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Abstract—Antenna array beamformers suffer from performance
deterioration in the presence of mutual coupling (MC) between
array sensors. In this paper, we present a theoretical analysis in
terms of the output signal-to-interference-plus-noise ratio (SINR) for
the performance of antenna array beamformers under MC effects.
Based on the model of a distortion matrix to encapsulate the MC
effects, a closed-form expression for the SINR is derived that is
shown to accurately predict the SINR obtained in simulations. This
theoretical formula is valid for any distortion matrix estimated from
collected measurement data. The SINR formulas provide insights
into the influence of the MC effects on the performances of the
linearly constrained minimum variance (LCMV) beamformer and the
eigenspace-based (ESB) beamformer. It is shown that the ESB
beamformer outperforms the LCMV beamformer under MC effects.
Moreover, we derive the formulas for computing the eigenvalues of
signal correlation matrix under MC effects. Simulation results are
presented for confirming the validity of the theoretical results.
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1. INTRODUCTION

In the literature, there are two popular antenna array beamformers,
namely the linearly constrained minimum variance (LCMV) beam-
former [1] and eigenspace-based (ESB) beamformer [2]. The LCMV
beamformer finds its optimal weight vector wLCMV by minimizing
the beamformer output power with a linear constraint to ensure unit
power gain in the desired signal direction. The weight vector wLCMV

is composed of two weight vector components contributed by the signal
subspace and noise subspace, respectively. In contrast, the ESB beam-
former finds its optimal weight vector wESB from wLCMV by discarding
the weight vector component contributed by the noise subspace. For
these two steered beam beamformers, the only priori knowledge for
finding the optimal weight is the actual direction vector of the desired
signal. However, some uncertainties in the spatial information result
in a mismatch between the steering vector and the direction vector of
the desired signal. Many results have been reported on how to im-
prove the performance of the steered beam beamformers against the
mismatch [3–8].

A spatial uncertainty which is seldom taken into account during
the adaptation process is the actual electromagnetic characteristics
of an antenna array system. In practice, array sensors have physical
dimensions and certain radiation characteristics. Under the situation
where the distance between two array sensors is too short to assume
that the sensors are isotropic point sensors isolated from each other,
each array sensor sees a different environment and, hence, produces
different individual radiation pattern. This is because some of energy
in an array sensor is coupled to the others. This phenomenon is referred
to as mutual coupling (MC). All signals received by an antenna array
are affected by MC and the data will be no longer independent. The
MC between the array sensors can significantly change an antenna
array’s behavior and its communication characteristics [9–12]. The
predicted array system performances may not be accurate when we
ignore the MC effects. Recently, research endeavor has been devoted to
tackle the MC effect for improving the performance of an antenna array
beamformer [8, 10, 12, 13] and the performance of bearing estimation
using a two-dimensional uniform circular array (2-D UCA) [26].

In this paper, we analyze the system performance in terms of the
array output signal-to-interference-plus-noise ratio (SINR) for adaptive
arrays of arbitrary geometry under the MC effects. The MC effects are
taken into account by using a distortion matrix model which is widely
considered in many recent reports [8–14]. This model describes how
the individual array sensors are coupled with one another. According
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to this model, we insert a mutual coupling matrix (MCM) in the
data model for the signal received by an array beamformer. Each
entry of the MCM represents the MC coefficient between two related
array sensors and can be estimated from collected measurement
data [11, 12, 14, 15]. We first investigate the performance of the LCMV
beamformers which are widely applied for achieving beamforming with
various goals [16–21]. The ESB beamformers find their optimal weight
vector from that of the LCMV beamformers by discarding the weight
vector component contributed by the noise subspace. Moreover, it was
shown that the ESB beamformer has better convergence properties and
is less sensitive to pointing errors than the LCMV beamformers [22–24].
The performance of the ESB beamformers in the presence of MC effects
is also investigated. Theoretical formulas for expressing the output
SINRs of the LCMV and ESB beamformers are derived, respectively.
Compared to the result presented in [25], our SINR formulas provide
insights into the influence of the MC effects on the performances of the
LCMV beamformer and the ESB beamformer. From our theoretical
results, we note that the ESB beamformer outperforms the LCMV
beamformer because the LCMV beamformer has a lower output signal-
to-noise power ratio (SNR) than the ESB beamformer. As to the
output interference power, LCMV and ESB beamformers have about
the same ability in suppressing the interference. The closed-form
expression for the SINR is shown to accurately predict the SINR
obtained in simulations. Moreover, the formulas for computing the
eigenvalues of the signal correlation matrix are derived under MC
effects. Simulation results show that the effect of MC degrades the
LCMV beamformer’s performance even for large intersensor spacings
and reduces the eigenvalues associated with the signal sources for small
intersensor spacings.

This paper is organized as follows. In Section 2, the LCMV and
ESB beamformers are briefly reviewed. The effect of MC on the output
SINR for each of LCMV beamformer and ESB beamformer is evaluated
in Section 3. Section 4 presents computer simulation results. Finally,
we conclude the paper in Section 5.

2. BACKGROUND

Let an antenna array of arbitrary geometry have M array sensors. A
narrow-band far-field desired signal and J uncorrelated interferers are
impinging on the array. The data vector received by the array can be
expressed as follows:

x(t) = As(t) + n(t), (1)
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where s(t) = [sd(t) s1(t) . . . sJ(t)]T contains the complex waveforms
sd(t) of the desired signal and sj(t) of the jth interferer, j = 1, 2, . . . , J ,
respectively, A = [ad a1 . . . aJ ] contains the direction vectors ad

of the desired signal and aj of the jth interferer, j = 1, 2, . . . , J ,
respectively, and n(t) = [n1(t) n2(t) . . . nM (t)]T represents the
spatially white background noise vector. The superscript T denotes
transpose operation. Assume that s(t) and n(t) are uncorrelated, the
M ×M ensemble correlation matrix of x(t) is given by

Rx = E
{
x(t)x(t)H

}
= ARsAH + σ2

nIM , (2)

where the superscript H denotes complex conjugate transpose, Rs =
E{s(t)s(t)H} denotes the signal correlation matrix, σ2

n is the noise
power, and IM is the identity matrix with size M×M . Let the array use
a weight vector w = [w1 w2 . . . wM ]T for processing the received data
vector x(t) to produce the output signal y(t) = wHx(t). According to
the LCMV beamforming [1], the optimal weight vector can be found
by solving the following constrained optimization problem:

Minimize E
{|y(t)|2} = wHRxw Subject to wHas = 1, (3)

where as is the steering vector in the look direction. Thus, the optimal
weight vector is given by

wLCMV = µR−1
x as, (4)

where µ is given by (aH
s R−1

x as)−1. Assume that the received signal
number is less than the array element number, i.e., (J + 1) < M , the
correlation matrix Rx can be eigendecomposed as

Rx =
M∑

i=1

λieieH
i = ESΛSEH

S + ENΛNEH
N , (5)

where the eigenvalues λ1
>= λ2

>= . . . >= λJ+1 > λJ+2 = . . . = λM = σ2
n

are the eigenvalues of Rx in descending order, ei is the eigenvector
associated with λi, i = 1, 2, . . . ,M , ES = [e1 e2 . . . eJ+1] is
the basis matrix spanning the signal-plus-interference subspace (SS),
ΛS = diag{λ1 λ2 . . . λJ+1}, EN = [eJ+2 . . . eM ] is the basis matrix
spanning the noise subspace (NS), and ΛN = σ2

nIM−J−1. It is easy to
show that the inverse of Rx is given as follows:

R−1
x =

M∑

i=1

λ−1
i eieH

i = ESΛ−1
S EH

S + ENΛ−1
N EH

N . (6)

Accordingly, (4) can be rewritten as

wLCMV = µR−1
x as = µ

[
ESΛ−1

S EH
S + ENΛ−1

N EH
N

]
as. (7)
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We note from (7) that the LCMV weight vector wLCMV is contributed
by the SS component wLCMV S and the NS component wLCMV N ,
respectively. They are given by

wLCMV S = µ
[
ESΛ−1

S EH
S

]
as (8)

wLCMV N = µ
[
ENΛ−1

N EH
N

]
as. (9)

In contrast, the ESB beamformers discard wLCMV N directly and takes
only wLCMV S as the optimal weight vector wESB given by [2]

wESB = µe[ESΛ−1
S EH

S ]as, (10)

where µe is given by (aH
s ESΛ−1

S EH
S as)−1. When the steering vector as

is set to the direction vector ad of the desired signal, the NS component
wLCMV N is a zero vector according to the orthogonality between the
direction vector of the desired signal and the noise subspace, i.e.,
EH

Nas = EH
Nad = 0. In this ideal case, the optimal weight vector

obtained from Rx lies within the SS subspace. Consequently, both the
LCMV beamformer and the ESB beamformer demonstrate the same
system performance because wLCMV = wLCMV S = wESB. However,
due to some imperfections in practical environment, the computed
wLCMV does not remain in the signal subspace because wLCMV N is
not equal to zero. This leads to the performance degradation of the
LCMV beamformers [2].

3. PERFORMANCE ANALYSES OF ARRAY
BEAMFORMERS WITH MC EFFECTS

In this section, we evaluate the effect of MC on the performance
in terms of output SINR for the LCMV and ESB beamformers,
respectively. The effect of MC is taken into account by using a
distortion matrix model [8–14]. According to this model, we insert a
mutual coupling matrix (MCM) C in the data model for the received
signal as follows:

xc(t) = CAs(t) + n(t). (11)
In the following analysis, we consider the case of one interferer
uncorrelated with the desired signal to simplify the presentation. Let
the powers of the desired signal sd(t) and the interferer s1(t) be pd and
p1, respectively. The data vector of (1) becomes

xc(t) = sd(t)Cad + s1(t)Ca1 + n(t), (12)
where the subscript c denotes the case with MC effect. The M ×M
ensemble correlation matrix of xc(t) is given by

Rxc = E
{
xc(t)xc(t)H

}
= CARsAHCH + σ2

nIM = pdCadaH
d CH

+p1Ca1aH
1 CH + σ2

nIM , (13)
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where pd = E{sd(t)sd(t)H} and p1 = E{s1(t)s1(t)H}. Similar to (5),
we have the eigendecomposition for Rxc as follows:

Rxc =
M∑

i=1

λiceiceH
ic = EScΛScEH

Sc + ENcΛNcEH
Nc, (14)

Let the unitary matrices E = [ESEN ] based on (5) and EC = [EScENc]
based on (14), respectively. We obtain the following diagonal matrices
from (5) and (14)

Λxx=EH [Rx]E = EH
[
ARsAH

]
E+EH

[
σ2

nIM

]
E = Λ1+Λ2, (15)

Λxxc=EH
C [Rxc]EC = EH

C

[
CARsAHCH

]
EC + EH

C

[
σ2

nIM

]
EC

=Λ1c + Λ2c, (16)

where
Λ1 = EH

[
ARsAH

]
E = diag{ρ1 ρ2 0 . . . 0},

Λ1c = EH
C

[
CARsAHCH

]
EC = diag{ρ1c ρ2c 0 . . . 0},

Λ2 = EH
[
σ2

nIM

]
E, Λ2c = EH

C

[
σ2

nIM

]
EC .

(17)

The equality Λ1 = EH [ARsAH ]E leads to

ARsAH = EΛ1EH . (18)

Substituting (18) into Λ1c = EH
C [CARsAHCH ]EC yields Λ1c =

EH
C [CEΛ1EHCH ]EC and

CEΛ1EHCH = ECΛ1cEH
C . (19)

Expanding (19) and performing some manipulations gives

ρ1Ce1eH
1 CH + ρ2Ce2eH

2 CH = ρ1ce1ceH
1c + ρ2ce2ceH

2c

= pdCadaH
d CH + p1Ca1aH

1 CH . (20)

Since EC = [EScENc] is a unitary matrix, we have

EScEH
Sc + ENcEH

Nc = IM . (21)

It follows from (21) that

e1ceH
1c + e2ceH

2c = IM −ENcEH
Nc. (22)

Using (20) and (22), we obtain the following expressions for the
eigenvectors e1c and e2c

e1ceH
1c =

ρ1Ce1eH
1 CH + ρ2Ce2eH

2 CH − ρ2c

(
IM −ENcEH

Nc

)

ρ1c − ρ2c
,

e2ceH
2c =

ρ1Ce1eH
1 CH + ρ2Ce2eH

2 CH − ρ1c

(
IM −ENcEH

Nc

)

ρ2c − ρ1c
.

(23)
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Moreover, we have from (17) that the eigenvalues ρ1c and ρ2c of
CARsAHCH satisfy

ρ1c + ρ2c = trace
(
CARsAHCH

)
= trace

(
RsAHCHCA

)

= trace

([
pd 0
0 p1

][
aH

d CH

aH
1 CH

]
[ Cad Ca1 ]

)

= pdaH
d CHCad + p1aH

1 CHCa1,

ρ1cρ2c = det
(
RsAHCHCA

)
= det

([
pd 0
0 p1

])

det

([
aH

d CHCad aH
d CHCa1

aH
1 CHCad aH

1 CHCa1

])

= pdp1

(
aH

d CHCadaH
1 CHCa1−aH

1 CHCadaH
d CHCa1

)
.

(24)

From the formulas given by (24), we can easily compute ρ1c and ρ2c

which are the nonzero eigenvalues of the signal correlation matrix in
the presence of MC effects. Thus, the signal-related eigenvalues λ1c and
λ2c of (14) are given by λ1c = ρ1c +σ2

n and λ2c = ρ2c +σ2
n, respectively.

3.1. The Output SINR of the LCMV Beamformers

The optimal weight vector of the LCMV beamformers with as = ad is
given by

wLCMVc = µcR−1
xc ad, (25)

where µc is given by (aH
d R−1

xc ad)−1.

3.1.1. The Output Desired Signal Power

Using the optimal weight vector given by (25), we compute the desired
signal power pdo at the array output

pdo =pd

∣∣wH
LCMVcCad

∣∣2 =pdµ
2
c

∣∣aH
d

[
EScΛ−1

Sc E
H
Sc+ENcΛ−1

NcE
H
Nc

]
Cad

∣∣2 .
(26)

From (26) and the derivation shown in Appendix A, pdo is given by

pdo =
pdµ

2
c

(ρ1c + σ2
n)2 (ρ2c + σ2

n)2

∣∣∣∣∣

(
pdaH

d CHCad + p1aH
1 CHCa1 + σ2

n

)
aH

d Cad

−pdaH
d CadaH

d CHCad − p1aH
d Ca1aH

1 CHCad

∣∣∣∣∣
2

. (27)
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3.1.2. The Output Interference Power

Using the optimal weight vector given by (25), we obtain the
interference power pio at the array output

pio =p1

∣∣wH
LCMVcCa1

∣∣2 =p1µ
2
c

∣∣aH
d

[
EScΛ−1

Sc E
H
Sc + ENcΛ−1

NcE
H
Nc

]
Ca1

∣∣2 .
(28)

From (28) and the derivation shown in Appendix B, pio is given by

pio =
p1µ

2
c

(ρ1c + σ2
n)2 (ρ2c + σ2

n)2
∣∣(pdaH

d CHCad + p1aH
1 CHCa1 + σ2

n)aH
d Ca1

−pdaH
d CadaH

d CHCa1 − p1aH
d Ca1aH

1 CHCa1

∣∣2 . (29)

3.1.3. The Output Noise Power

Using the optimal weight vector given by (25), we compute the noise
power pno at the array output

pno = σ2
n|wLCMVc|2 = σ2

nµ2
ca

H
d

[
EScΛ−2

Sc E
H
Sc + ENcΛ−2

NcE
H
Nc

]
ad. (30)

From (30) and the derivation shown in Appendix C, pno is given by

pno = σ2
nµ2

c




− (
pdaH

d CHCad + p1aH
1 CHCa1 + 2σ2

n

)
(
pdaH

d CadaH
d CHad + p1aH

d Ca1aH
1 CHad

)

+
(
pdaH

d CHCad + p1aH
1 CHCa1 + σ2

n

)2

(
M−aH

d ENcEH
Ncad

)
+ρ1cρ2c

(
aH

d ENcEH
Ncad −M

)




(ρ1c + σ2
n)2(ρ2c + σ2

n)2

+
1
σ2

n

µ2
ca

H
d ENcEH

Ncad. (31)

Following the results of (27), (29), and (31), it is easy to show
that the output SINR of the LCMV beamformers is given by (D1) in
Appendix D.

3.2. The Output SINR of the ESB Beamformers

The optimal weight vector of the ESB beamformers with as = ad is
given by

wESBc = µce

[
EScΛ−1

Sc E
H
Sc

]
ad, (32)

where µce is given by (aH
d EScΛ−1

Sc E
H
Scad)−1 to satisfy the constraint

wH
ESBcad = 1.
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3.2.1. The Output Desired Signal Power

Using the optimal weight vector given by (32), we compute the desired
signal power pdo at the array output

pdeo = pd

∣∣wH
ESBcCad

∣∣2 = pdµ
2
ce

∣∣aH
d [EScΛ−1

Sc E
H
Sc]Cad

∣∣2 . (33)

From (33) and the fact that aH
d [ENcΛ−1

NcE
H
Nc]Cad = 0, we can use the

similar manner shown by Appendix A to obtain pdeo as follows:

pdeo =
pdµ

2
ce

(ρ1c+σ2
n)2(ρ2c+σ2

n)2
∣∣(pdaH

d CHCad+p1aH
1 CHCa1+σ2

n)aH
d Cad

−pdaH
d CadaH

d CHCad − p1aH
d Ca1aH

1 CHCad

∣∣2 . (34)

3.2.2. The Output Interference Power

Using the optimal weight vector given by (32), we obtain the
interference power p1o at the array output

pieo = p1

∣∣wH
ESBcCa1

∣∣2 = p1µ
2
ce

∣∣aH
d

[
EScΛ−1

Sc E
H
Sc

]
Ca1

∣∣2 . (35)

From (35) and the fact that aH
d [ENcΛ−1

NcE
H
Nc]Ca1 = 0, we can use the

similar manner shown by Appendix B to obtain pieo as follows:

pieo =
p1µ

2
ce

(ρ1c+σ2
n)2 (ρ2c+σ2

n)2
∣∣(pdaH

d CHCad+p1aH
1 CHCa1+σ2

n)aH
d Ca1

−pdaH
d CadaH

d CHCa1 − p1aH
d Ca1aH

1 CHCa1

∣∣2 . (36)

3.2.3. The Output Noise Power

Using the optimal weight vector given by (32), we compute the noise
power pneo at the array output

pneo = σ2
n|wESBc|2 = σ2

nµ2
cea

H
d

[
EScΛ−2

Sc E
H
Sc

]
ad. (37)

Following the same manner shown in Appendix C without considering
the term σ2

nµ2
cea

H
d [ENcΛ−2

NcE
H
Nc]ad, we can easily obtain pneo as follows:

pneo = σ2
nµ2

ce




− (
pdaH

d CHCad + p1aH
1 CHCa1 + 2σ2

n

)
(
pdaH

d CadaH
d CHad + p1aH

d Ca1aH
1 CHad

)

+
(
pdaH

d CHCad + p1aH
1 CHCa1 + σ2

n

)2

(
M−aH

d ENcEH
Ncad

)
+ρ1cρ2c

(
aH

d ENcEH
Ncad−M

)




(ρ1c + σ2
n)2(ρ2c + σ2

n)2
.

(38)
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Following the results of (34), (36), and (38), it is easy to show
that the output SINR of the ESB beamformers is given by (E1) of
Appendix E.

Comparing (D1) and (E1), we observe that the denominator of
SINRLCMV has an additional term U given by:

U =
1
σ2

n

(
pdp1

(
aH

d CHCadaH
1 CHCa1 − aH

1 CHCadaH
d CHCa1

)

+
(
pdaH

d CHCad + p1aH
1 CHCa1

)
σ2

n + σ4
n

)2
aH

d ENcEH
Ncad

=
1
σ2

n

(ρ1cρ2c + (ρ1c + ρ2c)σ2
n + σ4

n)2aH
d ENcEH

Ncad (39)

according to (24). This term represents a positive quantity. Therefore,
the ESB beamformers outperform the LCMV beamformers in the
presence of MC effects since SINRLCMV < SINRESB.

4. COMPUTER SIMULATION EXAMPLES

Here, we present several simulation examples for confirming the
theoretical results. For all simulation examples, we adopt the MCM C
suggested by [11, 12, 14, 15] as follows:

C = (ZA + ZT )(Z + ZT IM )−1, (40)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
-30

-20

-10

0

10

20

30

Number  of Data Snapshots

O
u

tp
u

t 
S

IN
R

 (
d

B
)

Simulated LCMV

Theore tical LCMV

Simulated ESB

Theore tical ESB

Theore tical LCMV Without MC

Figure 1. The output SINR versus number of snapshots for
Example 1.
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where ZA is the sensor’s impedance in isolation, ZT is the impedance
of the receiver at each sensor and is set to the complex conjugate of ZA

to achieve an impedance match for maximum power transfer. Consider
the case of an antenna array with the side-by-side configuration and
the dipole length = λ/2, where λ is the wavelength of signal sources.
Then, Z is the mutual impedance matrix given by [11, 12, 14, 15]

Z =




Z11 Z12 · · · Z1M

Z21 Z22 · · · Z2M
...

...
. . .

...
ZM1 ZM2 · · · ZMM


 , (41)

where the entry Zmn, 1 <=m, n <= M , is given by

Zmn=





30[0.5772+ln(2κγ)−Ci(2κγ)] + j[30(Si(2κγ))] = ZA,
for m=n

30[2Ci(µ0)− Ci(µ1)− Ci(µ2)]− j[30(2Si(µ0)
−Si(µ1)− Si(µ2))], for m 6= n

, (42)

where κ = 2π/λ, γ = λ/2, µ0 = κdh, µ1 = κ(
√

d2
h + γ2 + γ), µ2 =

κ(
√

d2
h + γ2−γ), j =

√−1, dh denotes the horizontal distance between

the two array sensors, and Ci(α) =
∫ α
∞ (cos(x)/x)dx and Si(α) =∫ α

0 (sin(x)/x)dx are the cosine and sine integrals, respectively. The
plots of the magnitude of the normalized impedance matrix elements
of Z for an array of M = 12 and γ/λ = 0.5 with terminating impedance
ZT = ZA for a linear and a circular array geometries, respectively can
be found in the Figure 1 of [11]. The number M of array sensors
is 8. All signals used for simulations are binary phase shift keying
(BPSK) signals with rectangular pulse shape. The received noise is
assumed to be complex additive white Gaussian noise with mean zero
and variance equal to one. To avoid the finite sample effects, 30000
data snapshots are taken to compute the sample correlation matrices
R̂xc, R̂dd, R̂ii, and R̂nn for the received data vector, desired signal,
interferer, and noise, respectively. The optimal weight vectors ŵLCMVc

and ŵESBc corresponding to the LCMV and ESB beamformers are
obtained from (25) and (32) based on R̂xc, respectively. Then, the
simulated SINRLCMV and SINRESB are calculated as follows:

SINRLCMV =
ŵH

LCMVcR̂ddŵLCMVc

ŵH
LCMVcR̂iiŵLCMVc + ŵH

LCMVcR̂nnŵLCMVc

, (43)

SINRESB =
ŵH

ESBcR̂ddŵESBc

ŵH
ESBcR̂iiŵESBc + ŵH

ESBcR̂nnŵESBc

. (44)
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The number of Monte Carlo runs is 200. In contrast, the theoretical
results obtained by using the theoretical formulas (D1) and (E1) are
also presented for comparison in each example. To demonstrate the
fact that SINRLCMV < SINRESB for each example, we present a
figure plotting SINRESB (dB)-SINRLCMV (dB) versus the power of
the desired signal. From (D1) and (E1), it is easy to show that

SINRESB(dB)− SINRLCMV (dB) = 10log10

(
1 +

U

V

)
, (45)

where V denotes the denominator of SINRESB and U is given by (39).
The term ENcEH

Nc required by U and V of (45) is given by IM−EScEH
Sc,

where ESc is obtained from the eigendecomposition of Rxc of (13).
Example 1 : We consider that a desired signal with SNR equal to

15 dB and an interferer with SNR equal to 25 dB are impinging on
a uniform linear array (ULA) from direction angles θs and θi equal
to 40◦ and 60◦ off array broadside, respectively. The ratio of the
spacing d between two adjacent sensors to the wavelength λ of the
signals is set to 0.5. Figure 1 shows the output SINRs versus the
number of data snapshots. Figure 2 plots the simulated difference
SINRESB − SINRLCMV and the theoretical difference given by (45)
versus the number of data snapshots. As we can see from Figures 1 and
2, the difference between the simulated and theoretical results is due
to the finite sample effects when using a small number of data samples,
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Figure 2. The output SINR difference versus number of snapshots
for Example 1.
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e.g., the number of data samples is less than 5000. Figure 3 depicts
the output SINRs versus the desired signal power with the SNR of
the interferer fixed at 25 dB. Figure 4 presents the simulated difference
SINRESB − SINRLCMV and the theoretical difference given by (45)
versus the desired signal power with the SNR of the interferer fixed
at 25 dB, respectively. From these figures, we observe that the ESB
beamformer outperforms the LCMV beamformer in the presence of MC
effects. Moreover, the experimental results confirm the validity of the
theoretical analyses presented in Section 3. We present array output
SINR versus the intersensor spacing d in Figure 5. The MC affects
the array performance of the LCMV beamformer significantly even for
large intersensor spacing (d > λ/2). Figure 6 depicts the simulated
difference SINRESB − SINRLCMV and the theoretical difference given
by (45) versus the intersensor spacing d. Figure 7 shows the eigenvalues
λ1c and λ2c versus the intersensor spacing d. We note that the MC
reduces the eigenvalues associated with the signal sources for d < λ.

Example 2 : We consider that a desired signal with signal-to-noise
(SNR) equal to 15 dB and an interferer with SNR equal to 25 dB are
impinging on a uniform circular array (UCA) from direction angles
[φs, θs] and [φi, θi] equal to [50◦, 60◦] and [30◦, 20◦], respectively, where
φ and θ represent the azimuth and elevation angles, respectively. The
ratio of the spacing d between two adjacent sensors to the wavelength
λ of the signals is set to 0.5. Figure 8 shows the output SINRs versus
the number of data snapshots. Figure 9 plots the simulated difference
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Figure 3. The output SINR versus desired signal power for Example 1.
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Example 1.
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Figure 5. The output SINR versus inter-sensor spacing for Example 1.

SINRESB − SINRLCMV and the theoretical difference given by (45)
versus the number of data snapshots. As we can see from Figures 8
and 9, the difference between the simulated and theoretical results is
due to the finite sample effects when using a small number of data
samples, e.g., the number of data samples is less than 5000. Figure 10
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depicts the output SINRs versus the desired signal power with the
SNR of the interferer fixed at 25 dB. Figure 11 presents the simulated
difference SINRESB − SINRLCMV and the theoretical difference given
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Example 1.
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by (45) versus the desired signal power with the SNR of the interferer
fixed at 25 dB, respectively. From these figures, we observe that the
ESB beamformer outperforms the LCMV beamformer in the presence
of MC effects. Moreover, the experimental results confirm the validity
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Figure 8. The output SINR versus number of snapshots for
Example 2.
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of the theoretical analyses presented in Section 3. We present array
output SINR versus the intersensor spacing d in Figure 12. The MC
affects the array performance of the LCMV beamformer significantly
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Figure 10. The output SINR versus the power of desired signal for
Example 2.

-10 -5 0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

SNR of Desire d Signal (dB) 

D
if

fe
re

n
c

e
 o

f 
S

IN
R

L
C

M
V

 a
n

d
 S

I
N

R
E

S
B

 (
d

B
) 

Simulated SINR
ESB

(dB)-SINR
LCMV

(dB)

Theore tical 10*log
10

(1+U/V)

Figure 11. The output SINR difference versus the power of desired
signal for Example 2.
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even for large intersensor spacing (d > λ/2). Figure 13 depicts
the simulated difference SINRESB − SINRLCMV and the theoretical
difference given by (45) versus the intersensor spacing d. Figure 14
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Figure 12. The output SINR versus inter-sensor spacing for
Example 2.
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Example 2.

shows the eigenvalues λ1c and λ2c versus the intersensor spacing d. We
note that the MC reduces the eigenvalues associated with the signal
sources for d < 0.4λ.

5. CONCLUSION

This paper has investigated the performance of adaptive array
beamformers in the presence of the mutual coupling (MC) between
array sensors. Using the model of a distortion matrix to encapsulate
the MC effects, we have derived a closed-form expression for the
output signal-to-interference-plus-noise ratio (SINR) for each of the
linearly constrained minimum variance (LCMV) beamformer and the
eigenspace-based (ESB) beamformer. The obtained SINR formulas
provide insights into the influence of the MC effects on the performance
of the array beamformers. It is shown that the ESB beamformer
outperforms the LCMV beamformer under MC effects. The theoretical
results are shown to accurately predict the SINRs obtained in
simulations. Moreover, the effect of MC degrades the LCMV
beamformer’s performance even for large intersensor spacings and
reduces the eigenvalues associated with the signal sources for small
intersensor spacings. Finally, the derived theoretical SINR formulas
can also be used to evaluate the influence of other spatial uncertainties
on array beamformer’s performance if the spatial uncertainties can be
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represented by a distortion matrix model. Although it is not an easy
task to derive the formulas for the case of multiple desired signals and
interferers, we are currently investigating the possibility of obtaining
the appropriate results based on the results presented in the paper.

APPENDIX A.

Derivation (27)
From (26), we have

pdo = pdµ
2
c

∣∣aH
d EScΛ−1

Sc E
H
ScCad + aH

d ENcΛ−1
NcE

H
NcCad

∣∣2 . (A1)

Since the term aH
d ENcΛ−1

NcE
H
NcCad = 0, we only have to consider the

term aH
d EScΛ−1

Sc E
H
ScCad. From (14), this term can be expanded as

follows:

aH
d EScΛ−1

Sc E
H
ScCad = aH

d [ e1c e2c ]
[

λ1c 0
0 λ2c

]−1
[

eH
1c

eH
2c

]
Cad

=
1

λ1c
aH

d e1ceH
1cCad +

1
λ2c

aH
d e2ceH

2cCad. (A2)

Substituting (23) into (A2) and performing some necessary manipula-
tions yields

aH
d EScΛ−1

Sc E
H
ScCad

=
ρ1aH

d Ce1eH
1 CHCad + ρ2aH

d Ce2eH
2 CHCad − ρ2caH

d Cad

(ρ1c + σ2
n)(ρ1c − ρ2c)

−ρ1aH
d Ce1eH

1 CHCad+ρ2aH
d Ce2eH

2 CHCad−ρ1caH
d Cad

(ρ2c + σ2
n)(ρ1c − ρ2c)

. (A3)

Substituting (20) and (A3) into (A1) and performing some necessary
manipulations provides the output desired signal power shown by (27).

APPENDIX B.

Derivation (29)
From (28), we have

pio = p1µ
2
c

∣∣aH
d

[
EScΛ−1

Sc E
H
Sc + ENcΛ−1

NcE
H
Nc

]
Ca1

∣∣2

= p1µ
2
c |aH

d EScΛ−1
Sc E

H
ScCa1|2. (B1)
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Following (A2) and (A3), we can rewrite the term aH
d EScΛ−1

Sc E
H
ScCa1

as

aH
d EScΛ−1

Sc E
H
ScCa1 =

1
λ1c

aH
d e1ceH

1cCa1 +
1

λ2c
aH

d e2ceH
2cCa1

=
ρ1aH

d Ce1eH
1 CHCa1 + ρ2aH

d Ce2eH
2 CHCa1 − ρ2caH

d Ca1

(ρ1c + σ2
n)(ρ1c − ρ2c)

−ρ1aH
d Ce1eH

1 CHCa1 + ρ2aH
d Ce2eH

2 CHCa1 − ρ1caH
d Ca1

(ρ2c + σ2
n)(ρ1c − ρ2c)

. (B2)

Hence, substituting (20) and (B2) into (B1) and performing some
necessary manipulations provides the output interference power shown
by (29).

APPENDIX C.

Derivation (31)
Based on the data model given by (11), we note that the received

noise is assumed to be spatially white and independent of the MC
effects. It follows that

aH
d ENcΛ−2

NcE
H
Ncad = aH

d ENcΛ−2
N EH

Ncad =
1
σ4

n

aH
d ENcEH

Ncad. (C1)

From (30) and (C1), we have

pno=σ2
nµ2

ca
H
d

[
EScΛ−2

Sc E
H
Sc + ENcΛ−2

NcE
H
Nc

]
ad

=σ2
nµ2

c

[
1
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1c

aH
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1

λ2
2c

aH
d e2ceH

2cad+
1
σ4

n

aH
d ENcEH
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]
. (C2)

Substituting (23) into aH
d EScΛ−2

Sc E
H
Scad and performing some

necessary manipulations yields

aH
d EScΛ−2

Sc E
H
Scad =

1
λ2

1c

aH
d e1ceH

1cad +
1

λ2
2c

aH
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2 CHad−ρ2caH

d ad+ρ2caH
d ENcEH
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=
ρ1aH

d Ce1eH
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d ENcEH
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2 CHad−Mρ1c+ρ1caH
d ENcEH
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(C3)
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since aH
d ad = M . Next, substituting (20) and (C3) into (C2)

and performing some necessary manipulations provides the output
interference power shown by (31).

APPENDIX D.

SINRLCMV = pdo/(pio + pno) =
(

pd

∣∣(pdaH
d CHCad + p1aH

1 CHCa1 + σ2
n)aH

d Cad

−pdaH
d CadaH
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)
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(D1)

APPENDIX E.

SINRESB = pdeo/(pieo + pneo) =
(

pd

∣∣(pdaH
d CHCad + p1aH
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d Cad
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