2n

+ and

d′n = 1
2

(
ε−
ε+
− 1

)
cnr′2n

+ + 1
2

(
ε−
ε+

+ 1
)

dn.

Finally, substituting a′n, . . . , d′n into the equations for G1, G2 and using
F1, F2 yield

G1 =
(
αr′n−+βr′−n

− −
(
βr′n−+αr′−n

−
)

r′2n
+

)
an+

(
βr′n−+αr′−n

−
)

r′n+F1,

G2 =
(
αr′n−+βr′−n

− −
(
βr′n−+αr′−n

−
)

r′2n
+

)
cn+

(
βr′n−+αr′−n

−
)

r′n+F2,

where α = 1
2

(
ε−
ε+

+ 1
)

and β = 1
2

(
ε−
ε+
− 1

)
r′−2n

+ . Hence,

an=
{
G1−

(
βr′n−+αr′−n

−
)
F1r

′n
+

}{
α
(
r′n−−r′−n

− r′2n
+

)
+β

(
r′−n
− −r′n−r′2n

+

)}−1
,

bn= F1r
′n
+−anr′2n

+ ,

cn=
{
G2−

(
βr′n−+αr′−n

−
)
F2r

′n
+

}{
α
(
r′n−−r′−n

− r′2n
+

)
+β

(
r′−n
− −r′n−r′2n

+

)}−1
,

dn= F2r
′n
+−cnr′2n

+ .

To complete the proof, it remains to translate the transformed
solution back to the original problem. That is, given (r′, θ′), find (r∗, θ);
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then, the solution on Ω is given by the composition ψ = ψ′ ◦ τ ◦ ζ.
Explicitly,

τ ◦ ζ : (r, θ) 7→ (r′, θ′) =(√(
2r2

0
r

)2
+ r2

0 − 4r3
0

r cos θ, arccos (2r2
0/r) cos θ−r0√

(2r2
0/r)2

+r2
0−(4r3

0/r) cos θ

)
.

So, define ψ(r, θ) = ψ′(r′(r, θ), θ′(r, θ)) under the transformation τ ◦ ζ,
and the proof is complete.

3.4. Lemma

Consider the infinite strip D = {(x, y) ∈ R2 : −1
2h ≤ y ≤ 1

2h}, and
suppose that ∆ψ = 0 on D satisfies the following boundary conditions:

ψ =
{

h+(x) on ∂D+ = D ∩ {y = 1
2h},

h−(x) on ∂D− = D ∩ {y = −1
2h}, (17)

where lim
x→±∞h±(x) = 0 and h± ∈ C(∂D±). Then, ∀δ > 0 , ∃` > 0 and

ψ` on D satisfying ∆ψ` = 0 on D` = [−1
2`, 1

2`] × [−1
2h, 1

2h] such that
|ψ − ψ`| < δ on D.

Proof. Fix some ` >> h, and impose the periodic boundary
condition ψ`(−1

2`, y) = 0 = ψ(1
2`, y) for any y ∈ [−1

2h, 1
2h]. Then,

the general solution on D` is given by

ψ` =
∑

n>0
(an cosαx + bn sinαx)(cn coshαy + dn sinhαy),

where α is some constant to be determined. Since ψ(1
2`, y) = 0, it will

suffice to set an = 0 and 1
2`α = nπ ∀n = 1, 2, . . .. So, absorbing the

constants bn into (cn, dn), define

ψ` =
{ ∑

n>0 sin 2nπ
` x(cn cosh 2nπ

` y + dn sinh 2nπ
` y) onD`,

0 onD −D`.

Then, H±=cncoshnπ
` h±dnsinhnπ

` h, where H±= 2
`

∫ `/2
−`/2h±(x)sin2nπ

` xdx

and hence, cn = H−+H+

2 cosh(nπh/`) and dn = H+−H−
2 sinh(nπh/`) for all n = 1, 2, . . ..

To complete the proof, for any δ > 0, lim
x→±∞h±(x) = 0 implies ∃x0 > 0

such that x > 1
2x0 ⇒ max |h±(x)| < δ and x < −1

2x0 ⇒ max |h±(x)| <
δ. Choose ` = 2x0. Then, by the maximum moduli principle, |ψ| < δ
whenever (x, y) ∈ D −D` and |ψ − ψ`| < δ on D` by construction.

As a side remark, observe that on setting ωn = 2π n
` and

δω = ωn+1 − ωn = 2π
` ∀n, and noting that the pair (cn, dn) can

be written as (cn, dn) = 2π
` (c̃n, d̃n) from the above proof, then, at
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an informal level, it can be seen intuitively that lim
`→∞

ψ` → ψ̃ =
∫∞
0 sinωx(c̃n coshωy + d̃n sinhωy)dω on D. Furthermore, as ∆c̃ = 0

and ∆d̃ = 0, it is clear that ∆ψ̃ = 0 on D. However, it is not at all
obvious whether ψ̃ satisfies the Dirichlet boundary condition on ∂D.

3.5. Theorem

Let Ĉ± be disks in R̃
2
± of radii â± respectively such that Ĉ± ={

(x, y) ∈ R̃
2
± : x2 + (y − ŷ±)2 ≤ â2±

}
, for some fixed δ̂− < 0 < δ̂+,

where
∣∣∣δ̂±

∣∣∣ > â±, ŷ± = δ̂± ± 1
2h, R̃

2
+ =

{
(x, y) ∈ R2 : y > 1

2h
}

and

R̃
2
− =

{
(x, y) ∈ R2 : y < −1

2h
}
. Moreover, set Ω̂± = R̃

2
+ − Ĉ±. Given

the pair of spaces (R̃
2
±, ε0) and (D, ε), if the potential ϕ satisfies

∆ϕ = 0 on Ω̂ = Ω̂+ ∪ D ∪ Ω̂− together with the following boundary
conditions:

ϕ =
{

f(θ) on ∂Ĉ+,

g(θ) on ∂Ĉ−,
(18)

ε0∂yϕ|
y=

1
2h+ = ε∂yϕ|

y=
1
2h− , (19)

ε∂yϕ|
y=−1

2h+ = ε0∂yϕ|
y=−1

2h− , (20)

ϕ is continuous on ∂D±, (21)
ϕ → 0 as |r| → ∞, (22)

where ∂D± = {(x, y) : y = ±1
2h}, then the solution in Ω̂ is given by

ϕ =





− 1
2πε0

{
a0 + b0 ln r′ +

∑
n>0 (anr′n + bnr′−n) cos nθ′

+(cnr′n + dnr′−n) sin nθ′
}

on Ω̂+,

− 1
2πε0

{
a′0 + b′0 ln r′ +

∑
n>0 (a′nr′n + b′nr′−n) cos nθ′

+(c′nr′n + d′nr′−n) sin nθ′
}

on Ω̂−,

where

(r′, θ′) =

(√(
2r2

0
r

)2
+ r2

0 − 4r3
0

r cos θ, arccos (2r2
0/r) cos θ−r0√

(2r2
0/r)2+r2

0−(4r3
0/r) cos θ

)
,

and all the coefficients were defined in Lemma 3.3.
In particular, the solution ϕ|D may be approximated by ϕ` such

that ∀δ > 0, ∃` > 0 satisfying |ϕ|D − ϕ`| < δ, where

ψ` =
{ ∑

n>0 sin 2nπ
` x

(
cn cosh 2nπ

` y + dn sinh 2nπ
` y

)
onD`,

0 on D −D`,
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and D` = [−1
2`, 1

2`]× [−1
2h, 1

2h].
Proof. Apply Lemma 3.4 to the case wherein ε+ = ε0 and ε− = ε.

Then, the solution ϕ1 obtained applies to the region Ω̂+. Likewise,
on setting ε+ = ε and ε− = ε0, the solution ϕ2 is obtained for Ω̂−.
Finally, the last assertion follows immediately from Lemma 3.4, where
h± = ϕ|∂D±.

3.6. Corollary

Given the conditions of Theorem 3.5, the potential difference across D
is given by δϕ = h+ − h−. Explicitly,

δϕ =− 1
2πε

{
a0−a′0+b0ln

r′+
r′− +

∑
n>0

((
anr′n++ bnr′−n

+

)
−

(
a′nr′n−+b′nr′−n

−
))

cosnθ′+
∑

n>0

((
cnr′n+ + dnr′−n

+

)
−

(
c′nr′n− + d′nr′−n

−
))

sinnθ′
}

.

Repeating the proof of Corollary 2.4 mutatis mutandis, the result
j = ε

hv∂xδϕ below follows from Corollary 3.6 and by noting that

d
dx

θ′ = − 1
4r0

(
1−

(
1

4r0

2r0x−x2− 1
4h2

r2
0−r0x+x2+

1
4h2

)2
)−1

2

× 1

r2
0+x2+

1
4h2

(
2(r0 − x) +

(2x−r0)
(
x2+

1
4h2 − 2r0x

)

r2
0−r0x+x2+

1
4h2

)
.

3.7. Corollary

Suppose D is moving at a constant velocity v = vex. Then, the
potential ϕ induces a displacement current density through D given
by j(x) = ε

hv∂xδϕ(x). Explicitly,

j(x) =− v

2πh

{
a0 − a′0 + b0 ln

r′+
r−

+
∑

n>0

n

4r0

((
anr′n+ + bnr′−n

+

)

−
(
a′nr′n−+b′nr′−n

−
))
×

(
1−

(
1

4r0

2r0x−x2− 1
4h2

r2
0−r0x+x2+y2

)2
)−1

2
1

r2
0+x2+

1
4h2

×
(
2(r0−x)+

(2x−r0)
(
x2+

1
4h2−2r0x

)

r2
0−r0x+x2+

1
4h2

)
sin

(
narccos 1

4r0

2r0x−x2− 1
4h2

r2
0−r0x+x2+

1
4h2

)

−
∑

n>0

n
4r0

((cnr′n+ + cnr′−n
+ )− (c′nr′n− + d′nr′−n

− ))
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×cos
(
narccos 1

4r0

2r0x−x2− 1
4h2

r2
0−r0x+x2+

1
4h2

)(
1−

(
1

4r0

2r0x−x2− 1
4h2

r2
0−r0x+x2+

1
4h2

)2
)−1

2

× 1

r2
0+x2+

1
4h2

(
2(r0 − x)+

(2x−r0)(x2+
1
4h2 − 2r0x)

r2
0−r0x+x2+

1
4h2

)}
.

4. CONCLUSION

It is clear from Section 2 that the potential field and hence the electric
field are symmetric about the y-axis, wherein the cylinders were not
rotating. In particular, when the dielectric plane is moving at a
constant velocity, the symmetry of the field profile remains unchanged.

It is equally clear from Section 3 that when the cylinders are PEC,
introducing a constant rotation does not impact the symmetry of the
potential and electric fields in the domain of definition. However, a
moving dielectric plane will experience a displacement current as the
fields are non-uniform along the x-axis; that is, the fields tend to zero
in the limit as x → ±∞. Hence, along the moving dielectric plane,
each differential element sees a changing electric field.

Finally, it is evident that the dielectric constant of the plane
and that of the tubular medium surrounding the cylinders impact the
field profile. From an application perspective, changing the dielectric
constants will change the dynamics of charged particles on the cylinder
moving onto the plane via convection. This has strong implications in
certain research and development industries, one of which is the printer
industry mentioned in the Introduction. For instance, it furnishes a
theoretical basis for modelling toner transfer in laser printers.
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