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Abstract—Based on quasi-static electromagnetic field theory, recently
grounding system under alternative currents (AC) substation has been
studied with equal potential and unequal potential models. In these
numerical models, the closed form of Green’s function for a point
source within a horizontal multilayered earth model and its quasi-
static complex image method have been fully discussed. However, less
information about how to achieve the closed form of Green’s function
through Matrix Pencil method is presented in these references. In
this paper, we discuss how the kernel of the Green’s function can be
expanded into a finite exponential series.

1. INTRODUCTION

The grounding problems under AC substation have been studied based
on either the electrostatic field theory or the direct current electric
field theory, with the equal potential model [1–6] or unequal potential
model [7, 8]. However, these models ignore the mutual capacitative
interactions between leakage currents along pairs of short conductors.
Mutual induction interactions between branch currents along a pair of
short conductors have also been overlooked in the unequal potential
model. Although the hypothesis for the electrostatic field theory can
be accepted under 50 Hz or 60Hz work frequency condition, restrictions
for the model will be evident for more general cases. For example, if
a large resistivity of earth is observed for a buried grounding grid, the
imaginary number of grounding impedance will be large [9]. In this
case, grounding resistance substituting for grounding impedance will
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be inappropriate. In other words, electrostatic field theory or direct
current electric field theory is inappropriate for this type of grounding
problem, and a more updated electromagnetic theory is required.

To better describe the grounding problem in low frequency domain
(50 or 60Hz and higher harmonic wave), in recent years the quasi-
static electric field theory has been utilized to combine with the equal
potential model [10–14] and unequal potential model [9, 15–22]. In
these models, only the propagation effect of electromagnetic wave is
ignored. Meanwhile, if a point source is buried in the horizontal
multilayered earth, the scalar electrical potential (SEP) of a scalar
monopole or the vector magnetic potential (VMP) of a vector dipole
is satisfied with scalar or vector Poisson equation. After solving the
scalar or vector Poisson equation for the monopole or dipole, scalar or
vector Green’s function for the monopole or dipole can be obtained.
The infinite integral for Bessel function of the first kind of order zero
has appeared within these Green’s functions formulae. The infinite
integral can be transformed into finite exponential series by Matrix
Pencil (MP) method [23]. In this way, closed form of scalar or vector
Green’s function of monopole or dipole can be achieved. Among
these derivation procedures we also discuss how to achieve a finite
exponential series with MP method, called quasi-static complex image
method (QSCIM). It should be pointed out that references [5] and [24]
have also given finite exponential series for scalar Green’s function of
a scalar monopole based on Prony’s method and are called complex
image method. Actually, the complex image method should be called
static complex image method due to its electrostatic field theory.

In this paper, QSCIM has been fully discussed based on the MP
method. First, the procedure for vector or scalar Green’s function
of vector dipole or scalar monopole buried in horizontal multilayered
earth model is compendiously introduced. Then the process to achieve
finite exponential series for the kernel of Green’s function based on
MP method is discussed. Finally, numerical results for the kernel of
the closed form of Green’s function are carefully studied and discussed.

2. THEORY OF QUASI-STATIC COMPLEX IMAGE
METHOD

2.1. The Closed Form of Scalar or Vector Green’s Function
of Monopole or Dipole

For a point source (scalar monopole or vector dipole) buried in
horizontal multilayered earth model, we consider that a low frequency
(50 or 60 Hz and higher harmonic wave) electromagnetic field occurs
around the AC substation. Meanwhile, the size of grounding system
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under the AC substation is limited, so the electromagnetic waves’
propagation effect can be ignored. Hence, quasi-static electrical field
can be regarded as a better theory for this grounding problem. Further,
in this case, the SEP ϕ of a scalar monopole satisfies the scalar Poisson
equation, and VMP Ā of a vector dipole satisfies the vector Poisson
equation. Here we suppose that the point source current is located at
the origin of the co-ordinate system (Fig. 1). The horizontal Ns-layer
earth model is considered.

∇2ϕij(x, y, z) = −δ(z, y, z)δ(ij)
σi

(1)

where i, j = 1, . . . , Ns, δ(x, y, z) is Dirac delta function for scalar
monopole, and δ(ij) is Kronecker’s symbol.

∇2Āij(x, y, z) = − δ̂(x, y, z)δ(ij)
σi

(2)

where δ̂(x, y, z) is Dirac delta function for vector dipole.
After solving the Poisson Eqs. (1) and (2), we can get scalar

Green’s function for monopole and vector Green’s function for
vector dipole. For more details about the derivation process refer
to [12, 14, 20–22] for scalar Greens’ function and [20–22] for vector
Green’s function. Here, we will simply give, as examples, the formula
for scalar Green’s function G11

ϕ of monopole and vector Green’s
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function G11
Azz or G11

Axz of dipole, both of which are buried in horizontal
two-layer earth model with source and field point at the same layer.

For monopole case, from [12, 14, 20–22], we know

G11
ϕ

(
kρ, z; k′ρ, z

′) =
1

4πσ1

∫ ∞

0

(
e−kρ|z−z′| − kϕ

01e
−kρ(z+z′)

+fϕ (kρ)
(
kϕ

01k
ϕ
12e

−kρ(2h1+z+z′) + kϕ
12e

−kρ(2h1−z−z′)

−kϕ
01k

ϕ
12e

−kρ(2h1+z−z′) − kϕ
01k

ϕ
12e

−kρ(2h1−z+z′)
)
J0(kρρ)dkρ (3)

where fϕ(kρ) = 1
(1+kϕ

01kϕ
12·e−2kρh1 )

, kϕ
01 = σ0−σ1

σ0+σ1
, kϕ

12 = σ1−σ2
σ1+σ2

, σ0 =
jωε0, σ1 = σ1 + jωε1, σ2 = σ2 + jωε2, h1 is thickness of the first layer
earth. And ρ =

√
(x− x′)2 + (y − y′)2

The kernel fϕ(kρ) of scalar Green’s function G11
ϕ can be expanded

into finite exponential series by the MP method,

fϕ(kρ) =
M∑

i=1

αie
βikρ (4)

Replacing fϕ(kρ) of G11
ϕ with the finite exponential series and

employing the Lipschitz integration [20], we have

G11
ϕ

(
x, y, z; x′, y′, z′

)
=

1
4πσ1

(
1
R
− kϕ

01

R′ +
M∑

i=1

αi

(
(kϕ

01)
2
kϕ

12

Ri1
+

kϕ
12

Ri2

−kϕ
01k

ϕ
12

Ri3
− kϕ

01k
ϕ
12

Ri4

))
(5)

where R=
√

(x−x′)2+(y−y′)2+(z−z′)2, R′=
√

(x−x′)2+(y−y′)2+(z+z′)2,
Ri(1−4) =

√
(x− x′)2 + (y − y′)2 + (signaz + signbz

′ + zi)2, in which
signa = 1 for Ri1 and Ri3, signb = 1 for Ri3 and Ri4, signa = signb = −1
for others, zi = 2h− βi.

For vertical dipole case, from [20–22], we know

G11
Azz

(
kρ, z; k′ρ, z

′) =
µ

4π

∫ ∞

0

(
e−kρ|z−z′| − kTM

01 e−kρ(z+z′)

+fTM (kρ)
(
k2TM

01 kTM
12 e−kρ(2h1+z+z′) + kTM

12 e−kρ(2h1−z−z′)

−kTM
01 kTM

12 e−kρ(2h1+z−z′) − kTM
01 kTM

12 e−kρ(2h1−z+z′)
)

J0(kρρ)dkρ (6)

where fTM (kρ) = 1
(1+kTM

01 kTM
12 ·e−2kρh1 )

, kTM
01 = σ1−σ0

σ1+σ0
, kTM

12 = σ2−σ1
σ2+σ1

.

Since we know kTM
01 = −kϕ

01 and kTM
12 = −kϕ

12, and we can
observe that the kernel fϕ(kρ) and fTM (kρ) are equal, it implies
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fTM (kρ) = fϕ(kρ) except for kTM
ij (kρ) = −kϕ

ij(kρ), (i, j = 1, . . . , Ns).
Similar to scalar Green’s function G11

ϕ , we have

G11
Azz

(
x, y, z; x′, y′, z′

)
=

µ

4π

(
1
R
− kTM

01

R′ +
M∑

i=1

αi

(
k2TM

01 kTM
12

Ri1
+

kTM
12

Ri2

−kTM
01 kTM

12

Ri3
− kTM

01 kTM
12

Ri4

) )
(7)

where R, R′, Ri(1−4) are the same as those in scalar Green’s function
G11

ϕ in Eq. (5).
For horizontal dipole case, from [20–22], we know

G11
Axz

(
kρ, z; k′ρ, z

′) =
µ

4π

∂

∂x

∫ ∞

0

(
−kTM

01 e−kρ(z+z′)

+fTM (kρ)
(
k2TM

01 kTM
12 e−kρ(2h1+z+z′) + kTM

12 e−kρ(2h1−z−z′)

−kTM
01 kTM

12 e−kρ(2h1+z−z′) − kTM
01 kTM

12 e−kρ(2h1−z+z′)
)

J0(kρρ)
dkρ

kρ
(8)

Just as in Green’s function G11
Azz, considering the Lipschitz

integration’s varied form [20], we have

G11
Axz(x, y, z;x′, y′, z′) =

µ

4π

∂

∂x

(
− kTM

01 ln (z′ + R′)

+
M∑

i=1

αi

(
k2TM

01 kTM
12 ln (zi1+Ri1) + kTM

12 ln (zi2+Ri2)

−kTM
01 kTM

12 ln (zi3 + Ri3)− kTM
01 kTM

12 ln (zi4 +Ri4)
))

(9)

where R′, Ri(1−4) are the same as those in scalar Green’s function
G11

ϕ in Eq. (5). Other parameters are z′ = z + z′, zi(1−4) = signaz +
signbz

′ + zi, in which signa = 1 for zi1 and zi3, signb = 1 for zi3 and
zi4, signa = signb = −1 for others, zi = 2h− βi.

If a dipole was lying in general orientation, the dipole can be
divided into horizontal and vertical dipole components.

The Green’s function of horizontal dipole G11
Axx = µ

4π
1
R will not be

discussed since it is a simple formula.
As we observe the kernels of Green’s functions for both vertical

or horizontal dipole and monopole, we see fTM (kρ) = fϕ(kρ). So for
horizontal two layer earth model, only kernel f(kρ) can be considered
as the unified kernel formula to be expanded into finite exponential
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series. This conclusion can apply to the Green function of all other
vector dipoles or scalar monopoles buried in horizontal two-layer earth
model with different field point locations, such as G10

ϕ , G10
Azz, G10

Axz,
G12

ϕ , G12
Azz, G12

Axz, G21
ϕ , G21

Azz, G21
Axz, G22

ϕ , G22
Azz, G22

Axz, etc. Further,
the same conclusion can be arrived at with vector or scalar Green’s
function of vector dipole or scalar monopole buried in other horizontal
multilayered earth models, such as 3-layer or 4-layer earth model cases.

The kernel of closed form of Green’s function for both scalar
monopole and vector dipole buried in horizontal three-layer and four-
layer earth model will be introduced next.

2.1.1. 3-layer Earth Model Case

fA(kρ) =
1

fA
1 (kρ) + fA

2 (kρ)
(10)

and

fA
1 (kρ) = 1 + kA

01k
A
12e

−2kρh1 + kA
12k

A
23e

−2kρh2 (11)

fA
2 (kρ) = kA

01k
A
23e

−2kρ(h1+h2) (12)

where A = TM for vector dipole case and A = ϕ for scalar monopole
case; kϕ

23 = σ2−σ3
σ2+σ3

, σ3 = σ3 + jωε3, kTM
23 = −kϕ

23, h2 is the thickness of
second layer earth.

2.1.2. 4-layer Earth Model Case

fA(kρ) =
1

fA
1 (kρ) + fA

2 (kρ) + fA
3 (kρ) + fA

4 (kρ)
(13)

and

fA
1 (x) = 1 + kA

01k
A
12e

−2kρh1 + kA
12k

A
23e

−2kρh2 (14)

fA
2 (x) = kA

23k
A
34e

−2kρh3 + kA
01k23e

−2kρ(h1+h2) (15)

fA
3 (x) = kA

12k
A
34e

−2kρ(h2+h3)+kA
01k

A
12k

A
23k34e

−2kρ(h1+h3) (16)

fA
4 (x) = kA

01k
A
34e

−2kρ(h1+h2+h3) (17)

where A = TM for vector dipole case and A = ϕ for scalar monopole
case; kϕ

34 = σ3−σ4
σ3+σ4

, σ4 = σ4 + jωε4, kTM
34 = −kϕ

34, h3 is the thickness of
third layer earth.

For simplified description of MP in this paper, only scalar
monopole case is discussed below, which means that f(kρ) is used to
represent fϕ(kρ).
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2.2. Application range for the QSCIM

The maximum frequency of applicability of the method is limited by
the quasi-stationary approximation of the electromagnetic fields, which
means that the propagation effect of the electromagnetic field around
the dipole can be neglected, so

e−jkiR ≈ 1 (18)

where k2
i = jω

√
µ(εi + σi

jω ), i = 1, . . . , Ns.

2.3. MP Method

A function f(x) can be expanded into finite exponential series, as
below,

f(x) =
M∑

i=1

αie
βix (19)

The three parameters to be decided are M , αi and βi.
To get these parameters, we first decide the maximum sample

points according to the characteristic of function f(x), and the
maximum value for xmax can thus be obtained according to the
minimum f(kρ) decided by set truncation precise. Once xmax is
known, we can get uniformly discrete values of f(x) within scope
(0 ≤ x ≤ xmax). Therefore, we have uniform discrete function values
of f(x) with (f(0), f(1), f(2), . . . , f(N)) corresponding to the value of
x as (0, x1, x2, . . . , xmax) or (0,4x, . . . , i4x, . . . , (N−1)4x). Here 4x
is the rate of sampling. We can obtain

f(x) ≈
M∑

i=1

αiz
k
i (k = 0, . . . , N − 1) (20)

here
zk
i = eβi4x (i = 1, . . . ,M) (21)

2.3.1. Method to Decide Number of M

Since we have total N number of uniform discrete function values
of f(x), we can get the matrix [Y ] from the sampling data f(x) by
combining [Y1] and [Y2] as

[Y ] =




f(0) f(1) . . . f(L)
f(1) f(2) . . . f(L + 1)

...
...

...
f(N − L− 1) f(N − L) . . . f(N − 1)




(N−L)×(L+1)

, (22)
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[Y1] =




f(0) f(1) . . . f(L− 1)
f(1) f(2) . . . f(L)

...
...

...
f(N − L− 1) f(N − L) . . . f(N − 2)




(N−L)×L

, (23)

[Y2] =




f(1) f(2) . . . f(L)
f(2) f(3) . . . f(L + 1)

...
...

...
f(N − L) f(N − L + 1) . . . f(N − 1)




(N−L)×L

, (24)

where L is referred as the pencil parameter [25].
Note that [Y1] is obtained from [Y ] by omitting the last column,

and [Y2] is obtained from [Y ] by omitting the first column. The
parameter L can be chosen between N/3 and N/2.

Next, a singular-value decomposition (SVD) of the matrix [Y ] can
be implemented as

[Y ] = [U ][Σ][V ]H , (25)

here, [U ] and [V ] are unitary matrices, composed of the eigenvectors
of [Y ][Y ]H and [Y ]H [Y ], respectively, and [Σ] is a diagonal matrix
including the singular values of [Y ], i.e.,

[U ]H [Y ][V ] = [Σ], (26)

The choice of the parameter M can be achieved at this stage
by studying the ratios of various singular values to the largest one.
Typically, the singular values beyond M are set equal to zero. The
way which M is chosen is as follows. Observe the singular value σc

such that
σc

σmax
≈ 10−p, (27)

where p is the number of significant decimal digits in the data. For
example, if the sampling data is accurate up to three significant digits,
the singular values for which the ratio in Eq. (27) is below 10−3 are
essentially useless and should not be used in the reconstruction of the
sampling data.

We next introduce the “filtered” matrix, [V ′], constructed so that
it contains only M predominant right-singular vectors of [V ];

[V ′] = [v1, v2, . . . , vM ], (28)

The right-singular vectors from M + 1 to L, corresponding to the
small singular values, are omitted. Therefore,

[Y1] = [U ][Σ′][V ′
1 ]

H , (29)
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[Y2] = [U ][Σ′][V ′
2 ]

H , (30)

where [V ′
1 ] is obtained from [V ′] with the last row of [V ′] omitted; [V ′

2 ]
is obtained by deleting the first row of [V ′]; [Σ′] is obtained from the M
columns of [Σ] corresponding to the M predominant singular values.

2.3.2. Method to Decide βi

To introduce the MP method, we can use two (N − L) × L matrices,
Y1 and Y2. We can rewrite

[Y2] = [Z1][R][Z0][Z2], (31)

[Y1] = [Z1][R][Z2], (32)

where

[Z1] =




1 1 . . . 1
z1 z2 . . . zM
...

...
...

zN−L−1
1 zN−L−1

2 . . . zN−L−1
M




(N−L)×M

, (33)

[Z2] =




1 z1 . . . zL−1
1

1 z2 . . . zL−1
2

...
...

...
1 zM . . . zL−1

M




M×L

, (34)

[Z0] = diag[z1, z2, . . . , zM ], (35)

[R] = diag[R1, R2, . . . , RM ], (36)

where diag[•] represents a M ×M diagonal matrix.
Now we introduce the matrix pencil

[Y2]− λ[Y1] = [Z1][R]{[Z0]− λ[I]}[Z2], (37)

where [I] is the M ×M identity matrix. We can demonstrate that, in
general, the rank of {[Y2]−λ[Y1]} will be M , provided M ≤ L ≤ N−M .
However, if λ = zi, i = 1, 2, . . . , M , the ith row of {[Z0] − λ[I]} is
zero, and the rank of this matrix is M − 1. Hence, the parameters zi

may be found as generalized eigenvalues of the matrix pair {[Y2]; [Y1]}.
Equivalently, the problem of solving for zi can be transformed into an
ordinary eigenvalue problem,

{
[Y1]+[Y2]− λ[I]

}
, (38)
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where [Y1]+ is Moore-Penrose pseudo-inverse of [Y1] and defined as

[Y1]+ =
{

[Y1]H [Y1]
}−1

[Y1]H , (39)

where the superscript “H” denotes the conjugate transpose.
The eigenvalues of the matrix

{[Y2]− λ[Y1]}L×M =⇒ {[Y1]+[Y2]− λ[I]}M×M (40)

are equivalent to the eigenvalues of the matrix
{
[V ′

2 ]
H − λ[V ′

1 ]
H

}
=⇒ {

[V ′
1 ]

H
}+ {

[V ′
2 ]

H
}+ − λ[I] (41)

This methodology can be used to solve for zi.
Lastly, we point out that in this case zi represent βi according to

Eq. (21).

2.3.3. Method to Decide αi

Once M and zi are known, αi are solved with the help of the following
linear least-squares problem:




f(0)
f(1)

...
f(N − 1)


 =




1 1 . . . 1
z1 z2 . . . zM
...

...
...

zN−1
1 zN−1

2 . . . zN−1
M







α1

α2
...

αM


 , (42)

3. SIMULATION RESULT ANALYSIS

3.1. Numerical Results for QSCIM

For two-layer earth model, we give conductivities 600−1 S/m, 30−1 S/m
and permittivities 5ε0, 12ε0 to the first and second layers of the earth,
respectively. The thickness of the first layer earth is 5 m, and frequency
is 50 Hz. Applying the MP approach, the kernel of Green’s function
will arrive at relative error 0.1% with only three terms of quasi-static
complex images. Figs. 2 and 3 show this monotone function and
superposition situation of two curves from function and simulation
for both the real and imaginary parts. The coefficients of quasi-static
complex images are given in Table 1.

From Table 1, we know that there are a pair of conjugate complex
numbers, αn and βn (n = 2, 3), which occur in electrostatic field
complex images [24]. Reference [24] explains that “It is to be pointed
out that the complex images, in general, have complex locations and
amplitudes. In electrostatics, the complex images come in conjugate
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Figure 2. Two curves from
function f(kρ) and its simulation
for 2-layer earth case (real part).
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Figure 3. Two curves from
f(kρ) and its simulation for 2-
layer earth case (imaginary part).

Table 1. Coefficients of quasi-static complex images for a two-layer
earth model.

n αn βn

1 0.646∠− 4.328× 10.−5 9.950∠7.227× 10.−7

2 0.141∠− 29.313 19.662∠− 14.338
3 0.141∠ + 29.313 19.662∠ + 14.338

pairs to give the real potential field value”. Here, although quasi-
static electrical field is chosen for the mathematical model, conjugate
complex images also occur.

For the three-layer earth model, the earth’s conductivities and
permittivities are σ1 = 55.66−1 S/m, σ2 = 218.31−1 S/m, σ3 =
83.7−1 S/m, ε1 = 8ε0, ε2 = 12ε0 and ε3 = 6ε0, respectively. The
first layer earth height is 3.867 m, and the secondary layer earth height
is 3.432 m. With the MP approach, three terms of quasi-static complex
images will arrive at relatively error 0.08%. From Figs. 4 and 5, we can
see that the two curves are superposed. The three quasi-static complex
images’s coefficients are given in Table 2. From Table 2, we know that
there is a pair of conjugate complex numbers, αn and βn (n = 2, 3).

For four-layer earth model, the earth’s conductivities and
permittivities are σ1 = 54.66−1 S/m, σ2 = 18.31−1 S/m, σ3 =
223.7−1 S/m, σ4 = 12.72−1 S/m, ε1 = 5ε0, ε2 = 12ε0, ε3 = 6.8ε0

and ε4 = 2.8ε0, respectively. The first layer earth height is 3.867 m,
secondary layer earth height 3.432 m, and third layer earth height
19.12m. With the MP approach, eight terms of quasi-static complex
images will arrive at a relative error 0.03%. From Figs. 6 and 7, we
can see that the two curves superpose each other. The coefficients of
the six quasi-static complex images are given in Table 3.
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f(kρ) and its simulation for 3-
layer earth case (real part).
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Table 2. Coefficients of quasi-static complex images for a three-layer
earth model.

n αn βn

1 1.093∠− 4.933× 10−4 7.208∠3.811× 10−5

2 0.255∠− 19.140 14.132∠− 18.545
3 0.255∠ + 19.140 14.132∠ + 18.545

From Table 3, we know that there are two pairs of conjugate
complex images αn and βn (n = 3, 4 and 5, 6).

3.2. Numerical Results for a Point Source

Once the closed form of vector and scalar Green’s function of
vector dipole and scalar monopole buried in horizontal multilayered
earth model have been achieved, the numerical approximation of the
electromagnetical field distribution generated by a harmonic current
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Table 3. Coefficients of quasi-static complex images for a four-layer
earth model.

n αn βn

1 0.316∠− 1.138× 10−4 6.239∠− 5.513× 10−6

2 1.178∠8.152× 10−6 19.118∠3.551× 10−5

3 0.414∠ + 27.585 40.281∠ + 25.055
4 0.414∠− 27.585 40.281∠− 25.055
5 0.630∠− 25.889 119.6802∠− 27.482
6 0.630∠ + 25.889 119.6802∠ + 27.482
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point source can be achieved. The source, in general, is located inside
any layer of the horizontally multilayered earth. Meanwhile, a infinite
series basing on Talyer’s series, which approximate the electromagnetic
field distribution in an observed layer has been reduced to a sufficiently
large number of first members (usually not less than 10,000), which can
be used as exact results for comparison.

To illustrate the high accuracy of the numerical procedure, a small
subset of results from the treated numerical example will be given
below. The point source is located in a four layer medium model, with
the following parameters:

(i) Total number of layers of the earth model: n = 4.
(ii) Thickness of layers: h1 = 5 m, h2 = 12 m, h2 = 7 m.
(iii) The conductivities of the each layer of the earth model: σ1 =

100.0−1 S/m, σ2 = 50.0−1 S/m, σ3 = 900.0−1 S/m and σ4 =
200.0−1 S/m.
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Table 4. Module of SEP ϕ (V) and VMP A (wb/m).

or ϕ Layer Coordinates QSCIM Exact solution
Relative

error (%)

ϕ 1 (0, 0, 0) 16523.85938 16523.03319 −0.0050

Ax 1 (0, 0, 0) 9.396927× 10−5 9.396476× 10−5 −0.0048

Ay 1 (0, 0, 0) 1.736482× 10−5 1.736407× 10−5 −0.0043

Az 1 (0, 0, 0) 1.174063× 10−6 1.174023× 10−6 −0.0034

ϕ 1 (50, 0, 1) 535.11725 535.098521 −0.0035

Ax 1 (50, 0, 1) 1.879385× 10−6 1.879342× 10−6 −0.0023

Ay 1 (50, 0, 1) 3.472964× 10−7 3.472922× 10−7 −0.0012

Az 1 (50, 0, 1) 1.236949× 10−6 1.236939× 10−6 −0.0008

ϕ 1 (250, 0, 2) 127.35694 127.35503 −0.0015

Ax 1 (250, 0, 2) 3.758741× 10−7 3.758640× 10−7 −0.0027

Ay 1 (250, 0, 2) 6.945872× 10−8 6.945796× 10−8 −0.0011

Az 1 (250, 0, 2) 2.665560× 10−7 2.665541× 10−7 −0.0007

ϕ 2 (0, 0, 5) 2659.50391 2659.471996 −0.0012

Ax 2 (0, 0, 5) 2.349232× 10−5 2.349178× 10−5 −0.0023

Ay 2 (0, 0, 5) 4.341205× 10−6 4.341153× 10−6 −0.0012

Az 2 (0, 0, 5) 4.978769× 10−7 4.975284× 10−7 −0.0007

ϕ 2 (50, 0, 11) 532.26379 531.78475 −0.0009

Ax 2 (50, 0, 11) 1.842889× 10−6 1.842876× 10−6 −0.0007

Ay 2 (50, 0, 11) 3.405521× 10−7 3.403478× 10−7 −0.0006

Az 2 (50, 0, 11) 1.434278× 10−6 1.434271× 10−6 −0.0005

ϕ 2 (250, 0, 12) 127.28144 127.28042 −0.0008

Ax 2 (250, 0, 12) 3.755138× 10−7 3.755104× 10−7 −0.0009

Ay 2 (250, 0, 12) 6.939214× 10−8 6.939179× 10−8 −0.0005

Az 2 (250, 0, 12) 3.560395× 10−7 3.560381× 10−7 −0.0004

ϕ 3 (0, 0, 17) 834.44586 834.44185 −0.00048

Ax 3 (0, 0, 17) 5.873079× 10−6 5.870436× 10−6 −0.00045

Ay 3 (0, 0, 17) 1.085301× 10−6 1.085299× 10−6 −0.00015

Az 3 (0, 0, 17) 6.026217× 10−8 6.026210× 10−8 −0.00011

ϕ 3 (50, 0, 20) 428.53311 428.53225 −0.00020

Ax 3 (50, 0, 20) 1.756819× 10−6 1.756816× 10−6 −0.00015

Ay 3 (50, 0, 20) 3.246469× 10−7 3.246465× 10−7 −0.00011

Az 3 (50, 0, 20) 1.177649× 10−6 1.177648× 10−6 −0.00009

ϕ 3 (250, 0, 23) 123.74226 123.74211 −0.00012
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Ax 3 (250, 0, 23) 3.744301× 10−7 3.744296× 10−7 −0.00013

Ay 3 (250, 0, 23) 6.919188× 10−8 6.919180× 10−8 −0.00011

Az 3 (250, 0, 23) 3.399787× 10−7 3.399785× 10−7 −0.00005

ϕ 4 (0, 0, 24) 663.63483 663.63231 -0.00038

Ax 4 (0, 0, 24) 4.085621× 10−6 4.085603× 10−6 −0.00044

Ay 4 (0, 0, 24) 7.549922× 10−7 7.549903× 10−7 −0.00025

Az 4 (0, 0, 24) 3.392746× 10−8 3.392742× 10−8 −0.00012

ϕ 4 (50, 0, 30) 392.48398 392.48308 −0.00023

Ax 4 (50, 0, 30) 1.625727× 10−6 1.625723× 10−6 −0.00025

Ay 4 (50, 0, 30) 3.004222× 10−7 3.004218× 10−7 −0.00012

Az 4 (50, 0, 30) 9.088801× 10−7 9.088797× 10−7 −0.00004

ϕ 4 (250, 0, 33) 122.54898 122.54871 −0.00022

Ax 4 (250, 0, 33) 3.728352× 10−7 3.728340× 10−7 −0.00033

Ay 4 (250, 0, 33) 6.889717× 10−8 6.889709× 10−8 −0.00012

Az 4 (250, 0, 33) 3.252565× 10−7 3.252564× 10−7 −0.00002

(iv) The relative permitivities of each layer of the earth model: εr1 =
5.0, εr2 = 25.0 and εr3 = 50.0 and εr4 = 30.0.

(v) The location of the point source: z = d = 1 m, so its
coordinate (0, 0, 1).

(vi) The point source current: (1000,0) A and 50 Hz for both scalar
monopole point source and vector dipole point source.

(vii) The director of dipole point source: (θx = 20, θy = 80,
θz = 72.863).
The high accuracy of the numerical procedure based on a

numerical approximation of the kernel functions is confirmed by results,
which are presented in Table 4. The SEP and VMP values are
computed at systematically chosen points in each of the four layers
of earth. The computed relative error is found to be insignificant
(Table 4). On the other hand, once SEP and VMP have been obtained
for a point source, the electrical field intensity (EFI) E and magnetic
field intensity (MEI) B of the point source can be calculated through
the following formula.

B̄ = ∇× Ā (43)

Ē = −jωĀ− ∂ϕ

∂t
t̂ (44)

Here t̂ is unit director vector of the vector dipole.
Figs. 8 and 9 show the distribution of module of MFI |B| and

EFI |E| along the surface of ground. From the two figures, apparently
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different distributions between modulus of MEI B and EFI E can been
seen.

4. SUMMARY

In this paper, the process how to achieve the closed form of
Green’s function for a point source (incudes monopole and dipole)
within horizontal multilayered earth model by QSCIM has been fully
discussed. First, the kernel of the closed form of Green’s function for
a point source buried in two to four layered horizontal earth model
has been introduced. Then, we discuss how the kernel of the Green’s
function is to be expanded into finite exponential series by MP method.
Lastly, the numerical results about QSCIM and electromagnetic field
around a point source are discussed.
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