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Abstract—We present the GPUs computation acceleration for a
very recurrent electromagnetic problem which is the calculation
of the field radiated by electric dipoles in a multilayer structure
(Green’s tensor in stratified background), based on the well-known
Sommerfeld integrals. Using an optimized parallelization scheme, huge
computation acceleration is obtained. Applications of such a work
are very broad, especially for the modeling of stratified light emitting
devices, or as a building block for the calculation of optical scattering
by complex shape structures, when using methods as discrete dipole
approximation (DDA) or method of moments (MoM) for example.

1. INTRODUCTION

Simulations play an important role in research environment, in order
to predict or explain physical phenomena. However, simulations
may sometimes require very large memory and time in computation.
This is particularly the case with full-wave three-dimensional optical
simulations, which consist in solving Maxwell equation in 3D space.
The multilayer Green’s tensor is, in this context, a powerful tool,
for two main reasons: first, it allows by itself to express the field
radiated by elementary emitters in a planar multilayer background,
which is directly of great interest for the simulation of emitting
devices, such as light emitting diodes (LEDs) for example. Secondly, it
allows the simulation of complex-shape nanostructures in a multilayer
background. Indeed, many electromagnetic methods consist in
decomposing a complex-shape object scattering by several elementary
dipoles. This is the case, for example, with the discrete dipole
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approximation (DDA) [1], or the method of moments (MoM) [2, 3].
These methods require to calculate the radiation of a single dipole on
several spatial points. When the background medium is homogeneous,
the dipole radiation is straightforward, the Green’s tensor being known
analytically, by the means of spherical Hankel function [3]. However,
in most applications, a stratified environment is present (at least, the
device is fabricated on a substrate). This is due to the fact that optical
devices have benefited from the planar technology available from
microelectronics. The stratified Green’s tensor could be calculated
using numerical methods as finite-difference time domain method [4].
However, if the number of layers is huge, or if some layers are thin or
metallic, the number of mesh cells can be very high if a good accuracy
is desired, leading to high memory requirements in 3D. Moreover,
perfect matching layers [5] are needed to avoid reflection of radiative
as well as guided modes at the boundary of the necessarily truncated
calculation domain. A nice way to circumvent these issues is to use a
semi-analytical formulation for the calculation of a dipole radiation in
a stratified environment, known as Sommerfeld integral [6–19]. This
integral consists in decomposing the dipole radiation into plane waves,
since the plane wave is the canonical case for which propagation is
analytically known in stratified media, by the use of Fresnel coefficients.
In a general case, Sommerfeld integrals have no closed-form solution
and must therefore be computed numerically. The advantage of this
approach is that no mesh of the layers is needed, and the plane wave
formalism is able to handle laterally infinite layers.

In order to know a field component radiated by a dipole in space,
one has to perform the numerical evaluation of a Sommerfeld integral
for each point of space where this component is wanted. So, when one
has many dipoles and many spatial points for field calculation, which is
generally the case with DDA or MOM, many Sommerfeld integrals have
to be computed (typically several tenths of thousands for a scattering
object of the wavelength-scale), which is very time-consuming on a
central processing unit (CPU) (at least several tenths of minutes on
a standard CPU). As Sommerfeld integrals for different spatial points
can be calculated independently, the Green’s tensor problem is highly
parallelizable, and it may be advantageous to use the massive parallel
calculation of GPUs for this problem.

Previous experimentations of GPUs for computational elec-
tromagnetics concerned essentially physical optics, geometric op-
tics [20, 21], or FDTD [22–25]. A few works have been devoted more
recently to the acceleration of MoM by GPU [26–28]. The present work
shows, for the first time to our knowledge, that GPUs can be highly
efficient for Sommerfeld integral calculation. It represents therefore a
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new step in the emerging area of GPU-computational EM and more
particularly GPU-enhanced MOM.

2. OPTICAL MODEL

The radiation of an arbitrary oriented dipole in a multilayer can
be obtained by the projection of its orientation on the three main
orthogonal directions of space, using the Green’s tensor, which
represents the electric field radiated by three orthogonal dipoles. As
a flat multilayer is rotationally invariant with respect to any axis
perpendicular to interfaces (which will be the z direction in the
following), the Green’s tensor can be resumed to the calculation of the
field radiated by a vertical dipole and an arbitrary horizontal dipole.
The whole formalism for Green’s tensor in stratified media can be
found, for example, in [13]. Our paper will focus on GPUs for such a
formalism. In this paper, we will show the example of a vertical dipole;
although the formulation for a horizontal dipole is slightly different, it
leads to Sommerfeld integrals which can be treated in the same way.

A vertical dipole radiates 6 field components: Ex, Ey, Ez (electric
field components) and Hx, Hy, Hz (magnetic field components)
in space. The field components involve, in their corresponding
Sommerfeld integrals, Bessel function of different orders. For example,
the Sommerfeld expression of the Ez component, scattered by the
multilayer interfaces in a spatial point of the layer m and due to a
vertical dipole located in medium l, can be written [13]:

Ez(ρ, z)=

∞∫

0

k3
ρ

k2
mkmz

J0(kρρ)
[
A(kρ) · ejkmzz+B(kρ) · e−jkmzz

]
dkρ (1)

where ρ is the horizontal projection of the distance between the spatial
point of observation and the dipole (see Figure 1); km is the wavevector
in medium m; kmz is the vertical projection of the wavevector in
medium m. More precisely, kmz is defined as the following square
root, chosen with positive imaginary part in substrate and superstrate,
ensuring a decay of fields at infinity:

kmz =
√

k2
m − k2

ρ (2)

J0 is the Bessel’s function of the first type and order 0. The terms A(kρ)
and B(kρ) are the generalized multilayer reflection and transmission
coefficients, based on Fresnel’s coefficient, which satisfy field continuity
conditions at all interfaces of the multilayer, and therefore depend on
kρ wavevector, all layer thicknesses and refractive indexes, the position
of the dipole in the multilayer, but also the kind of polarization of the
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Figure 1. Schematic of a multilayer environment, with the cylindrical
coordinates implied in the sommerfeld integral (1); the dipole is in
medium l = 3, whereas the spatial point where field is calculated is in
layer m = 2.

plane wave considered. These generalized coefficients can be iteratively
obtained in all layers by a transfert matrix method, also described
in [13]. One should note that, for a vertical dipole, only p-polarisation
should be considered [14]. The variable kρ, which is the variable
of integration, is the horizontal projection of the wavevector of an
elementary plane wave composing the dipole radiation. The structure
is rotationally symmetric with respect to the z-axis, which is why it is
possible to perform a mono-dimensional integration over kρ, avoiding
a double integration on both kx and ky planar wavevector components.

The Sommefeld integral numerical evaluation is not trivial, due to
some possible singularities (example when kρ matches a guided mode
of the multilayer, related to a pole of the integrand), and branch and
point cuts (when Im (kmz) = 0, condition related to radiated modes
in substrate and superstrate). Thus, it is not possible to solve it on
the real axis. But thanks to the Cauchy’s theorem, we can deform
the integration path in the complex plane, avoiding singularities, in a
way similar to [13] (see Figure 2). The optimal numerical method to
perform the Sommerfeld integral is known as Gauss-Kronrod method,
which can handle the highly oscillatory behavior of the integrand [13].

3. GPU AND CUDA

The new design of GPUs allows them to be very suitable not only for
graphic tasks (video-games, etc.) but also for scientific task as hardware
accelerator [29].

In the last years, GPU performances have been increasing much
more than CPU performances. This gap relies on the difference in
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Figure 2. Deformation of the integration path for sommerfeld integral
calculations, in order to avoid poles, and branch cuts and points.
Branch cuts and points are only related to the susbtrate (medium
1, supposed absorbing in this example) and superstrate (medium N ,
supposed non-absorbing) of the multilayer.

architecture between them. In fact, the CPU architecture is optimized
for sequential code and has a sophisticated control logic and large cache
memories which reduce the instruction and data access latency of the
different tasks, while the GPU architecture is designed to perform the
same execution on a huge amount of data. Moreover, the success of the
GPU in scientific environment is particularly due to Computed Unified
Device Architecture (CUDA) [30]. CUDA is a tool developed by
Nvidia and based on C language, for parallel computing architecture,
which allows users to manage a GPU as a coprocessor. The GPU is
represented as a set of multiprocessor as Single Instruction Multiple
Data (SIMD). Each SIMD executes the same instruction on different
data. The main feature of CUDA is that the programmer does not care
about threads scheduling. However, the programmer must be careful
of the shared memory management. The shared memory available on
GPU is limited to 16 KB, for the Nvidia G80 series. The optimization
of the share memory has consequences on the speed-up factor.

The hardware used for this study is:

• Core (TM) 2 Duo CPU E6750 @2.66GHz 64-bit, 4 GB of RAM,
operating system Red Hat Enterprise 5.3 64-bit;

• Nvidia GeForce series 8800 GTX v1.0.

4. PARALLEL ALGORITHM

Before explaining the whole parallel algorithm, we would like to give
some clarifications to the reader about the Gauss-Kronrod algorithm
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for numerical evaluation of a Sommerfeld integral. We translated and
adapted the Matlab quadgk function [31], which is based on the Gauss-
Kronrod (7,15) numerical integration method. The quadgk Matlab
function performs a generic integral in a recursive way (adaptive
algorithm). It divides the whole integration path in a fix number of
subinterval, and for each of them, it applies the Gauss-Kronrod rule.
In the general case, each subinterval is sampled by 150 points in order
to evaluate the integral on this subinterval. But, if 150 points are not
enough to obtain the desired accuracy, the subinterval is divided in a
recursive way in more subintervals, and so on. For the Bessel’s function
computation, we implemented, for both CPU and GPU, the routines
for special function made by Zhang and Jin [32].

Concerning now the parallelization scheme used for the Sommer-
feld integrals calculations, in order to evaluate the field reflected and
transmitted by the dipole in a certain region of space discretized in
several spatial points, we need to perform two loops: one on the in-
tegration variable kρ (which corresponds to the different plane waves
composing the dipole radiation) and the other on the space points
where we want to calculate the field. The parallelized threads (exe-
cuting the same operation on different data) on GPU can be therefore
defined in several manners:

1. The threads calculate a Sommerfeld integral on different spatial
points.

2. Sequential CPU loop on the integration variable kρ, the threads
calculates the influence of one single kρ-plane wave on different
spatial points.

3. Sequential CPU loop on the spatial points, each thread calculates
the influence of the different plane waves on one single spatial
point.

In the first solution, the Sommerfeld integrals are parallelized, but
this requires too much memory (register and shared memory on GPU)
to execute (we need to store for each thread the contribution of 150
plane waves). The last solution consists in doing a sequential CPU
loop on the spatial points and making a GPU parallelization on the kρ

values, but the latter are very few (150). Consequently, the potentiality
of GPU is unused. These observations led us to adopt the solution 2,
which appears non-intuitive, but is the most efficient. A CPU loop is
created on the kρ values, and for each of them the integrand is partially
evaluated on all spatial points (several thousands of points). Thus, all
the massive parallel-computing effort of GPU is employed. The results
are stored in a cumulative vector incremented at each iteration, in
order to progressively reconstruct the Sommerfeld integrals.
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To summarize, the execution mode of the final algorithm is shown
in the flowchart of Figure 3.

As shown by the flowchart, there are five different functions inside
the kρ loop, executed on GPU, called kernel 1-5, which perform the
following tasks:
• kernel 1: Bessel’s function computing (use ρ-coordinate of spatial

points).
• kernel 2: exponential function computing (use z-coordinate of

spatial points).
• kernel 3: multiplies the two previous results, with the generalized

reflection and transmission multilayer coefficient previously

START

Compute the      values and
Fresnel's coefficients

ρk

Loop on k  
values:
index   k   Size

ρ

ρ<

→Copy data CPU     GPU

Copy data GPU     CPU→

Store data in file
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Figure 3. Flowchart of the parallel algorithm.
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calculated on CPU, and the weights related to kρ in the Gauss-
Kronrod numerical integration.

• kernel 4: store the values in a cumulative vector.
• kernel 5: initialize to 0 the vectors used by kernel 1 and 2 in order

that they should be used in the next iteration.

5. RESULTS

In this section we evaluate the gain in computation time obtained by
the use of GPU. We performed, as an example, the calculation of the
field radiated by a vertical electric dipole (see Figure 4) in a two-media
space. The dipole is located in glass (refractive index n = 1.5), at 10 nm
from the interface with air and radiates at wavelength λ = 600 nm.

Table 1 shows summarized computation times for both CPU
(Matlab) and GPU (stand alone) algorithms, as a function of the
number of evaluation points. Besides, a MEX-file [33, 34] was created
to call the GPU algorithm from Matlab. Thanks to MEX-file, the
whole algorithm written in C programming language can be called
from Matlab environment like a Matlab function, with the advantage
that it is still executed on GPU. As can be seen in Table 1, when the
GPU is called from Matlab, the execution time is slightly different, due
to overhead introduced by Matlab.

Figure 5 shows the electromagnetic field radiated by the vertical
dipole. The maximum value of absolute error, as shown in Figure 6, is
of the order of magnitude the quadgk function precision, when working

128 points

128 points

z

x

Figure 4. Numerical test: calculation of the norm of the reflected and
transmitted Ez field, due to the radiation of a vertical dipole located
in glass (top medium), at a distance h = 10 nm from the interface with
air (bottom medium), for a wavelength λ = 600 nm. The resolution of
spatial points where field is calculated is 128 × 128, spaced by 1 nm,
and centered in (0,0) in the XZ plane (Y = 0). The spatial resolution
is then increased, the spatial range being kept constant.
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Table 1. Result of the computation time.

Computation Time Corresponding Gains 
Number of spatial 

points 
Matlab 

[s] 

GPU stand 

alone [s] 

GPU + 

Matlab [s] 

Matlab/(GPU stand 

alone) 
Matlab/(GPU+Matlab) 

16384 83 0.183 0.255 ∼450 ∼370 

65536 342 0.626 0.685 ∼550 ∼500 

262144 1382 2.369 2.654 ∼580 ∼520 

1048576 5718 9.483 9.853 ∼600 ∼580 

All the computation times are averaged over 10 executions. The incertitude error

on the GPU execution time is around ±0.3ms.

(a) (b)

Figure 5. Results for the configuration of figure 4, for Matlab (a),
and Matlab with GPU (b).

Figure 6. Absolute and Relative errors between Matlab, and Matlab
with GPU.

with floating-point data, i.e., 10−4 [31]. Better accuracy could be
obtained when moving towards double precision GPUs.

6. CONCLUSIONS

The gain obtained in computation time is very important (from several
hours for CPU calculations, to a few seconds for GPU). We show that
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GPU is an excellent solution compared to cluster or supercomputer, for
highly parallelizable optical algorithms such as Sommerfeld integrals
calculation, when advantageous parallelization strategy is adopted.
This work paves the way to very fast electromagnetic simulations of
multilayer light emitting devices or very fast calculation of scattering
by complex shape objects embedded in multilayers, in semi-analytical
electromagnetic methods using multilayer Green’s function, as DDA
or MOM.
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