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Abstract—Inverse Synthetic Aperture Radar (ISAR) imaging is one
of the most sophisticated methods to obtain information about the
scattering or radiation properties of a finite sized object. The idea is
to process the scattered or radiated fields coherently over a certain
frequency bandwidth and over a certain angular range in order to
generate the image. In a simulation based approach, this procedure
can be considerably simplified, if the source currents are known (either
real or equivalent) and if a bistatic image is desired. By inserting the
radiation integral into the imaging integral and by interchanging the
integration orders, the imaging point spread function can be generated
and the image formation is reduced to a convolution of the point
spread function with the current distribution. A concise formulation
of this well-known methodology is presented together with a discussion
of important properties. Various examples of 2D and 3D images for
complex metallic objects such as automobiles are shown, which have
been obtained from the surface currents of a Shooting and Bouncing
Rays (SBR) field solver.

1. INTRODUCTION

Inverse Synthetic Aperture Radar (ISAR) imaging is an established
method for generating high-resolution images of scattering objects [1].
It is based on the coherent processing of radar signals, which are
acquired for varying observation angles and for a certain band of
frequencies. In an experimental approach, it is clear that ISAR must
work with the waves scattered from the observed object. However, in
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simulation based approaches there is no need to compute the scattered
waves explicitly, as, e.g., done in [2]. It is rather possible to directly
generate the ISAR image with the induced currents on the objects,
which are usually available in an electromagnetic simulation such as
integral equation solutions by the Method of Moments (MoM) [3, 4] or
an Physical Optics (PO) based Shooting and Bouncing Rays (SBR)
approach [5, 6]. First, such techniques were utilized for the generation
of 1D (time-domain) downrange profiles [7, 8]. Later, the often ray-
tube integration called approach was employed for 2D ISAR image
generation [8] and it was even recognized that the resulting convolution
integrals can be efficiently evaluated by Fast Fourier Transform (FFT)
based fast convolutions [9]. In [10], the approach was extended to 3D
image generation. The direct image generation methods are extremely
fast and allow for an efficient extraction of the dominant scattering
centers of an object, which can be used for compressed scattering center
representations of the scattering behaviour of complex objects in the
far-field [11] as well as in the near-field [12]. In [13], the technique
was also studied for 2D imaging and later extended for a more general
coordinate representation in [14]. Further applications of the direct
imaging techniques are found in [15–17]. In contrast, many simulations
in the radar imaging field are performed with the two-step approach of
scattered field computation and subsequent image formation by SAR
or ISAR processors [18, 19]. This is in particular the case if the SAR
or ISAR processor shall be tested by simulated data or if secondary
effects such as motion compensation must be considered.

In this paper, a concise vectorial representation of the formulation
is given for the case of 3D ISAR imaging, which is also specialized
to the 2D case. The pertinent small angle/small bandwidth point
spread functions are given analytically for the 3D case together with
all the first order correction terms usually not found in the literature.
Important properties of the direct imaging approach are discussed and
illustrated, in particular related to the required interpolations within
the FFT accelerated convolutions. The images of complex objects are
investigated, where the focus is on scattering center visualizations of
automotive vehicles.

2. FORMULATION

2.1. Image Formation for Radiating Sources

Consider the radiated electric far-field E of an electric current
distribution J confined to the source volume V according to [20]
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E(r, k) = −jkZ
e−jkr

4π r

(
Ī− r̂r̂

)
︸ ︷︷ ︸
(ϑ̂ϑ̂+ϕ̂ϕ̂)

·
∫∫

V

∫
J(r′) ejkr̂·r′ d3r′, (1)

where a time factor ejωt is assumed and suppressed. k = ω
√

εµ is
the wavenumber and Z =

√
µ/ε is the characteristic impedance of the

considered homogeneous medium (typically free space), respectively. r̂
is the unit vector in direction of r.
Introducing the spectral image representation

J̃(k) =
−1
jkZ

4π r

e−jkr
E(rr̂, k) (2)

with k = kr̂ the ISAR imaging integral over the k-space observation
domain K can be written as

Ĵ(r) =
1

(2π)3

∫∫

K

∫
J̃(k) e−jk·r d3k (3)

and the spatial distribution of Ĵ is interpreted as the image. Here
it should be pointed out that Ĵ may not contain gradient like non-
radiating sources possibly contained in J, as, e.g., discussed in [21].

Substituting (2) under consideration of (1) into (3) results in

Ĵ(r) =
1

(2π)3

∫∫

K

∫ ∫∫

V

∫ (
ϑ̂ϑ̂ + ϕ̂ϕ̂

)
· J(r′) e−jk·(r−r′) d3r′ d3k . (4)

Changing the order of integrations gives

Ĵ(r) =
∫∫

V

∫
P̄

(
r− r′

) · J (
r′

)
d3r′ = P̄(r) ∗ J(r), (5)

where the ∗ denotes convolution and P̄(r) is the dyadic point spread
function defined as

P̄(r) =
1

(2π)3

∫∫

K

∫ (
ϑ̂ϑ̂ + ϕ̂ϕ̂

)
e−jk·r d3k . (6)

In Cartesian vector components,
(
ϑ̂ϑ̂ + ϕ̂ϕ̂

)
is




1− sin2 ϑ cos2 ϕ − sinϕ cosϕ sin2 ϑ − sinϑ cosϑ cosϕ
− sinϕ cosϕ sin2 ϑ 1− sin2 ϑ sin2 ϕ − sinϑ cosϑ sinϕ
− sinϑ cosϑ cosϕ − sinϑ cosϑ sinϕ sin2 ϑ


, (7)
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where ϑ, ϕ are the spherical angles defining the observation direction
corresponding to the direction of k. Equation (5) provides for the
possibility to directly compute an image as seen by an observer without
the need to explicitly generate the observation fields. The imaging
parameters such as observation bandwidth and observation aspect
range are contained in the point spread function (6).

2.2. Image Formation for Scattering Problems

In the case of a scattering problem, the electric currents in (1) are
induced by an incident field and are thus dependent on this field. An
incident plane wave with propagation vector ki is assumed to cause
equivalent scattering currents

Js(r′) = J(r′)e−jki·r′ , (8)

where J(r′) now represents the spatial variations of these currents
except for the extracted phase variations of the incident wave. In
the spectral domain image representation of (2), k is now no longer
equal to ks = kr̂, it is rather identified as

k = kr̂︸︷︷︸
ks

−ki . (9)

Under the assumption of a bistatic imaging configuration with one fixed
ki, the above derivations and in particular (5) are still valid. However,
in the monostatic case J(r′) may still depend on ki and interchanging
the integration orders in (4) will not be possible. Moreover, it
should be noted that J(r′) may contain further phase variations due
to particular scattering phenomena such as multiple interactions or
material influences. If this is the case, the integration orders in (4)
cannot be interchanged. However, in Section 2.4 it will be shown
how multiple interaction effects can explicitly be considered. Further
frequency and angle dependent terms such as reflection coefficients at
material interfaces could also be extracted from J(r′) and considered
within the point spread function. In the following, it is assumed that
the change of integration orders is possible and focus will be on bistatic
imaging.

2.3. Point Spread Functions Under Small Angle and Narrow
Bandwidth Approximations

In order to facilitate a deterministic evaluation of the point spread
function in (6), a small angle and narrow bandwidth approximation
around ϕ ≈ 0, ϑ′ = π/2 − ϑ ≈ 0 and k ≈ k0, respectively, is adopted
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in the following. In view of the 2D-illustrations of the monostatic and
bistatic k-space configurations in Fig. 1, the approximations

kx ≈ 2k, (10)
ky ≈ 2cgk0ϕ, (11)
kz ≈ 2cgk0ϑ

′, (12)

d3k ≈ 8c2
gk

2
0 dϑ′dϕ′dk (13)

can be derived, where the factor cg accounts for the fact that the
origin of the spherical coordinate system representation of K is located
at (kx, ky, kz) = (0, 0, 0) and (kx, ky, kz) = (k0, 0, 0) for the monostatic
and bistatic configurations, respectively. Consequently, cg = 1 in the
monostatic case and cg = 1/2 in the bistatic case. The expression
in (7) can also be simplified into




0 −ϕ −ϑ′
−ϕ 1− ϕ2 −ϑ′ϕ
−ϑ′ −ϑ′ϕ 1


 ≈

( 0 −ϕ −ϑ′
−ϕ 1 0
−ϑ′ 0 1

)
. (14)

The evaluation of the k-space integrals in the representation of the
point spread function (6) results then into

Pyy(r) = Pzz(r) =
k2

0

8π3
h

(
∆k,

2x

k0

)
h(∆ϕ, y)h(∆ϑ, z)e−j2k0x, (15)

Pxy(r) = Pyx(r) =
k2

0

8π3
h

(
∆k,

2x

k0

)
g(∆ϕ, y)h(∆ϑ, z)e−j2k0x, (16)

Pxz(r) = Pzx(r) =
k2

0

8π3
h

(
∆k,

2x

k0

)
h(∆ϕ, y)g(∆ϑ, z)e−j2k0x, (17)

where a bistatic configuration symmetric around the incident x-
direction has been assumed and the quantities ∆k, ∆ϑ,∆ϕ define the
extent of K as shown in Fig. 1. The 1D point spread functions h(T, t)
and g(T, t) are

h(T, t) = T si
(

T

2
k0 t

)
, (18)

g(T, t) = −jT
si

(
T
2 k0 t

)− cos
(

T
2 k0 t

)

t
. (19)

The off-diagonal terms vanish along the x-axis and cause higher-order
corrections with increasing distance to the x-axis.

The given point spread functions have been derived for rectangular
windows in frequency and aspect angle. The consideration of other
window functions is straightforward.
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Figure 1. 2D k-space illustration according to (9): (a) monostatic k-
vector, (b) bistatic k-vector, (c) monostatic integration domain Kmo,
(d) bistatic integration domain Kbi symmetric around the incident
direction, (e) direct comparison of monostatic and bistatic integration
domains.
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From the point spread functions, the corresponding spatial
resolutions can be obtained as (see, e.g., [1])

δx = δr ≈ p
c0

2∆f
, (20)

δy = δϕ ≈ p
c0

2f0∆ϕ
, (21)

δz = δϑ ≈ p
c0

2f0∆ϑ
, (22)

where c0 is the speed of light, f0 is the center frequency corresponding
to k0 and ∆f is the frequency bandwidth. p is an additional factor
which may account for different windowing functions (p ≈ 0.89 for the
rectangular window with 3 dB criterion).

For projected 2D imaging in the xy-plane, h(∆ϑ, z) is to be
replaced by 1.0 and for imaging in the xz-plane, h(∆ϕ, y) is to be
replaced by 1.0. Also, the constant k2

0/(8π3) must be replaced by
k0/(4π2) in both cases.

2.4. Imaging with Shooting and Bouncing Rays Simulations

In an SBR simulation [5, 6], the scattering current distribution Js

according to (8) is generated via discrete rays hitting the object.
For a dense enough grid of rays, the scattering currents without the
propagation term of the incident wave are

J(r′) =
N∑

n=1

∆AnJA,n e−jkln δ
(
x′ − xn, y′ − yn, z′ − zn

)
, (23)

where N is the number of rays, ∆An is the intersection area of
the nth ray tube with the scattering object surface and JA,n is the
surface current density magnitude of the nth ray. (xn, yn, zn) is the
exit location of the nth ray on the object. In the case of multiple
interactions, ln is the extra path length of the ray due to the multiple
interactions causing a linear phase change with k. Analog to the
propagation term of the incident wave, this phase term can also be
considered in the evaluation of the point spread function in (6). In
the small angle/small bandwidth approximation, this extra phase shift
will only influence the x-dependence of the point spread function and
can be considered as an additional spatial shift according to

J(r′) ≈
N∑

n=1

∆An JA,n δ

(
x′ − xn +

ln
2

, y′ − yn, z′ − zn

)
(24)
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equivalent to a shifted virtual exit location of (xn − ln
2 , yn, zn). The

resulting convolution in (5) thus becomes

Ĵ(r) = P̄(r) ∗
[

N∑

n=1

∆An JA,n δ

(
x− xn +

ln
2

, y − yn, z − zn

)]

= P̄(r) ∗ J(r). (25)

In a numerical simulation, this convolution can be evaluated on a ray-
by-ray basis, where the convolutions are directly evaluated employing
tabulated point spread functions, which are pre-computed either
analytically or numerically. However, a more efficient computation
approach is possible by utilizing FFT acceleration. Such a speed-
up is very important for practical simulations, if one keeps in mind
that many millions of rays are easily necessary for the simulation of a
complex target.

The numerical implementation of the imaging approach works
with a regular discrete representation of the imaging domain according
to

r = (u∆x, v∆y, w∆z) (26)

resulting in the discrete representation

Ĵu,v,w = P̄u,v,w ∗ Ju,v,w (27)

of the convolution in (25), where the discretization steps can be
adapted to the resolutions in the different spatial directions. The
discretization steps must, however, be chosen fine enough in order to
appropriately represent the point spread functions in (17). This means
that the sampling rate must be larger than the corresponding Nyquist
frequencies, where in particular the e−j2k0x-term in in (17) requires at
least a sample distance of less than λ0/4 in range direction.

2.5. Fast Fourier Transform Accelerated Imaging

Employing the convolution theorem of the discrete Fourier transform,
the discrete convolution can by carried out as

Ĵu,v,w = FFT−1
{
FFT

{
P̄u,v,w

} ◦ FFT {Ju,v,w}
}

, (28)

where the discrete Fourier transforms are efficiently computed by FFT
and where the ◦ denotes an element wise Hadamard product in the
discrete Fourier domain. Also, appropriate zero-padding must be
considered in order to avoid aliasing errors.

The difficulty with the FFT based implementation is that Ju,v,w

must be restricted to its discrete samples, whereas the ray exit points
in (25) may have arbitrary locations in the imaging space. Therefore,
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the δ-impulses in J(r) will be represented by interpolations from
regular grid samples, what is actually an anterpolation of the ray
contributions into the regular grid. An appropriate interpolation or
anterpolation formula can be constructed by Lagrange polynomials
according to [22]

Lq(r) =
3∏

l=1

N l
p∏

m=1

xl − xl
q

xl
m − xl

q

and q 6= m (29)

with r = (x1, x2, x3) = (x, y, z). Obviously, l indicates the Cartesian
vector component, q indicates an interpolation point in the regular grid
corresponding to particular (u, v, w)-indices and N l

p is the number of
interpolation points in the particular dimension l. Also, m selects those
grid points with the smallest distances to r. An N l

p-point Lagrange
interpolation corresponds to polynomials of order N l

p − 1.
For the interpolation, it must be kept in mind that the δ-impulses

in J have infinite spectral content causing unavoidable aliasing errors.
Therefore, the chosen sampling rate must be large enough in order to
assure that the aliasing errors are out of the useful low-pass spectrum
generated by the spectral multiplication with the low-pass limited
FFT

{
P̄u,v,w

}
. Employing (17), FFT

{
P̄u,v,w

}
can be calculated

analytically but numerically generated point spread function spectra
can also be used. Oversampling at least by a factor of 2 is recommended
in a numerical implementation.

A reduction of the FFT and of the interpolation from 3D to 2D
is straightforward.

By employing the FFT acceleration, the computation time for
image generation becomes negligible as compared to the ray-tracing
time within the SBR solver.

3. RESULTS

In all simulation examples, the vertical polarization employing the Pzz-
component of the point spread function has been considered. Higher
order terms due to off-diagonal terms in P̄ have not been included.

3.1. Metallic Plate

The first considered example is a metallic plate as illustrated in Fig. 2.
The plate is assumed to be much larger than the wavelength λ0 and it is
rotated by 30◦ with respect to the incident direction. An incident plane
wave from x-direction causes homogeneous PO surface currents on the
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Figure 2. Geometrical configuration of a metallic plate: (a) 3D
configuration, (b) projection in xy-plane.

plate (constant magnitude, linear phase with progression dependent
on frequency), which are investigated in the following.

For this simple configuration, the Fourier transform of the
homogeneous PO currents can be calculated analytically and from this
it is easily found that the 2D ISAR image in the xy-plane should consist
of two isolated scattering centers at the edges of the plate, i.e.,

Ĵz(x, y) = I0(Pzz(x + x1, y + y1)− Pzz(x− x1, y − y1)) (30)

where I0 is a constant dependent on the strength of the incident wave.
Fig. 3 shows 2D ISAR images generated with the direct bistatic SBR
based imaging approach. The direct convolution according to (25)
shows the two scattering centers clearly resolved. The interpolation
based fast imaging approaches according to (28) show the scattering
centers also clearly, but the suppression of the currents along the plate
is limited. The Lagrange interpolation with 5 interpolation points
results in better suppression than the linear interpolation.

3.2. Complex Metallic Reference Scattering Object

To study different scattering effects, a SLICY -like reference object is
used. Similar targets have been investigated by other researchers as
well, e.g., [15]. Fig. 4 shows the metallic geometry of the object, which
exhibits a series of geometric features causing particular scattering
phenomena. Also seen in the figure are the incident or observation
directions and a projection of the geometry into the chosen 2D
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Figure 4. Reference object SLICY : (a) Geometry with incidence
(observation) direction, where ϑ is kept constant and ϕ is varying
around ϕ = −20◦ for 2D imaging, (b) projection into 2D imaging
plane.

imaging plane. The size of the ground plane of the object is 1 m by
1m. In Fig. 5, a conventional 2D ISAR image is illustrated where
the monostatic scattering data has been computed by an MLFMM
accelerated MoM solver [4]. Important scattering contributions in the
image are highlighted: ¬ is due to triple reflections at the corner
reflector on the top side of the object,  indicates a further corner
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reflector at the front side of the plate, ® and ¯ are double reflections
at the connection of the cylinders with the plate, ° and ± are due to
scattering contributions at the front corners of the plate, ² indicates
multiple interactions in the open cylinder and ³ is due to multiple
interactions between plate and cylinder.

ISAR images obtained from SBR simulations are shown in Fig. 6.
Compared to the MoM based image, they exhibit some of the
scattering phenomena less pronounced, what is expected due to the
approximations of the SBR approach. Differences can in particular
be found at lower signal levels due to higher order mechanisms or
diffraction effects, which have not been captured within the SBR
simulations. From Fig. 6 it can, however, be seen that there is,
in general, also a good agreement between the images based on the
classical Fourier processing of monostatic scattering data and on the
bistatic images obtained by the fast direct approach with FFT and
interpolation. The main scattering centers, based on double and triple
reflections coincide well. Some discrepancies can be observed regarding
the peak levels of the triple reflections, which can be attributed to the
lack of angular diversity within the fast bistatic simulation approach.
In order to be able to compare with the MoM results and to achieve the
desired resolution, the relative bandwidth is quite high. For reduced
bandwidths in frequency and aspect domains, the presented fast
algorithm performs even better. For the chosen simulation parameters
and the utilized computer with one core, the computation time for
generating the image in Fig. 6(a)) was about 3.2 hours as compared to
about 3.5 min required for the image in Fig. 6(b)).
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Figure 5. 2D ISAR image of object SLICY generated by 32 × 32
Fourier processing from MoM scattering data, f0 = 10 GHz, ∆f =
3GHz, Hamming window.
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32 × 32 Fourier processing of monostatic scattering data from SBR
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Figure 7. 3D ISAR image projected on the surface of the metallic
object, obtained with fast direct algorithm.

Finally, a 3D image of the SLICY object is shown in Fig. 7. A fully
3D image has been obtained by the fast bistatic direct approach with
FFT acceleration and 5-point Lagrange interpolation and the image
has been projected onto the surface of the metallic object. It is clearly
seen how the important scattering centers correlate with the geometric
features of SLICY.
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3.3. Automotive Vehicles

Figure 8 shows 2D images of a passenger car and compares the
conventional ISAR Fourier processing working with scattering data
with the direct image formation. Both images are quite similar, where
the directly generated image is even free of the artefacts along the
cross range direction in the original ISAR image, which are often
observed in coherently processed scattering fields obtained from SBR
simulations and which are due to discretization errors [23]. For the
chosen simulation parameters and the utilized computer with one core,
the computation time for generating the image in Fig. 8(a) was about
161 hours as compared to about 2.6 hours required for the image in
Fig. 8(b).

Another 2D ISAR image of a passenger car is depicted in Fig. 9.
For this example with a model geometry consisting of more than
600 000 triangular facets, an observation configuration with 30◦ nose-on
angle has been selected. Due to the size of the wheels and wheelhouses
multiple reflections play an increased role, which can be clearly seen
in form of delayed scattering contributions shifted away from the
radar observation point. A direct fast imaging algorithm with FFT
acceleration is kind of mandatory for such a complex object. For the
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Figure 8. Comparison of 2D monostatic ISAR image simulations
of a passenger car at 10 GHz, ∆f = 1.5GHz, Hamming window,
δr ≈ δϕ ≈ 0.13m: (a) Image based on monostatic 2D Fourier
processing, (b) image obtained by direct bistatic imaging with FFT
and interpolation.
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the direct fast algorithm at 24GHz, ∆f = 3 GHz, Hamming window,
δr ≈ δϕ ≈ 0.07m. The light scattering center in the rotation center
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Figure 10. 3D ISAR image projected on the surface of the car body,
obtained with fast direct algorithm. The image was obtained with a 3D
grid of 256× 256× 128 image points in x, y, z-directions, respectively,
and ∆f = 500MHz.

chosen simulation parameters and the utilized computer with one core,
the computation time for generating the image in Fig. 9 was about
11 hours.

As a final example, a 3D image of a passenger car is considered.
The 3D image was generated by the fast direct imaging approach based
on SBR simulations and the scattering centers have been projected
onto the surface of the car body. The results are illustrated in Fig. 10
and the dominant scattering centers can clearly be attributed to the
corresponding geometrical properties of the car. The computation time
for generating this image was about 30 min.
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4. CONCLUSION

The direct simulation based image domain formation of Inverse
Synthetic Aperture Radar (ISAR) images has been derived in a fully
vectorial manner for 3D and 2D image generation. The dyadic
point spread functions have been given analytically for the case of
small angle/small bandwidth approximation. The approach has been
implemented together with a Shooting and Bouncing Rays (SBR)
approach for the simulation of metallic scattering objects employing
the Physical Optics (PO) approximation, where direct convolution
of the individual rays with the pertinent point spread functions can
be performed. Tremendous speed-up of the image formation can be
achieved by Fast Fourier Transform (FFT) based acceleration of the
convolutions including interpolation/anterpolation of the individual
ray contributions. Important properties of the various techniques have
been discussed and a variety of imaging examples has been considered.
It was found that the direct image domain formation of ISAR images is
an extremely efficient technique for the generation of realistic bistatic
images.
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