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Abstract—Antenna array beamformers suffer from performance
deterioration in the presence of mutual coupling (MC) between
array sensors. In this paper, we present a theoretical analysis in
terms of the output signal-to-interference-plus-noise ratio (SINR) for
the performance of antenna array beamformers under MC effects.
Based on the model of a distortion matrix to encapsulate the MC
effects, a closed-form expression for the SINR is derived that is
shown to accurately predict the SINR obtained in simulations. This
theoretical formula is valid for any distortion matrix estimated from
collected measurement data. The SINR formulas provide insights
into the influence of the MC effects on the performances of the
linearly constrained minimum variance (LCMV) beamformer and the
eigenspace-based (ESB) beamformer. It is shown that the ESB
beamformer outperforms the LCMV beamformer under MC effects.
Moreover, we derive the formulas for computing the eigenvalues of
signal correlation matrix under MC effects. Simulation results are
presented for confirming the validity of the theoretical results.
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1. INTRODUCTION

In the literature, there are two popular antenna array beamformers,
namely the linearly constrained minimum variance (LCMV) beam-
former [1] and eigenspace-based (ESB) beamformer [2]. The LCMV
beamformer finds its optimal weight vector wpoyy by minimizing
the beamformer output power with a linear constraint to ensure unit
power gain in the desired signal direction. The weight vector w oy
is composed of two weight vector components contributed by the signal
subspace and noise subspace, respectively. In contrast, the ESB beam-
former finds its optimal weight vector w ggp from wcary by discarding
the weight vector component contributed by the noise subspace. For
these two steered beam beamformers, the only priori knowledge for
finding the optimal weight is the actual direction vector of the desired
signal. However, some uncertainties in the spatial information result
in a mismatch between the steering vector and the direction vector of
the desired signal. Many results have been reported on how to im-
prove the performance of the steered beam beamformers against the
mismatch [3-8].

A spatial uncertainty which is seldom taken into account during
the adaptation process is the actual electromagnetic characteristics
of an antenna array system. In practice, array sensors have physical
dimensions and certain radiation characteristics. Under the situation
where the distance between two array sensors is too short to assume
that the sensors are isotropic point sensors isolated from each other,
each array sensor sees a different environment and, hence, produces
different individual radiation pattern. This is because some of energy
in an array sensor is coupled to the others. This phenomenon is referred
to as mutual coupling (MC). All signals received by an antenna array
are affected by MC and the data will be no longer independent. The
MC between the array sensors can significantly change an antenna
array’s behavior and its communication characteristics [9-12]. The
predicted array system performances may not be accurate when we
ignore the MC effects. Recently, research endeavor has been devoted to
tackle the MC effect for improving the performance of an antenna array
beamformer [8,10,12,13] and the performance of bearing estimation
using a two-dimensional uniform circular array (2-D UCA) [26].

In this paper, we analyze the system performance in terms of the
array output signal-to-interference-plus-noise ratio (SINR) for adaptive
arrays of arbitrary geometry under the MC effects. The MC effects are
taken into account by using a distortion matrix model which is widely
considered in many recent reports [8-14]. This model describes how
the individual array sensors are coupled with one another. According
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to this model, we insert a mutual coupling matrix (MCM) in the
data model for the signal received by an array beamformer. Each
entry of the MCM represents the MC coefficient between two related
array sensors and can be estimated from collected measurement
data [11,12,14,15]. We first investigate the performance of the LCMV
beamformers which are widely applied for achieving beamforming with
various goals [16-21]. The ESB beamformers find their optimal weight
vector from that of the LCMV beamformers by discarding the weight
vector component contributed by the noise subspace. Moreover, it was
shown that the ESB beamformer has better convergence properties and
is less sensitive to pointing errors than the LCMV beamformers [22-24].
The performance of the ESB beamformers in the presence of MC effects
is also investigated. Theoretical formulas for expressing the output
SINRs of the LCMV and ESB beamformers are derived, respectively.
Compared to the result presented in [25], our SINR formulas provide
insights into the influence of the MC effects on the performances of the
LCMV beamformer and the ESB beamformer. From our theoretical
results, we note that the ESB beamformer outperforms the LCMV
beamformer because the LCMV beamformer has a lower output signal-
to-noise power ratio (SNR) than the ESB beamformer. As to the
output interference power, LCMV and ESB beamformers have about
the same ability in suppressing the interference. The closed-form
expression for the SINR is shown to accurately predict the SINR
obtained in simulations. Moreover, the formulas for computing the
eigenvalues of the signal correlation matrix are derived under MC
effects. Simulation results show that the effect of MC degrades the
LCMV beamformer’s performance even for large intersensor spacings
and reduces the eigenvalues associated with the signal sources for small
intersensor spacings.

This paper is organized as follows. In Section 2, the LCMV and
ESB beamformers are briefly reviewed. The effect of MC on the output
SINR for each of LCMV beamformer and ESB beamformer is evaluated
in Section 3. Section 4 presents computer simulation results. Finally,
we conclude the paper in Section 5.

2. BACKGROUND

Let an antenna array of arbitrary geometry have M array sensors. A
narrow-band far-field desired signal and J uncorrelated interferers are
impinging on the array. The data vector received by the array can be
expressed as follows:

x(t) = As(t) + n(t), (1)
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where s(t) = [sq(t) s1(t)...5;(t)]T contains the complex waveforms
sq(t) of the desired signal and s;(t) of the jth interferer, j =1,2,...,J,
respectively, A = [ag a; ... ay] contains the direction vectors ag
of the desired signal and a; of the jth interferer, j = 1,2,...,J,
respectively, and n(t) = [ny(t) na(t) ... np(t)]7 represents the
spatially white background noise vector. The superscript T' denotes
transpose operation. Assume that s(t) and n(t) are uncorrelated, the
M x M ensemble correlation matrix of x(¢) is given by

R, = E {x(t)x(t)} = ARA" + 021, (2)

where the superscript H denotes complex conjugate transpose, Ry =
E{s(t)s(t)} denotes the signal correlation matrix, o2 is the noise
power, and I, is the identity matrix with size M x M. Let the array use
a weight vector w = [w; wy ... w M]T for processing the received data
vector x(t) to produce the output signal y(t) = w’x(t). According to
the LCMV beamforming [1], the optimal weight vector can be found

by solving the following constrained optimization problem:
Minimize FE {|y(t)|2} = wlR,w Subject to wila,=1, (3)

where a; is the steering vector in the look direction. Thus, the optimal
weight vector is given by

wromy = uR; as, (4)

where p is given by (allR;'a;)™!. Assume that the received signal
number is less than the array element number, i.e., (J 4+ 1) < M, the
correlation matrix R, can be eigendecomposed as

M
R, =Y Meje/ = EsAsE{ + EyANER, (5)
=1

where the eigenvalues A\j 22 2...2Aj41 > Ajpo=... = Ay = 07%

are the eigenvalues of R, in descending order, e; is the eigenvector
associated with \;, ¢ = 1,2,..., M, Eg = [e] ey ... ejy1] is
the basis matrix spanning the signal-plus-interference subspace (SS),
Ag = diag{\1 A2...A\j11}, Exn = [eji2...e)] is the basis matrix
spanning the noise subspace (NS), and Ay = 021,y 1. It is easy to
show that the inverse of R, is given as follows:

M
R;' =Y\ leel = EsAS'EY + EyAEL. (6)
=1

Accordingly, (4) can be rewritten as

wromy = pR; tas = p [EsAglEgl + ENA]_\,lE%] a. (7)
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We note from (7) that the LCMV weight vector wycasv is contributed
by the SS component wrcnvs and the NS component wroamva,
respectively. They are given by

wremvs = 1 [EsAg'Ef ] a; (8)

wremvy = i [ENANEY] a,. 9)
In contrast, the ESB beamformers discard wicpsy v directly and takes
only wronvs as the optimal weight vector wggp given by [2]

wess = pe[EsAg ' Ef]a,, (10)

where p, is given by (afEsAglEgas)_l. When the steering vector ag
is set to the direction vector ay of the desired signal, the NS component
WroMyvN 1S a zero vector according to the orthogonality between the
direction vector of the desired signal and the noise subspace, i.e.,
E%aS = Eﬁad = 0. In this ideal case, the optimal weight vector
obtained from R, lies within the SS subspace. Consequently, both the
LCMV beamformer and the ESB beamformer demonstrate the same
system performance because wWroyy = Wromyvs = Wepsp. However,
due to some imperfections in practical environment, the computed
wronmy does not remain in the signal subspace because wropyv v is
not equal to zero. This leads to the performance degradation of the
LCMV beamformers [2].

3. PERFORMANCE ANALYSES OF ARRAY
BEAMFORMERS WITH MC EFFECTS

In this section, we evaluate the effect of MC on the performance
in terms of output SINR for the LCMV and ESB beamformers,
respectively. The effect of MC is taken into account by using a
distortion matrix model [8-14]. According to this model, we insert a
mutual coupling matrix (MCM) C in the data model for the received
signal as follows:

xc(t) = CAs(t) + n(t). (11)
In the following analysis, we consider the case of one interferer
uncorrelated with the desired signal to simplify the presentation. Let
the powers of the desired signal s4(¢) and the interferer s (t) be pg and
p1, respectively. The data vector of (1) becomes

xc(t) = s4(t)Cay + s1(t)Ca; + n(t), (12)
where the subscript ¢ denotes the case with MC effect. The M x M
ensemble correlation matrix of x.(t) is given by

R,.=F {xc(t)xc(t)H} = CAR,ACH + U?LIM = pdCadagCH
+p10a1a{ICH + UZIM, (13)
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where pg = E{sq(t)sq(t)"} and p; = E{s1(t)s1(t)"}. Similar to (5),
we have the eigendecomposition for R, as follows:

M
Rxc - Z )\iceiceg = ESCASCEgc + ENCANCE%@ (14)
i=1
Let the unitary matrices E = [EgE x| based on (5) and E¢c = [Eg.En.]

based on (14), respectively. We obtain the following diagonal matrices
from (5) and (14)

Ay =E"R,JE = EY [AR,AY]E+E” [021)] E = Ay +As, (15)
Ayoe=E{ R, JEc = EZ [CAR,AYCY] Ec + EZ [021y] Ec
=Aic + Ay, (16)
where
A1 =E" [AR,AY]|E = diag{p1 p2 0 ... 0},
Ai. = Ef [CAR,AYCY| E¢ = diag{pic p2. 0 ... 0}, (17)
A =E" [02Iy]E, A =E{ [021y] Ec.
The equality A; = Ef[AR,AY]E leads to
AR,AY = EAEX. (18)

Substituting (18) into Aj. = EZ[CARATCHIEs yields Ay, =
E&[CEAEPCH]E: and

CEAEFCH = EqA EE. (19)
Expanding (19) and performing some manipulations gives

H~H H~H H H
p1Cere] C7 + paCerey C7 = pic€1c€], + P2c€2:€5,

= pgCagallC + pCajal’CH. (20)
Since E¢ = [Eg.En.] is a unitary matrix, we have
Es.EZ + En.EYL =1y, (21)
It follows from (21) that
eicell + eyell =1y — En.EX.. (22)

Using (20) and (22), we obtain the following expressions for the
eigenvectors e, and e,
o ol plCelefICH + pQCegech — P2e (IM — ENCE%C)
1 = )
tle Plc - P2c (23)

H p1Cerel! CH + pyCerel! CH — p1. (Iny — En.ER)

€2c€2, =
P2c — Ple




Progress In Electromagnetics Research B, Vol. 33, 2011 297

Moreover, we have from (17) that the eigenvalues pi. and py. of
CAR,AHCH satisfy

pic + pac = trace (CAR,AY CM) = trace (R,AYCYCA)

H~H
_ pa O a; C
=trace <{ 0 p ] all CH [ Cay Cay ])
=pgaf CHCay + pral’CfCay,
H~H pq 0 (24)
Plep2c = det (RSA C CA) = det <[ 0 p ])

a?CHCad agCHCal

allCHCa; al’/CHCa;

o |

=pap1 (adHCHCadafICHCal —a{{CHCadafCHCal) .

From the formulas given by (24), we can easily compute p1. and pa.
which are the nonzero eigenvalues of the signal correlation matrix in
the presence of MC effects. Thus, the signal-related eigenvalues ;. and
Agc of (14) are given by . = p1.+02 and Ag. = po.+ 02, respectively.

3.1. The Output SINR of the LCMYV Beamformers

The optimal weight vector of the LCMV beamformers with a; = ay is
given by
wremve = peRo.aq, (25)

where 4. is given by (all R a,) 1.

3.1.1. The Output Desired Signal Power

Using the optimal weight vector given by (25), we compute the desired
signal power pg, at the array output

Pdo=Pd ’WLCMVcCad} =DPdle |ad [ESCASCE +ENCANCENC}Cad‘
(26)
From (26) and the derivation shown in Appendix A, pg, is given by
Pape
(p1c + 02)* (p2c + 02)?

Pdo =

2
(paall C Cay + pral’CH# Cay + o) all Cay

27
—Ppqay; Cadad HCHCa, — pray Cala1 HCoHCa, (27)



298 Lee and Chen

3.1.2. The Output Interference Power

Using the optimal weight vector given by (25), we obtain the
interference power p;, at the array output

2 _ _ 2
Pio=p1|Wionv.Car| =p1id |af [EscAg Ef. + EncARLEN.]Cay|”.
(28)
From (28) and the derivation shown in Appendix B, p;, is given by

Dio =
Py
( v < % ‘(pdad CHCay + p1al’CflCa; + 02)all Ca,
Plc T Un) (pQC + Un)
—pdagCadafCHCal —plafCala{{CHCalf. (29)

3.1.8. The Output Noise Power

Using the optimal weight vector given by (25), we compute the noise
power p,, at the array output

Pro = oalwromve)® = onpiall [EscAg?ES, + Ex.AEN.] aq. (30)
From (30) and the derivation shown in Appendix C, py, is given by

( DPady HCHCay + pla{ICHCal + 20 )
(pdad CadaHCHad + prag Cala CHad)
+ (paall C"Cay + pral’ CH Cay + 02)2
(M —all En.EX a4)+picpac (] En.EX ag — M)

(p1e 4+ 02)%(p2c + 02)?

_ 2 2
Pro = O’TLMC

1
+ glucad ENCENcad (31)

’I’L

Following the results of (27), (29), and (31), it is easy to show
that the output SINR of the LCMV beamformers is given by (D1) in
Appendix D.

3.2. The Output SINR of the ESB Beamformers

The optimal weight vector of the ESB beamformers with a; = ag is
given by

WEsBe = fice |[BscAg ES,] aq, (32)
where fic. is given by (aff EgcAgclEgcad)_l to satisfy the constraint
Whspedd = L.
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3.2.1. The Output Desired Signal Power

Using the optimal weight vector given by (32), we compute the desired
signal power pg, at the array output

2 _ 2
Pdeo = Pd ‘WgSBccad‘ = pdﬂze |a¢Ii_I [EScAgclEgc]Cad‘ . (33)

From (33) and the fact that a [Ey.ALEX JCa, = 0, we can use the
similar manner shown by Appendix A to obtain pge, as follows:

2
DPd
Pieo =7 +02)2lz;2 To2)? |(paaf C" Cay+piaj’ C" Cay+07)a] Cay
1c C
—paay Cadad CHlCa, — piay Ca1a1 CHCad‘ (34)

3.2.2. The Output Interference Power

Using the optimal weight vector given by (32), we obtain the
interference power p1, at the array output

Pico = 11 |Wisp.Can|” = puyi2, [alf [BsAg EL] Cay*.  (35)

From (35) and the fact that a [Ey.ALEX JCa; = 0, we can use the
similar manner shown by Appendix B to obtain p;., as follows:

2
1
Pico = Piftce > |(paalf CT Cag+pial’ C¥ Ca; +02)alf Cay
(p1ctoz)? (p2c+or)
—Ppaay Cadad cHCa, — plaé{Cala{ICHCal ’2 . (36)

3.2.8. The Output Noise Power

Using the optimal weight vector given by (32), we compute the noise
power pneo at the array output

Pneo = 0'721|WESBC|2 = O'nﬂcead [ESCASC ESC} aq. (37)

Following the same manner shown in Appendix C without considering
the term o2 p2,all [EncAy E A lag, we can easily obtain ppe, as follows:

(pdad CHCay + piay HoHCa; + 202)
(pdad Caga HCHa, —I—plad Caja;] CHad)
+ (paalf CfCay + pral’CHCay + o )
Preo = Oplice (M —aExcEY 2d) +p1cpe (25 EncEnead—M)
(p1c +02)*(pac + 02)?

(38)
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Following the results of (34), (36), and (38), it is easy to show
that the output SINR of the ESB beamformers is given by (E1) of
Appendix E.

Comparing (D1) and (E1), we observe that the denominator of
SINRzcamv has an additional term U given by:

1
o2
Un

2
+ (pdaé{CHCad + pla{{CHCal) o2 + aﬁ) alEn.EX ay

U (pap1 (aé{CHCada{ICHCal —al CHCadaCIl{CHCal)

1
= ﬁ(fhcﬂ?c + (plc + PZc)Ug + 03)23—CI[—IENCE%Cad (39)

n

according to (24). This term represents a positive quantity. Therefore,
the ESB beamformers outperform the LCMV beamformers in the
presence of MC effects since SINRroymv < SINRgss.

4. COMPUTER SIMULATION EXAMPLES

Here, we present several simulation examples for confirming the
theoretical results. For all simulation examples, we adopt the MCM C
suggested by [11,12,14,15] as follows:

C=(Za+ Zr)(Z+ ZrIy )7, (40)

30

—+— Theoretical LCMV Without MC

Output SINR (dB)

20F m

-30

L L L L L L L L L L L
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Number of Data Snapshots

Figure 1. The output SINR versus number of snapshots for
Example 1.
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where Z 4 is the sensor’s impedance in isolation, Z7 is the impedance
of the receiver at each sensor and is set to the complex conjugate of Z 4
to achieve an impedance match for maximum power transfer. Consider
the case of an antenna array with the side-by-side configuration and
the dipole length = \/2, where X is the wavelength of signal sources.
Then, Z is the mutual impedance matrix given by [11, 12,14, 15]

Z1 Ziz o Zim
Zo Loy - Zom
Zvn Ly o LM
where the entry Z,,, 1 <m, n < M, is given by
30[0.5772+1In(2k7) — C3(267)] + J[30(Ss(267))] = Za,
Z, for m=n . (42)

30[2C;(po) — Ci(p1) — Ci(pz2)] — j[30(2S; (ko)
—Si(pu) — Si(p2))], form#n

where k = 2m/A, v = A/2, po = kdp, 1 = (1/d2 +92+7), p2 =
(4 /d2 +72—7), j = V—1, dj, denotes the horizontal distance between

the two array sensors, and Ci(a) = [ (cos(x)/x)dz and Sj(a) =
Jy (sin(z)/z)dz are the cosine and sine integrals, respectively. The
plots of the magnitude of the normalized impedance matrix elements
of Z for an array of M = 12 and v/ = 0.5 with terminating impedance
Zp = Z 4 for a linear and a circular array geometries, respectively can
be found in the Figure 1 of [11]. The number M of array sensors
is 8. All signals used for simulations are binary phase shift keying
(BPSK) signals with rectangular pulse shape. The received noise is
assumed to be complex additive white Gaussian noise with mean zero
and variance equal to one. To avoid the finite sample effects, 30000
data snapshots are taken to compute the sample correlation matrices
f{xc, f{dd, Rii, and f{m for the received data vector, desired signal,
interferer, and noise, respectively. The optimal weight vectors W oumve
and Wggp. corresponding to the LCMV and ESB beamformers are
obtained from (25) and (32) based on R,., respectively. Then, the
simulated SINRcyv and SINRggp are calculated as follows:

~H S
__ w Rygw
LCMVetVddW LCMVe
SINRLcAfy =~ LOMVeTdITLOMVE . (43)
WEonveRiaWLemve + Wi cnve RnnWLemve
~ H A ~

N oY w RiaWpsp

SINRpsp = —— ESBc < . (44)

~ H -~ -~ H ~
WispRiWESBe + Wigp RunWESBe
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The number of Monte Carlo runs is 200. In contrast, the theoretical
results obtained by using the theoretical formulas (D1) and (E1) are
also presented for comparison in each example. To demonstrate the
fact that SINRromy < SINRggsp for each example, we present a
figure plotting SINRgsp (dB)-SINRcav (dB) versus the power of
the desired signal. From (D1) and (E1), it is easy to show that

SINR g55(dB) — SINRzcarv(dB) = 10logq <1 + ‘U/) . (45)

where V' denotes the denominator of SINRggp and U is given by (39).
The term En.EX  required by U and V of (45) is given by IM—ESCEIS{C7
where Eg, is obtained from the eigendecomposition of R, of (13).
Ezample 1: We consider that a desired signal with SNR equal to
15dB and an interferer with SNR equal to 25 dB are impinging on
a uniform linear array (ULA) from direction angles 65 and 6; equal
to 40° and 60° off array broadside, respectively. The ratio of the
spacing d between two adjacent sensors to the wavelength A of the
signals is set to 0.5. Figure 1 shows the output SINRs versus the
number of data snapshots. Figure 2 plots the simulated difference
SINRgsp — SINRzoav and the theoretical difference given by (45)
versus the number of data snapshots. As we can see from Figures 1 and
2, the difference between the simulated and theoretical results is due
to the finite sample effects when using a small number of data samples,

35

34 -
33F -1
32F -1
31F -1
30F -1
00o0o0o0DoQRQEeQE R EEEEELELELEEEEFEQ
29F + o+

28 1
27F -1
26 -1
25F -1

24} E

Difference of SINR .\, and SINRg¢, (dB)

23F E

22F T
+ Simulated SINRESB(dB)-SINRLCMV(dB)
o Theoretical ]ﬂ*logm(]+U/V)
20 1 1 1 I L
0 2000 4000 6000 8000 10000 12000

Number of Data Snapshots

21F

Figure 2. The output SINR difference versus number of snapshots
for Fxample 1.
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e.g., the number of data samples is less than 5000. Figure 3 depicts
the output SINRs versus the desired signal power with the SNR of
the interferer fixed at 25 dB. Figure 4 presents the simulated difference
SINRgsp — SINRpcav and the theoretical difference given by (45)
versus the desired signal power with the SNR of the interferer fixed
at 25dB, respectively. From these figures, we observe that the ESB
beamformer outperforms the LCMV beamformer in the presence of MC
effects. Moreover, the experimental results confirm the validity of the
theoretical analyses presented in Section 3. We present array output
SINR versus the intersensor spacing d in Figure 5. The MC affects
the array performance of the LOCMV beamformer significantly even for
large intersensor spacing (d > A/2). Figure 6 depicts the simulated
difference SINRgsp — SINR o and the theoretical difference given
by (45) versus the intersensor spacing d. Figure 7 shows the eigenvalues
A1e and Ao, versus the intersensor spacing d. We note that the MC
reduces the eigenvalues associated with the signal sources for d < .
Ezample 2: We consider that a desired signal with signal-to-noise
(SNR) equal to 15dB and an interferer with SNR equal to 25dB are
impinging on a uniform circular array (UCA) from direction angles
[¢s, 05] and [¢i, 0;] equal to [50°, 60°] and [30°, 20°], respectively, where
¢ and 6 represent the azimuth and elevation angles, respectively. The
ratio of the spacing d between two adjacent sensors to the wavelength
A of the signals is set to 0.5. Figure 8 shows the output SINRs versus
the number of data snapshots. Figure 9 plots the simulated difference

60

O Simulated LCMV

50 —— Theoretical LCMV 3
O Simulated ESB

---- Theoretical ESB

—+— Theoretical LCMV Without MC

Output SINR (dB)

-40F ]

-50 1 1 1 1 1 1 1 1 1
~-10 -5 0 5 10 15 20 25 30 35 40

SNR of Desired Signal (dB)

Figure 3. The output SINR versus desired signal power for Ezample 1.
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50 T T T T T T T T

45k B 1

35F 1

30f B E

251 E
O Simulated SINR ¢ (dB)-SINR, , (dB)

20k ® + Theoretical lO*logw(l-ﬁ-U/V) h

LMV

Difference of SINR .\, and SINR¢, (dB)

0 B 1 1 1 1 1 1 1 1
-10 -5 0 5 10 15 20 25 30 35 40

SNR of Desired Signal (dB)

Figure 4. The output SINR difference versus desired signal power for
Example 1.

30 T T T T T T T T T

Output SINR (dB)

O  Simulated LCMV
— Theoretical LCMV
O Simulated ESB
Theoretical ESB
—+— Theoretical LCMV Without MC
10 1 1 1 1 1 1 1 1 1

0.5 1 L5 2 2.5 3 35 4 45 5
Intersensor Spacing d (A)

Figure 5. The output SINR versus inter-sensor spacing for Fxample 1.

SINREgsp — SINRpcpv and the theoretical difference given by (45)
versus the number of data snapshots. As we can see from Figures 8
and 9, the difference between the simulated and theoretical results is
due to the finite sample effects when using a small number of data
samples, e.g., the number of data samples is less than 5000. Figure 10
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depicts the output SINRs versus the desired signal power with the
SNR of the interferer fixed at 25dB. Figure 11 presents the simulated
difference SINRgsp — SINR v and the theoretical difference given

30 ET T T T T T T T T
- O Simulated SINR  (dB)-SINR, _, (dB)
] 4+ Theoretical lO*logm(l+U/V)
]
251 - i
]
3 By 8 B
= B B -
] B ®H
& 20} B E
z o . B B
7 B &
= B
<, L &
= L -
2 15F@ &
z B B
z ® f
s L Y] a® B
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by (45) versus the desired signal power with the SNR of the interferer
fixed at 25dB, respectively. From these figures, we observe that the
ESB beamformer outperforms the LCMV beamformer in the presence
of MC effects. Moreover, the experimental results confirm the validity
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Figure 8. The output SINR versus number of snapshots for
Example 2.
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of the theoretical analyses presented in Section 3. We present array
output SINR versus the intersensor spacing d in Figure 12. The MC
affects the array performance of the LCMV beamformer significantly
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Figure 10. The output SINR versus the power of desired signal for
Example 2.
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Figure 11. The output SINR difference versus the power of desired
signal for Example 2.
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even for large intersensor spacing (d > A/2).
the simulated difference SINRgsp — SINRcav and the theoretical
difference given by (45) versus the intersensor spacing d. Figure 14
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Figure 14. The signal eigenvalue versus inter-sensor spacing for
Example 2.

shows the eigenvalues \i. and A9, versus the intersensor spacing d. We
note that the MC reduces the eigenvalues associated with the signal
sources for d < 0.4\.

5. CONCLUSION

This paper has investigated the performance of adaptive array
beamformers in the presence of the mutual coupling (MC) between
array sensors. Using the model of a distortion matrix to encapsulate
the MC effects, we have derived a closed-form expression for the
output signal-to-interference-plus-noise ratio (SINR) for each of the
linearly constrained minimum variance (LCMV) beamformer and the
eigenspace-based (ESB) beamformer. The obtained SINR formulas
provide insights into the influence of the MC effects on the performance
of the array beamformers. It is shown that the ESB beamformer
outperforms the LCMV beamformer under MC effects. The theoretical
results are shown to accurately predict the SINRs obtained in
simulations. =~ Moreover, the effect of MC degrades the LCMV
beamformer’s performance even for large intersensor spacings and
reduces the eigenvalues associated with the signal sources for small
intersensor spacings. Finally, the derived theoretical SINR formulas
can also be used to evaluate the influence of other spatial uncertainties
on array beamformer’s performance if the spatial uncertainties can be
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represented by a distortion matrix model. Although it is not an easy
task to derive the formulas for the case of multiple desired signals and
interferers, we are currently investigating the possibility of obtaining
the appropriate results based on the results presented in the paper.

APPENDIX A.

Derivation (27)
From (26), we have

_ _ 2
Pao = papi? |a Eg A EL.Cay + all En AGER Cag|”. (A1)

Since the term af E NcAﬁlcEﬁcCad = 0, we only have to consider the

term aé{ ESCAggEgCCad. From (14), this term can be expanded as
follows:

Ae 0 H efl

_ 4

allEg A EY Ca; = all [ e1c ey ] [ Olc Aoe ] [ off Cay
2c

1 1
= —allejellCay + —alleyellCay.  (A2)
)\10 >\2c

Substituting (23) into (A2) and performing some necessary manipula-
tions yields

afESCAggEgCCad
_ plaé{Cele{{CHCad + ané{CegegCHCad — pgcafCad
(p1c + %) (p1c — p2c)
p1aé{Cele{{CHCad—i—pgafCegefCHCad —plcafCad
(p2c + 02)(p1c — pac) ‘

Substituting (20) and (A3) into (Al) and performing some necessary
manipulations provides the output desired signal power shown by (27).

(A3)

APPENDIX B.

Derivation (29)
From (28), we have

_ _ 2
Dio = plﬂg \aff [ESCAscl Egc + ENcANiE%c] Cal‘

= piuzlag EscAg EG.Cail”. (B1)
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Following (A2) and (A3), we can rewrite the term a/Eg.Ag!Ef Ca;
as

1 1

H —1pH H, H H, oH

a; EscAg Eg.Ca; = N aj ejce.Cas + W ay egce;.Cay
c C

p1ay Ce1e1 HoHCa; + p2ay; Ce2e2 HCHCa;, — pgcaé{Cal
(p1c +02)(p1c — pac)
P13y Ce161 HoHCa; + p2ay C62€2 HCcHCa; — plcafCal
(p2e + 02)(p1c — pac)

Hence, substituting (20) and (B2) into (B1) and performing some
necessary manipulations provides the output interference power shown

by (29).

.(B2)

APPENDIX C.

Derivation (31)

Based on the data model given by (11), we note that the received
noise is assumed to be spatially white and independent of the MC
effects. It follows that

_ _ 1
afENCANiE%Cad = afENCANzE%Cad = gafENCEﬁcad. (Cl)
n

From (30) and (C1), we have
DPn, _Unucad [ESCAECQEgc + ENCA]_V%E%C] aq

1
a egceiad—kgag] ENCE%Cad . (C2)

_ 1 H
=olu? )\2 allej.efla +—
n

A3
Substituting (23) into aj ESCAnggcad and performing some

necessary manipulations yields

1
H H
ad eiceq.ad + ad €2.€5.a4

/\2 )\2

lc 2c

_p1ayg Cele1 CHad—l—pgad Cege; HCHg, —p2cay ad—i-pgcad ENCENCad
(p1c +02)*(p1c — p2c)

pallCerell CHa +prall Cesel CHay—pi.allag+pi.all En EX a4

(p2e +02)*(p1c — pac)
_ P13y Cele1 CHad—i—and Ceze; HCcHg,— M poc+pacay ENCE]HVCad
(p1e+02)*(p1c — pac)
plagCele{ICHad +p2ad Cege; HCHa, —Mp1. —I—plcafENcEﬁcad
- (p2c+03)%(p1c — p2c)

(C3)
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since ala; = M. Next, substituting (20) and (C3) into (C2)
and performing some necessary manipulations provides the output
interference power shown by (31).

APPENDIX D.

SINRLcMY = Pdo/ (Pio + Pro) =

Dd ‘( dad HCHCa, —i—pla{{CHCal +0 )ad Cad
—Ppqay Cada HCoHCga, — pray Cala CHCad’

}(pdad CHCa, + pla{{CHCal +o )ad Ca1
—Pp4ay Cadad HCoHCa, —plad Cala1 HoHCa, ’
(pdad CHCay + pial CHCa1 + 20 )
( Dday CadaHCHad + p1ay Cala CHad)
+o2 + (pdad CHCay + p1allCliCa; + o )
(M — ad ENCENCad)
—pdpl(ag CH Cagal! CCa; —al! CH Cajall CH Cay)
(M — 2y TEN.E Ncadg
+02 (pap1(alf C7Cagal’CCa; — aHCHCadafCHCal)
\;k(pdad CHCay + pallCHCay)o? + o})?all En EX a,

APPENDIX E.

SINREsB = pdeo/(pieo + pneo) =

< Dd ’(pdaﬁquHCad + pla{{CHCal + 0 ) 1 Cay )
Pday Cadad HCoHCa, — p1ay Calal CHCad‘

;1 ‘(pdad ClCay + pial’CHiCa; + o )a Ca1

—Pp4ay; Cadad HoHCa, — plad Ca1a1 CHCa1|
(pdad CHCad + p1ay CHCa1 + 20 )

(pdad Cadad CHa, +p1ad Caja; CHad)

+(pdad CHCay +p1a1 HcHCay + 02)?

(M — al/By.Ef ay)

—pdpl(ad CHCagaf CCa;—al C”Cayall CHCa)

(M — alf By B a0)

. (E1)

2
+o,,
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