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Abstract—A new radar cross section (RCS) prediction technique
based on beam tracing is presented. The incident plane wave is
modeled as a set of trigonal ray tubes, and each ray tube is traced and
recursively subdivided as its reflection aspect. The calculation time
of the proposed method is independent of target size. The proposed
method provides accurate solutions and is efficient for RCS analysis of
electrically large targets.

1. INTRODUCTION

The shooting and bouncing rays (SBR) method is widely used to
calculate the radar cross section (RCS) of targets, and it provides
accurate results for targets that have multiple reflections. However,
SBR requires a huge calculation time for electrically large targets
because the results converge only if the density of the incident ray tubes
is greater than ten rays per wavelength [1] and because its calculation
time is proportional to the number of incident ray tubes.

The calculation time of SBR depends on two factors: the number
of incident ray tubes and the number of intersection tests per ray tube.
To decrease the number of incident ray tubes, the multiresolution grid
algorithm in SBR (MSBR) was proposed [2, 3]. MSBR represents
the incident plane wave by a set of ray tubes that have a relatively
larger cross section than in the conventional SBR. Although MSBR
has a constraint that the incident ray tubes should be smaller than the
smallest facet of the target to guarantee accuracy, MSBR provides an
efficient RCS prediction because the smallest facet is commonly much
larger than the grid of the conventional SBR.
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To decrease the number of intersection tests per ray tube, space
division algorithms and angular division algorithms have been applied
to the ray tracing procedure of SBR. In the conventional SBR, the
intersection tests should be performed with all facets of the target
for each ray tube, which causes a huge computation cost. However,
the number of intersection tests and the calculation time of SBR can
be reduced by using octree structures, a space division algorithm, or
the distribution information table derived using an angular division
algorithm [4–6].

In this paper, we propose a new RCS prediction method based
on beam tracing [7]. The proposed beam tracing has a significantly
shorter computation time, especially for electrically large targets,
than the conventional SBR. This benefit comes from the fact that
the proposed method can decrease the number of incident ray tubes
significantly, rather than the number of intersection tests per ray
tube. The conventional SBR represents the incident plane wave by
a dense rectangular grid of ray tubes, each of which is traced as it
reflects from the target without subdivision. The proposed method,
however, models the incident plane wave as a set of trigonal ray tubes
whose cross sections are the directly shown partitions of the facets,
and each ray tube is traced and recursively subdivided as it reflects
from the target. Targets analyzed in this paper are modeled as a set of
planar triangles because the proposed method has a similar motivation
to MSBR in that adjacent incident ray tubes which have the same
reflection path can be merged without loss of accuracy in RCS analysis.

Unlike the conventional SBR and MSBR, the proposed method
is based on beam tracing and results in a computation cost that is
independent of the electrical size of the target. The calculation time
of the proposed method only depends on the number of facets that
construct the target, so the proposed method can be very efficient for
electrically large targets such as naval vessels at X-band frequencies.

2. METHOD

The proposed method consists of two steps: beam generation and beam
tracing. To increase efficiency, incident ray tubes are only generated
for the directly-visible components of the target, and to simplify
subsequent procedures all ray tubes have trigonal cross sections.
For example, consider a simple target modeled using a collection of
triangular facets (Figure 1). Conventional SBR represents the incident
plane wave as 11× 12 = 132 ray tubes, but the proposed method only
requires six ray tubes (Figure 2).

Beam generation procedure is as follows:
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Figure 1. Two quadrangles that partially overlap (ends of rectangular
prism).

(a) (b)

Figure 2. Incident ray tube grid: (a) conventional SBR and (b)
proposed method.

1) Transform the coordinate system of the target into the Initially
Incident Beam (IIB) coordinate system, where the direction of the
incident wave is defined as the −ẑ direction.

2) Calculate an orthogonal projection onto the incident plane for
every facet that the incident wave hits. In the IIB coordinate
system, the orthogonal projection is obtained by simply removing
the z-coordinates of vertices.

3) Perform 2D polygon clipping [7, 8] according to the depth order
of facets: a polygon projected from a facet farther from the beam
source is clipped by nearer polygons.
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4) Divide the remaining polygons into the smallest possible number
of triangles [9]. This simplifies subsequent procedures by making
all beams trigonal.

Each triangle is an initial grid which corresponds roughly to the
grid of the conventional SBR method, and the initial trigonal beam
transmitted from the grid hits only one facet.

The initial beams reflect off the surfaces that they hit. When the
reflected beam hits a portion of the target’s surface that consists of
several facets, the beam should be subdivided because it is reflected
in numerous directions depending on the orientations of the facets.
The beam tracing step performs these subdivisions and subsequent
tracing processes recursively for all initial beams sequentially. The
beam tracing procedure for each initial beam can be described as
follows:

1) Calculate the direction of the reflected beam.
2) Calculate the orthogonal projections of facets that face the

reflected beam after transforming the coordinate system into the
Reflected Beam coordinate system to redefine the direction of the
reflected beam to be −ẑ.

3) Apply the hidden surface algorithm [8] to projected polygons
according to the depth order of facets: a polygon projected from
the facet farther from the reflected beam source is clipped by
nearer polygons.

4) Find the intersections between the reflected beam and the
projected polygons in a 2D plane.

5) Find portions of the beam which do not hit any facet by
subtracting the beam-polygon intersections from the orthogonal
projection of the beam.

6) Divide the intersections into the smallest possible number of
triangles [9]. Each triangle is the cross section of the next-order
reflected beam.

This beam division process is performed recursively for next-order
reflected beams and the beam tree [7] is constructed to describe the
reflection aspect of each initial beam. The root node of the beam tree
is the first-order reflected beam. The beam tree proposed in this paper
has two kinds of child nodes, those that originate from facets hit by
the beam (intersected child nodes) and those that originate from facets
that are not (non-intersected child nodes). Intersected child nodes at
the ith level correspond to the ith-order reflected beams and will have
child nodes. Non-intersected child nodes represent the portion of the
parent beam which does not reflect from any facet; they are leaf nodes.
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(a)

(b)

Figure 3. Geometry of the reflection: (a) first-order reflection, (b)
second-order reflection. Initial trigonal grid P1P2P3 is orthogonal to
k̂i. Triangular facets are labeled with index numbers. In the initially
incident beam coordinate system, k̂i is equivalent to −ẑ.

For example (Figure 3), for the initial trigonal grid P1P2P3, the root
node is the first-order reflected beam whose direction vector is k̂r and
cross section is the triangle Q1Q2Q3. The second level consists of five
child nodes (Figure 4). The leftmost node R1R2R6 denotes the second-
order reflected beam whose cross section is R1R2R6, the intersection
between the parent beam and the facet labeled 2. The rightmost node
Q2Q4Q5 corresponds to the portion of the first-order reflected beam
which does not reflect any facet. Every child node of the beam tree
stores the reflection history which records which patches have reflected
the beam and the coordinates of its three vertices in the IIB coordinate
system.

For all non-intersected child nodes, the physical optics integral [10]
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Figure 4. A representation of the beam tree to describe the reflection
aspect. Triangle designations correspond to those in Figure 3. In this
paper, maximum tree depth was set to five.

Figure 5. A virtual grid for the non-intersected child node, R1R2R6.

is performed to obtain the scattered field of the target. For example,
if the reflected beam from R1R2R6 does not hit any facet, R1R2R6

is a non-intersected child node at the third level of the tree and its
scattered field is calculated by performing the physical optics integral
on the exit position. A virtual grid, ABC, on the incident plane
can be assumed by inverse-tracing (Figure 5), and the incident ray
beam transmitted from this virtual grid reflects one planar facet at
each reflection stage. Therefore, the output ray tube does not spread
through the reflection process and is uniformly dispersed on the exit
position. The proposed method can satisfy the linear-phase-variation
approximation [1], although relatively large ray beams are used.
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3. RESULTS

The warship model in Figure 6 was employed to demonstrate the
proposed method. In order to investigate the computational efficiency,
the target in Figure 6 was magnified to 5, 10, 15, or 25 times its
actual size. All five targets with different sizes were modeled with
482 triangular facets. The monostatic RCS of the five targets has
been computed in the azimuth and elevation planes as illustrated in
Figure 7, at a frequency of 10 GHz.

In Figure 8, the number of incident ray tubes needed to calculate
the monostatic RCS were measured for the proposed method and
conventional SBR. For the conventional SBR, the number of incident
ray tubes varies with the visible area of the target as the incident

Figure 6. Dimensions and facets of the warship model used in
simulations: The number of facets is 482.

(a) (b)

Figure 7. Angle planes: (a) azimuth plane and (b) elevation plane.
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(b)

(a)

Figure 8. The number of incident ray tubes: (a) azimuth plane and
(b) elevation plane. (i) SBR with 25 times magnified target. (ii) SBR
with 15 times magnified target. (iii) SBR with 10 times magnified
target. (iv) SBR with 5 times magnified target. (v) SBR with the
target in Figure 6.
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(a)

(b)

Figure 9. Computation time vs. the size of the target: (a) azimuth
plane and (b) elevation plane.

angle is changed, whereas it varies with the number of visible facets
for the proposed method. Because the size of the incident ray tube
is chosen as a tenth length of the wavelength in the conventional
SBR, the number of incident ray tubes of SBR increases rapidly
as the target size increases and is thus directly proportional to the
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square of the magnification factor, as shown in Figure 8. However,
as aforementioned, the proposed method is independent of the target
size and is dependent only on the number of visible facets. In general,
electrically large targets can be modeled with facets whose sizes are
much larger than the conventional SBR grid size. This implies that
the number of visible facets for the proposed beam tracing is much
smaller than the number of grids for the conventional SBR. Because
the proposed method uses a number of incident ray tubes directly
proportional to the number of visible facets, it can be significantly less
than that of the conventional SBR.

In Figure 9, the computation times required by the proposed
method and conventional SBR to calculate the RCS are compared
in terms of target size. Clearly, the increase of the computation
time for the conventional SBR is proportional to the square of target
sizes. However, it is independent of target size and maintains a very
small value with the proposed method. It should be noted that the
subdivision of ray tubes in the beam tracing of the proposed method
may increase the computational complexity. However, its effect on the
total computational time is much less than the number of incident ray
tubes, especially for electrically large targets.

To demonstrate the relation between the computation time and
the number of facets modeling the target, the warship model in Figure 6
was magnified to 5 and 10 times its size. In addition, each magnified
target as well as the original target has been modeled by 482, 918,
1496, 2086, 3724, 6777, and 9887 facets. The elapsed times to calculate
the monostatic RCS of the conventional SBR and the proposed beam
tracing are compared in Figure 10. Clearly, the elapsed time of the
proposed method increases with the number of modeled facets, but
it is independent of the target size. In contrast, the computation
time of the conventional SBR dramatically increases with the target
size rather than the number of facets. This is because the elapsed
time of the conventional SBR is linearly proportional to the number
of facets, and square of the target size. As the target size increases
and the number of facets decreases, the proposed method is more
efficient than the conventional SBR. However, the proposed beam
tracing may be inefficient for complex and relatively small targets. For
example, the proposed method requires more calculation time than
conventional SBR for the unmagnified targets modeled with many
facets in Figure 10. The proposed method is suitable for complex
targets only when their electrical sizes are large enough. In summary,
the proposed method has a pronounced improvement in computational
efficiency over the conventional SBR when the target size, rather than
the number of modeled facets, increases. It should be noted that
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(a)

(b)

Figure 10. Computation time vs. the number of facets: (a) azimuth
plane and (b) elevation plane. (i) SBR with 10 times magnified targets.
(ii) SBR with 5 times magnified targets. (iii) SBR with unmagnified
targets.
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(a)

(b)

Figure 11. Monostatic RCS of the warship model: (a) azimuth plane
and (b) elevation plane.

the conventional SBR has estimated elapsed times to calculate the
monostatic RCS of up to about 387 and 258 days with the 100 times
enlarged target having 9887 facets in the azimuth and elevation plane,
respectively, whereas the beam tracing maintains the same times as in
Figure 10.
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The monostatic RCS of the target model in Figure 6 calculated
with the proposed method is presented in Figure 11, and its accuracy
is compared with those of the conventional SBR and the method of
moments (MoM). The results from the MoM have been obtained by the
multilevel fast multipole method (MLFMM) of the commercial FEKO
software [11]. In Figure 11, the RCS of the proposed method exhibits
good agreement with those of the conventional SBR and MLFMM.
Of course, there is a small amount of difference in RCS between the
beam tracing and the conventional SBR. This is attributed the fact
that the modeling difference of the incident plane wave between the
two methods, as shown in Figure 2. The relative RMS error between
the proposed method and conventional SBR is very low: 4.36 dB and
3.72 dB in the azimuth and elevation plane respectively. In addition,
the RMS error between the proposed method and the MLFMM are
6.11 dB and 6.16 dB, while those between the conventional SBR and
the MLFMM are 6.15 dB and 5.81 dB. This implies that the proposed
method and the conventional SBR show similar performance in terms
of RCS prediction accuracy.

4. CONCLUSION

We have proposed a fast RCS prediction method for electrically large
targets. The proposed method is based on the beam tracing principle.
This leads the computation time to be independent of the electrical
size of targets. It has been verified that the method is as accurate
as the conventional SBR, while computational complexity is much
less, especially for electrically large targets The proposed method
is an attractive alternative to the conventional SBR due to its fast
computation speed with relatively accurate RCS prediction.
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