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Abstract—The paper deals with the case of a three-layer liquid crystal
tapered optical fiber (LCTOF) for which the dispersion relations are
deduced corresponding to the TE and the TM modes. For the LCTOF
under consideration, the outermost clad section is made of liquid
crystal material with radial anisotropy whereas the core and the inner
clad are homogeneous, non-magnetic and isotropic dielectric regions.
Rigorous field expressions corresponding to different LCTOF sections
are deduced, and the eigenvalue equations are reported followed by the
modal behaviour of the guide in respect of the propagation constants
and cutoff situations. Apart from that, a glimpse of the power
confinement through the TE and the TM excitations in different fiber
sections is also touched upon.

1. INTRODUCTION

Liquid crystal optical fibers (LCOFs) [1–3] fall into the category
of complex waveguides [4–17] that possess several technological
applications. Optical applications of liquid crystals lie in their
presenting the property of fairly large polarization anisotropy [18],
which makes the fibers made of such materials much attractive
among the relevant R&D community. Further, since liquid crystals
exhibit very large electro-optic coefficient), the macroscopic optical
properties of them can be manipulated by suitably applying external
electrical fields — the phenomenon much useful in optical sensing
applications [18, 19].
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Among the radial and azimuthal anisotropies in LCOFs, studies
of the latter type have appeared in the literature [20–22]. However,
radially anisotropic LCOFs [23] are not given that much emphasis;
it may be obtained by the capillary action after inserting the liquid
crystal section into a capillary tube coated with N, N-dimethyl-
N-octadecyl-3-aminopropyltrimethoxysilyl chloride. The present
investigation is pivoted to the discussion of a three-layer LCOF where
the outermost cladding section is composed of radially anisotropic
liquid crystal material. The fiber core and the inner clad regions are
isotropic dielectrics. Further, a tapered structure of the fiber core is
taken into account along the longitudinal direction keeping in view
that tapered fibers are of immense use in optical sensors and other in-
line integrated optic applications [24–30]. As such, an amalgamation
of features in respect of fiber geometry and the material, i.e., a tapered
core fiber with radially anisotropic outermost liquid crystal clad, would
provide enhanced usefulness of the guide.

The present communication aims at the investigation of the
dispersion relations of the liquid crystal tapered optical fiber (LCTOF)
structure for which Maxwell’s equations are implemented for a rigorous
analysis. Illustrations are made of the dispersion profile corresponding
to the low order TE and TM modes, and the modal propagation
constants are determined. This is to be added at this point that,
though the studies related to radially anisotropic LCOFs have been
reported before by Choudhury and Yoshino [31], the present study
provides a blend of liquid crystal material and tapered structure
wherein, apart from the propagation behaviour of the guide in terms of
mode cutoffs, a superficial look at the power confinement factors [31]
is also given in order to emphasize the usefulness of the guide.

2. THEORY

Figure 1 depicts the cross-section of LCTOF made of homogeneous,
isotropic and non-magnetic core and the inner clad; the infinitely
extended outer clad (the shaded region) consists of radially anisotropic
liquid crystal material. In this figure, the dashed lines in the outer clad
represent the elongation of the liquid crystal molecules. The tapered
nature of the fiber cross-section becomes explicit from its longitudinal
view (Fig. 2). The core and the inner clad sections have the refractive
index (RI) values as n1 and n2, respectively, with n1 > n2. Also,
we consider radial elongation of the liquid crystal molecules in the
infinitely extended outer clad with the ordinary and the extraordinary
RI values as no and ne, respectively.

We implement the cylindrical polar coordinate system (ρ, φ, z)
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Figure 1. Cross-sectional view of LCTOF with the nematic liquid
crystal outer clad.
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Figure 2. Longitudinal view of the LCTOF of length L.

wherein the z-axis remains along the direction of propagation and
coincides with the principal axes of the outer clad. The extraordinary
principal axis has a radial orientation, and therefore, the infinitely
extended outer clad possesses the RI distribution as

nρ = ne and nφ = nz with ne > n1 > n2 > no,

as depicted Figs. 3(a) and 3(b).
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Figure 3. The RI distribution pattern.

The linear taper nature of the fiber core, as illustrated in Fig. 2,
is defined through considering the taper radius as a function of z, i.e.,
ρ (z), as [30]

ρ(z) = ρi − z

L
(ρi − ρo) (1)

where ρi and ρo, respectively, represent the radius of the input and
the output ends of the tapered fiber of length L. In Fig. 2, the region
with z < zi (= 0) corresponds to the fiber pigtail, and those with
z > zo (= L) to the expanded cylindrical section.

Considering the time t-harmonic and the axis z-harmonic
electromagnetic (EM) fields, coupled wave propagation equations for
the transverse field components can be written as [31]
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In Eqs. (2), ∇2
t is the Laplacian operator in the cylindrical

coordinate system, k0 is the free-space propagation constant, and nρ,
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nφ and nz are, respectively, the RI values along the ρ-, φ- and z-
directions. Further, β-values in Eqs. (2) are governed by a Taylor
series expansion [28], i.e.,

β = β0 +
(

∂β

∂z

)
z, (3)

owing to the variation of the propagation constant β due to the varying
cross-sectional dimension with distance z. In Eq. (3), the higher order
terms are suppressed during the expansion as the results will not be
affected much, and β0 is the axial component of the propagation vector
at the origin z = 0.

We consider the lower order TE and TM modes, viz. TE01 and
TM01. For the TE01 mode, there exists only one transverse electrical
field component eφ, which is independent of the coordinate φ, making
thereby eρ = 0 and ∂eφ/∂φ = 0 for this type of mode. For the TM01

mode, there is only one non-zero component eρ, which is independent of
the coordinate φ, and therefore, one can have eφ = 0 and ∂eρ/∂φ = 0.

Following Eqs. (2) and the above described condition for the TE01

mode, it can be shown that the EM field components in this case will
be ultimately given as follows:
Core region:

Hρ)I = −Aφ1
β

ωµ0
J1(γ1ρ) exp {j(ωt− βz)} (4a)

Hz)I = Aφ1
j

ωµ0

{
γ1J

′
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1
ρ
J1(γ1ρ)

}
exp {j(ωt− βz)} (4b)

Inner clad region:

Hρ)II = − β

ωµ0
{Aφ2K1(γ2ρ) + Aφ3I1(γ2ρ)} exp {j(ωt− βz)} (5a)
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Outer clad region:

Hρ)III = −Aφ4
β
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K1(γ3ρ) exp {j(ωt− βz)} (6a)
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In Eqs. (4), (5) and (6), µ0 is the free-space permeability and ω is
the angular frequency of the unbounded medium. J(·), K(·) and
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I(·) represent Bessel and the modified Bessel functions, and prime
stands for the differentiation with respect to the argument of the
function. Also, Aφ1, Aφ2, Aφ3 and Aφ4 are the arbitrary constants
to be determined by the boundary conditions, and the quantities γ1,
γ2 and γ3 are defined as

γ1 =
√

n2
1k

2
0 − β2 (7a)

γ2 =
√

β2 − n2
2k

2
0 (7b)

γ3 =
√

β2 − n2
ok

2
0 (7c)

It is to be remembered that ρ and β are governed by Eqs. (1) and (3),
respectively.

For the sake of simplicity, localized values of the radial parameters
of LCTOF are considered to determine the interfaces. In this stream,
we match the fields at the interfaces ρ = ρa (core-inner clad interface)
and ρ = ρb (inner clad-outer clad interface), where ρa and ρb,
respectively, determine the local parametric values of the LCTOF
core and the inner clad radii. After matching the fields at the layer
boundaries, and collecting the coefficients of the unknown arbitrary
constants, the following 4×4 matrix can be obtained after a few lengthy
steps: 


ξ11 −ξ12 −ξ13 0
0 ξ22 ξ23 −ξ24

ξ31 −ξ32 −ξ33 0
0 ξ42 ξ43 −ξ44


 = ∆TE(say) = 0 (8)

Various symbols in this equation have their meanings as follows:

ξ11=(β/ωµ0) Jν (uρa) e{j(ωt−βz)}, ξ12 =(β/ωµ0) Kν (wρa) e{j(ωt−βz)},

ξ13=(β/ωµ0) Iν (wρa) e{j(ωt−βz)}, ξ12 =(β/ωµ0) Kν (wρb) e{j(ωt−βz)},

ξ23=(β/ωµ0) Iν (wρb) e{j(ωt−βz)}, ξ24 =(β/ωµ0) Kν (vρb) e{j(ωt−βz)},

ξ31=(j/ωµ0)
{
uJ ′ν (uρa) + (1/ρa) Jν (uρa)

}
e{j(ωt−βz)},

ξ32=(j/ωµ0)
{
wK ′

ν (wρa) + (1/ρa) Kν (wρa)
}

e{j(ωt−βz)},

ξ33=(j/ωµ0)
{
wI ′ν (wρa) + (1/ρa) Iν (wρa)

}
e{j(ωt−βz)},

ξ42=(j/ωµ0)
{
wK ′

ν (wρb) + (1/ρb) Kν (wρb)
}

e{j(ωt−βz)},

ξ43=(j/ωµ0)
{
wI ′ν (wρb) + (1/ρb) Iν (wρb)

}
e{j(ωt−βz)},

and ξ44 = (j/ωµ0){vK ′
ν(vρb) + (1/ρb)Kν(vρb)}e{j(ωt−βz)}.

The above Eq. (8) represents the dispersion relation for the
LCTOF in the case of TE mode excitation. As such, the solutions to
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this equation will provide different TE modes existing in the anisotropic
fiber. Further, solving Eq. (8) under the condition w2 → 0 will provide
the cutoff characteristics of the fiber under consideration.

We now move toward the TM mode excitation. Since eφ = 0 and
∂eρ/∂φ = 0 in the case of TM01 mode, following Eqs. (2), it can be
shown that the EM field components will be represented in this case
as follows:
Core region:
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1
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Ez)II =− j

βη

[
Bρ2

{
γ2K

′
1(γ2ρ) +

1
ρ
K1(γ2ρ)

}

+ Bρ3

{
γ2I

′
1(γ2ρ) +

1
ρ
I1(γ2ρ)

}]
exp {j(ωt− βz)} (10a)

Hφ)II =
ωε0

β
n2
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Outer clad region:
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In Eqs. (9), (10) and (11), Bρ1, Bρ2, Bρ3 and Bρ4 are arbitrary
constants to be defined by the boundary conditions, and the new
quantities η and γ′3 have the meanings as

η = (n0/ne)
2 (12)

γ′3 =
no

ne

√
n2

ek
2
0 − β2 (13)

Now, following the procedure as discussed above for the case of
TE modes, matching of the EM field components at the localized radial
parameters of the LCTOF, i.e., ρ = ρa (core-inner clad interface) and
ρ = ρb (inner clad-outer clad interface), will ultimately yield (after
collecting the coefficients of the unknown constants) the following
eigenvalue equation in the form of 4× 4 matrix:


ζ11 −ζ12 −ζ13 0
0 ζ22 ζ23 −ζ24

ζ31 −ζ32 −ζ33 0
0 ζ42 ζ43 −ζ44


 = ∆TM (say) = 0 (14)
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Equation (14) is the dispersion relation for the LCTOF in the case of
TM modes with the symbols having their meanings as follows:

ζ11 =
(
j/βη2

) {
uJ ′ν (uρa) + (1/ρa) Jν (uρa)

}
e{j(ωt−βz)},

ζ12 =
(
j/βη2

) {
wK ′

ν (wρa) + (1/ρa) Kν (wρa)
}

e{j(ωt−βz)},

ζ13 =
(
j/βη2

) {
wI ′ν (wρa) + (1/ρa) Iν (wρa)

}
e{j(ωt−βz)},

ζ22 =
(
j/βη2

) {
wK ′

ν (wρb) + (1/ρb) Kν (wρb)
}

e{j(ωt−βz)},

ζ23 =
(
j/βη2

) {
wI ′ν (wρb) + (1/ρb) Iν (wρb)

}
e{j(ωt−βz)},

ζ24 =
(
j/βη2

) {
vK ′

ν (vρb) + (1/ρb) Kν (vρb)
}

e{j(ωt−βz)},

ζ31 = (ωε0/β) n2
ρJν (uρa) e{j(ωt−βz)},

ζ32 = (ωε0/β) n2
ρKν (wρa) e{j(ωt−βz)},

ζ33 = (ωε0/β) n2
ρIν (wρa) e{j(ωt−βz)},

ζ42 = (ωε0/β) n2
ρKν (uρa) e{j(ωt−βz)},

ζ43 = (ωε0/β) n2
ρIν (wρb) e{j(ωt−βz)}

and ζ44 = (ωε0/β) n2
ρKν (vρb) e{j(ωt−βz)}.

Equation (14) provides the dispersion relation (or the eigenvalue
relation) for the LCTOF in the case of TM mode excitation. The
solutions to this equation will, therefore, yield different TM modes
existing in the anisotropic guide, and also, solving this equation under
the condition w2 → 0 will provide the cutoff characteristics of the fiber
under consideration.

3. RESULTS AND DISCUSSION

Equations (8) and (14), corresponding to the TE and the TM mode
excitations, respectively, constitute the central new results of this
analytical investigation. In this context, the authors wish to point
out that the tapered core dielectric optical fiber itself is a complex
problem to tackle analytically. The radial anisotropy of liquid crystal
material in the outermost clad section adds further complexities. It
may be concluded that this analysis has been brought to a point where
the characteristic equations involve Bessel and the modified Bessel
functions, which the authors understand as a good starting point for
the study of such anisotropic tapered guides with elliptical cores —
the guides that would be more applicable in sensing as well as mode
discrimination. However, this analysis is out of the scope of the present
paper, and is expected to be taken up in a future communication.
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We are now in a position to analyze the characteristics of LCTOFs
in respect of their dispersion behaviour and field cutoffs corresponding
to the cases of TE and TM mode excitations. It is rather known
that, in the case of isotropic guides, TE and TM modes are difficult
to separate because the direction independent RI values yield identical
propagation constants and field cutoffs. However, the TE and the TM
modes undergo different polarizations in the case of anisotropic guides
(such as liquid crystal waveguides) owing to the direction dependent
RIs, and therefore, these modes possess different values of propagation
constants and field cutoffs.

As stated above, our LCTOF structure has three different sections
(i.e., three-layer step-index optical fiber) with radially anisotropic
liquid crystal outer clad. The RI values of the core and the inner clad
are considered to be n1 = 1.5 and n2 = 1.46, respectively. Further, in
our illustrative case, for the outermost section, we used nematic liquid
crystal as BDH mixture 14616, which has the respective ordinary and
extraordinary RI values as no = 1.457 and ne = 1.5037. For simplicity,
we considered the lower order modes with the azimuthal index (ν)
values as 1, 2 and 3. The taper length L in all the computations is
taken to be 5 cm, the localized values of the core and the inner clad radii
are considered as 60µm and 120µm, respectively, and the operating
wavelength is kept fixed at 1.55µm.

Figure 4(a) illustrates the plots of the left hand side of the
dispersion relation represented by Eq. (8) corresponding to the case
of TE mode excitation for three different values of ν as stated above.
The intersection of the curves with the horizontal axis (i.e., the zero
crossings of the curves) represents the existence of modes with a
particular value of the propagation constant β. We observe that the
propagation constant of the first mode corresponding to ν = 1 has a
value close to 5.935×106 m−1, and the values of zero crossings slightly
increase with the increase in the azimuthal index. The propagation
constants of the other existing modes can also be estimated from the
zero crossings of the curves. The cutoff characteristics of the TE modes
can be obtained after solving Eq. (8) under the limiting condition
w2 → 0. In this situation, the graphs are plotted in Fig. 4(b) (the
(TE)Cutoff vs. β plots), and we notice that the zero crossings of the
curves indicate lesser cutoff β-values (for ν = 1, the cutoff β-value
is close to 5.918 × 106 m−1) than the β-values of the first existing
mode, when compared with the corresponding plots of Fig. 4(a). This
essentially indicates the consistency of the results illustrated through
Figs. 4(a) and 4(b).

Results corresponding to the TM modes are illustrated in
Figs. 5(a) and 5(b). Fig. 5(a) shows the plots of the left hand side
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(a)

(b)

Figure 4. (a) Plot of the dispersion relation for the TE modes. (b)
Plot of the cutoff characteristics for the TE modes.

of the dispersion relation represented by Eq. (14) whereas Fig. 5(b)
corresponds to the cutoff plots of Eq. (14) under the limiting condition
w2 → 0. We take the azimuthal index (ν) values as 1, 2 and 3. As
stated above, the zero crossings of the curve with the β-axis represents
the existence of a mode. We observe from Fig. 5(a) that the value of the
propagation constant for the first mode corresponding to ν = 1 exists
around β = 6.076×106 m−1, which is smaller than that correspondingly
observed zero crossing in the case of TE modes. As such, in the case
of TM modes, the β-values show a substantial decrease as compared
to the TE modes. Further, with the increase in azimuthal index, the
β-values have a tendency to increase, which is similar to the situation
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(a)

(b)

Figure 5. (a) Plot of the dispersion relation for the TM modes.
(b) Plot of the cutoff characteristics for the TM modes.

observed in the case of TE modes. In this case too, the propagation
constants of the other modes existing in the guide can be estimated
from the zero crossings of the curves. As to the cutoff values in the
case of TM modes, as observed from Fig. 5(b) (i.e., the (TM)Cutoff

vs. β plots), the first zero crossings of the curves exist earlier than
those seen in the corresponding plots in Fig. 5(a), indicating thereby
the consistency of the results presented in Figs. 5(a) and 5(b). The
only noticeable fact observed is that the TE eigenmodes propagate in
the aforesaid anisotropic guide with larger propagation constants as
compared to the TM eigenmodes.

Along with the propagation constants and the cutoff situations
of the different existing modes, it would be rather interesting to get
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(a)

(c)

(b)

Figure 6. Plot of the power confinement factors in the LCTOF (a)
core, (b) the inner clad and (c) the outer clad regions under the TE
mode excitation.

a glimpse of the characteristics of the propagation of power through
the anisotropic guide. The expression of power in the different fiber
sections may be easily deduced by implementing the field components
(as obtained in Section 2) and the Poynting vection [32]. These
expressions are not explicitly shown here owing to their lengthy forms,
and may be found in Ref. [29]. Figs. 6 and 7, respectively, illustrate
the logarithmic plots of the confinement of power against the taper
length in the cases of TE and TM modes. In these figures, Λc, Λic

and Λoc represent the confinement factors in the fiber core, inner
clad and the outer clad sections. For the computation purpose, the
operating wavelength is kept fixed at 1.55µm. Also, the LCTOF core
radii at the input and the output ends are kept fixed as 50µm and
100µm, respectively, and two lower azimuthal index values are taken,
i.e., ν = 1, 2.
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At this point, it is worth to make explicit the definition of power
confinement factor [31]. In a region of guide, it is the ratio of the
power sustained in that particular region to the total amount of power
transported by (all the sections of) the guide. As such, Λc represents
the ratio of the amount of power that is being propagated in the
LCTOF core to the total power transmitted by the LCTOF. The
explicit meanings of Λic and Λoc can also be extracted in this way.

Figures 6(a), 6(b) and 6(c), respectively, represent the power
transported by the TE modes in the core, inner clad and the outer clad
sections along the longitudinal length of the taper. We observe that
there is a gradual increase of power with the taper length in the fiber
core, becomes almost uniform with a substantial increase in the inner
clad section, and the outermost clad sustains the maximum amount of
power. Further, in all the cases, the modes with higher azimuthal index
carry higher amount of power. Looking at the power confinements in

(a) (b)

(c)

Figure 7. Plot of the power confinement factors in the LCTOF (a)
core, (b) the inner clad and (c) the outer clad regions under the TM
mode excitation.
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all the three sections, the noticeable fact is that, with the decrease
of power in the fiber core and/or the inner clad, it simultaneously
increases in the outermost liquid crystal clad, indicating thereby as if
the power is leaking off the fiber core, and propagating through the
clad sections. This is essentially attributed to the presence of liquid
crystal in the outermost region of the fiber. This enhancement of
power in the outer region would be of much use for the purpose of
optical sensing as well as field coupling.

Figures 7(a), 7(b) and 7(c) depict the power transported by
the TM modes in the core, inner clad and the outer clad sections,
respectively, of the guide. We observe that, TM field excitation does
not make a prominent increase in power in the outermost liquid crystal
clad — the phenomenon observed in the case of TE mode excitation.
We notice that the highest amount of power is sustained in the inner
clad region, and the confinement factor in the outermost clad is slightly
less than that in the inner clad; the minimum amount of power remains
confined in the fiber core.

4. CONCLUSION

The foregoing discussion focuses on the dispersion characteristics of
the radially anisotropic LCTOF and their power confinement factors
corresponding to the TE and TM mode excitations. It is found that
the TE eigenmodes propagate in the guide with larger propagation
constants as compared to the TM eigenmodes. Also, the TE mode
excitation essentially makes enough power available in the liquid
crystal clad region for the usage of the guide in optical sensing and/or
directional coupling. This interesting feature is attributed to the
incorporation of the radially anisotropic liquid crystal material in the
outermost clad region.

ACKNOWLEDGMENT

The authors are grateful to the two anonymous reviewers for
constructive criticisms on the manuscript. One of the authors
(PKC) is thankful to Prof. Burhanuddin Yeop Majlis for constant
encouragement and help. Fruitful suggestions by Prof. S. Shaari are
also gratefully acknowledged.

REFERENCES

1. Veilleux, C., J. Lapierre, and J. Bures, “Liquid-crystal-clad
tapered fibers,” Opt. Lett., Vol. 11, 733–735, 1986.



Progress In Electromagnetics Research, Vol. 118, 2011 131

2. Green, M. and S. J. Madden, “Low loss nematic liquid crystal
cored fiber waveguides,” Appl. Opt., Vol. 28, 5202–5203, 1989.

3. Lin, H., P. P. Muhoray and M. A. Lee, “Liquid crystalline cores for
optical fibers,” Mol. Cryst. Liq. Cryst., Vol. 204, 189–200, 1991.

4. Kumar, D., P. K. Choudhury, and O. N. Singh, II, “Towards
the dispersion relations for dielectric optical fibers with
helical windings under slow- and fast-wave considerations — a
comparative analysis,” Progress In Electromagnetics Research,
Vol. 80, 409–420, 2008.

5. Safie, A. H. B. M. and P. K. Choudhury, “On the field patterns of
helical clad dielectric optical fibers,” Progress In Electromagnetics
Research, Vol. 91, 69–84, 2009.

6. Siong, C. C. and P. K. Choudhury, “Propagation characteristics
of tapered core helical clad dielectric optical fibers,” Journal of
Electromagnetic Waves and Applications, Vol. 23, Nos. 5–6, 663–
674, 2009.

7. Abd-Rahman, F., P. K. Choudhury, D. Kumar, and Z. Yusoff,
“An analytical investigation of four-layer dielectric optical fibers
with Au nano-coating — A comparison with three-layer optical
fibers,” Progress In Electromagnetics Research, Vol. 90, 269–286,
2009.

8. Choudhury, P. K. and D. Kumar, “On the slow-wave helical
clad elliptical fibers,” Journal of Electromagnetic Waves and
Applications, Vol. 24, Nos. 14–15, 1931–1942, 2010.

9. Amin, A. S. N., M. Mirhosseini, and M. Shahabadi, “Modal anal-
ysis of multilayer conical dielectric waveguides for azimuthal in-
variant modes,” Progress In Electromagnetics Research, Vol. 105,
213–229, 2010.

10. Chen, D. and B. Sun, “Multi-wavelength fiber optical parametric
oscillator based on a highly nonlinear fiber and a sagnac loop
filter,” Progress In Electromagnetics Research, Vol. 106, 163–176,
2010.

11. Tuz, V. R. and C.-W. Qiu, “Semi-infinite chiral nihility photonics:
Parametric dependence, wave tunneling and rejection,” Progress
In Electromagnetics Research, Vol. 103, 139–152, 2010.

12. Ahmed, S. and Q. A. Naqvi, “Electromagnetic scattering from
a chiral-coated nihility cylinder,” Progress In Electromagnetics
Research Letters, Vol. 18, 41–50, 2010.

13. Baqir, M. A., A. A. Syed, and Q. A. Naqvi, “Electromagnetic fields
in a circular waveguide containing chiral nihility metamaterial,”
Progress In Electromagnetics Research M, Vol. 16, 85–93, 2011.



132 Choudhury and Ping

14. Kesari, V. and J. P. Keshari, “Analysis of a circular waveguide
loaded with dielectric and metal discs,” Progress In Electromag-
netics Research, Vol. 111, 253–269, 2011.

15. Dong, J., J. Li, and F.-Q. Yang, “Guided modes in the four-
layer slab waveguide containing chiral nihility core,” Progress In
Electromagnetics Research, Vol. 112, 241–255, 2011.

16. Petrillo, L., F. Jangal, M. Darces, J.-L. Montmagnon, and
M. Helier, “Negative permittivity media able to propagate a
surface wave,” Progress In Electromagnetics Research, Vol. 115,
1–10, 2011.

17. Liu, S.-H. and L.-X. Guo, “Negative refraction in an anisotropic
metamaterial with a rotation angle between the principal axis
and the planar interface,” Progress In Electromagnetics Research,
Vol. 115, 243–257, 2011.

18. Wu, S.-T. and U. Efron, “Optical properties of thin nematic liquid
crystal cells,” Appl. Phys. Lett., Vol. 48, 624–636, 1986.

19. Goldburt, E. S. and P. S. J. Russell, “Electro-optical response of a
liquid-crystalline fiber coupler,” Appl. Phys. Lett., Vol. 48, 10–12,
1986.

20. Sage, I. and D. Chaplin, “Low RI liquid crystals for integrated
optics,” Electron. Lett., Vol. 23, 1192–1193, 1987.

21. Kashyap, R., C. S. Winter, and B. K. Nayar, “Polarization
desensitized liquid-crystal overlay optical-fiber modulator,” Opt.
Lett., Vol. 13, 401–403, 1988.

22. Ioannidis, Z. K., I. P. Giles, and C. Bowry, “All-fiber optic
intensity modulators using liquid crystals,” Appl. Opt., Vol. 30,
328–333, 1991.

23. Chen, S.-H. and T.-J. Chen, “Observation of mode selection in
a radially anisotropic cylindrical waveguide with liquid-crystal
cladding,” Appl. Phys. Lett., Vol. 64, 1893–1895, 1994.

24. Black, R. J., F. Gonthier, S. Lacroix, and J. D. Love, “Tapered
ingle-mode fibres and devices: I. Adiabaticity criteria,” IEE Proc.
— J., Vol. 138, 343–354, 1991.

25. Ono, K. and H. Osawa, “Excitation characteristics of fundamental
mode in tapered slab waveguides with nonlinear cladding,”
Electron. Lett., Vol. 27, 664–666, 1991.

26. Lim, M. H., S. C. Yeow, P. K. Choudhury, and D. Kumar, “To-
wards the dispersion characteristics of tapered core dielectric op-
tical fibers,” Journal of Electromagnetic Waves and Applications,
Vol. 20, No. 12, 1597–1609, 2006.

27. Yeow, S. C., M. H. Lim, and P. K. Choudhury, “A rigorous



Progress In Electromagnetics Research, Vol. 118, 2011 133

analysis of the distribution of power in plastic clad linear tapered
fibers,” Optik, Vol. 117, 405–410, 2006.

28. Choudhury, P. K. and D. Kumar, “Towards dispersion relations
for tapered core dielectric elliptical fibers,” Optik, Vol. 118, 340–
344, 2007.

29. Choudhury, P. K. and W. K. Soon, “TE mode propagation
through tapered core liquid crystal optical fibers,” Progress In
Electromagnetics Research, Vol. 104, 449–463, 2010.

30. Choudhury, P. K. and W. K. Soon, “On the transmission by liquid
crystal tapered optical fibers,” Optik, Vol. 122, 1061–1068, 2011.

31. Choudhury, P. K. and T. Yoshino, “TE and TM modes power
transmission through liquid crystal optical fibers,” Optik, Vol. 115,
49–56, 2004.

32. Cherin, A. H., An Introduction to Optical Fibers, Chapter 5,
McGraw-Hill, New York, 1987.


