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Abstract—The homogeneity of the amplitude of one of the
polarizations of the RF field B1 is a crucial issue in Magnetic
Resonance Imaging (MRI), and several methods have been proposed
for enhancing this uniformity (“Shimming”). The existing approaches
aim at controlling the homogeneity of B+

1 and limiting the Specific
Absorption Rate (SAR) of the RF field by independently controlling
magnitude and phase of individual excitation currents in MRI scanners,
either birdcage or TEM coil system. A novel approach is presented
here which allows a joint control of B+

1 uniformity, SAR, and purity of
polarization of the total RF B1 field. We propose a convex optimization
procedure with convex constraints, and special attention has been
devoted to the issue of convexity of the proposed functional. The
method is applied to MRI brain imaging; numerical tests have been
performed on a realistic head model at low, medium, and high RF field
in order to assess the effectiveness of the proposed method. We found
that maintaining a specific polarization plays an important role also in
maintaining the homogeneity of B+

1 amplitude.

1. INTRODUCTION

One of the most critical factor that influence the quality and resolution
of Magnetic Resonance Imaging (MRI) is the homogeneity of the
amplitude of one of the polarizations of the RF field B1. Because
of the non homogeneity of the scenario, and of the intrinsic difficulty
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of such a constraint, the field usually obtained is far from the one
required. This is especially the case for recent high and ultra-high
field (B0 ≥ 7T), with the consequent increase of the frequency of the
RF field. As a result, the issue of leveling (“shimming”) the B+

1 field
has received considerable attention in the recent literature [1–3]. In [1]
the homogeneity for the RF B+

1 -field is achieved optimizing separately
three different quantities, but the problem related to the energy
absorption is not addressed. Because of the practical importance
of limiting the Specific Absorption Rate (SAR) in both partial and
whole body imaging, recent works have addressed the combined task
of optimizing RF magnetic field amplitude uniformity while limiting
the SAR [2, 3]. Also, in the different contributions, [1–3] discussion
on local/global convergence properties of the adopted optimization
methods is apparently lacking, leading to optimization procedures,
which, as discussed in the following, are subject to possible trapping
into sub-optimal solutions.

In the following, a synthesis procedure is proposed for the B1 field
able to take contemporaneously into account all constraints regarding
polarization, homogeneity and strength of the B1 field (see below),
while being as robust as possible with respect to the possible occurrence
of sub-optimal solutions, (i.e., solutions not corresponding to the
globally optimal solution of the problem). In fact, by using the real and
imaginary parts of the complex excitation currents of the coil (instead
of amplitude and phase as in previous approaches), as well as by a
suitable formulation of the problem, we are able to reduce the overall
problem to a kind of Convex Programming problem. As a consequence,
no trapping into sub-optimal solutions is possible, so that the globally
optimal B1 field, which is of course the real goal, can be achieved in a
computationally easy fashion, as well as with a reduced computational
burden.

To the best of the authors’ knowledge, none of the literature
works addresses control of the purity of polarization of the B1 RF
field although [4] explicitly mentions the loss of polarization purity
inside the region of interest (ROI) as one of the responsible causes for
the loss of homogeneity of the RF field. In this manuscript we will
show how an explicit control of polarization purity of the total B1-
field is needed to maintain the homogeneity of the selected component
B+

1 . Many authors have introduced the B1 shimming in terms of B+
1

homogeneity and SAR reduction [1–3] but in these works no control
in polarization changing is taken into account. Indeed, quality of MRI
anatomical imaging depends on the intensity and homogeneity of B+

1
field, but also on polarization: degradation of field polarization from
the desired circular left-hand to elliptical up to linear polarization is the
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cause of higher power emission from the coils, and/or reduced signal-
to-noise ratio (SNR) [5]. In turn, even if polarization were optimized
in an empty birdcage coil, the presence of biological tissues inside
the birdcage introduces permittivity and conductivity non-uniformities
that alter field amplitude and polarization.

We show that controlling the ripple of the RF field amplitude (i.e.,
amplitude-only homogeneity) is not enough to control the polarization.
The proposed method aims at controlling field intensity while keeping
under control the homogeneity and polarization of the RF magnetic
field B1, and enforcing a limitation of SAR; the method is devised
to operate in a non-homogeneous material scenario, and it is applied
to brain imaging. In particular, the reported examples show ability
to comply with constraints on SAR and B+

1 intensity as enforced by
FDA [6] or recommended by [7].

As our tests show, the method provides good results not only at
low (B0) field levels, but also for very-high fields (B0 ≥ 7T) where
spatial variation of electric parameters has the largest influence on B+

1
quality.

The proposed optimization method to constrained field shimming
is described in Section 2; the anatomical models employed in the tests
are presented in Section 3.1, and Section 3.2 describes the metrics
employed to evaluate the fulfilling of the enforced constraints and the
quality of the shimming.

2. JOINT OPTIMIZATION METHOD

As usual in the relevant literature we assume that the electric and
geometric nature of the biological tissues in the region of interests
is known, and our objective will be to find the (complex) current
excitations, [I1, I2, . . . , INsrc], assigned to the Nsrc conductors in the
birdcage structure that produce the B1 field. The electric and the
magnetic fields produced by a unit current in the nth conductor are
indicated by en and bn; knowledge of these fields requires the solution
of the EM problem in the Region of Interest (ROI), that can be done
by any EM solver (including those commercially available). Obviously,
when dealing with a 3D field optimization problem one needs a 3D
solver, while a 2D solver is enough for a 2D optimization; conversely,
the presented optimization method is entirely independent from the
dimensionality of the problem to evaluate the unit responses en and bn.
Consequently, we denote the collection of the Nsrc current excitation
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coefficients in a column vector [I], and the overall fields as:

B1(r; [I]) =
Nsrc∑

n=1

Inbn(r) (1)

E(r; [I]) =
Nsrc∑

n=1

Inen(r) (2)

These two fields represent the magnetic induction and electric fields,
respectively, resulting from a particular choice of the excitation
coefficients [I]. Our joint optimization problem can be summarized
as follows: find the excitation coefficient distribution [I] that

(i) minimizes deviation from uniform amplitude of a selected
circularly polarization of the B1 field (e.g., circular right-hand
(RH));

subject to the constraints that:

(ii) The SAR is bounded everywhere by a given specific value
(typically dictated by FDA or ICNIRP);

(iii) The polarization of the field remains close enough to the desired
circular RH to guarantee given performances;

(iv) Amplitude of the desired polarization of B1 is above a specific
target value;

Before we translate the above requirements into specific inequalities,
some comments are useful to shed light onto the rationales behind
them, which in turn impact on the formulation and solution of
the resulting optimization problem. The requirement in (i) is the
field amplitude homogeneity customarily addressed in the literature
(e.g., [1]); it enforces a spatially uniform energy B+

1 density, which
has the positive impact on imaging quality that is well described
in the literature, and needs no further comment here. Constraint
(ii) is intended to protect the patient against excessive heating (not
only in the skin) and to comply with existing regulations and/or
recommendations against possible adverse effects of exposure to RF
fields; this issue also has been already considered in the literature [8]
and needs no further comment. Polarization constraint (iii) is
within the main part of the novelties proposed in this work, and
its motivations have already been described in Section 1, also with
reference to the literature; hence, we observe that this requirement,
taken together with SAR limitation (iii) has the system-level meaning
of guaranteeing a prescribed SNR performance within the allowed
absorption of electromagnetic power.
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Finally, the necessity of the requirement (iv) that field amplitude
be above a given minimum value is probably less easy to understand; it
is however crucial for a meaningful solution. It can indeed be verified
that without this requirement B+

1 -field uniformity is often achieved at
the expenses of B1 field strength; this is, for instance, the case when
using an unconstrained linear optimization (also known as inverse-
source).

We now proceed to mathematically formulate our constrained
optimization problem; in the following, special care will be taken
in formulating the constraint inequalities; indeed, we will show that
our approach leads to fully convex constraints which will be key
in addressing the optimization problem. As far as the polarization
behavior is concerned, taking the static magnetic field (B0) is along
the z direction, breakdown of the B1 field into left-hand (LH) and
right-hand (RH) circular polarizations is expressed as:

B1(r) = B−
1 (r)p̂−1 + B+

1 (r)p̂+
1 (3)

where the polarization complex unit vectors are:

p̂−1 =
(x̂− jŷ)√

2
(4)

p̂1+ =
(x̂ + jŷ)√

2
(5)

and where the (complex) amplitudes of the circular polarization are
expressed as:

B−
1 (r) = p̂−

∗
1 ·B1(r) =

1√
2
[B1x(r) + jB1y(r)] (6)

B+
1 (r) = p̂+∗

1 ·B1(r) =
1√
2
[B1x(r)− jB1y(r)] (7)

With the above notation, the optimization endeavor can be
formulated as follows:
find the excitations [I] that yields minimum field deviation from a
constant value, i.e.,

[I] = arg minF2([I]), F2([I]) ≡
∥∥∥|B+

1 (r; [I])|2 − |B+
1 (r0; [I])|2

∥∥∥
2

(8)

where r0 is a reference point (e.g., center) of the ROI, subject to:
SAR(r) ≤ UBS(r) (9)
|B−

1 (r)|2 ≤ UBP (r) · |B+
1 (r)|2 (10)

B+
1 (r0) ≥ B+

1desired
(11)

SAR(r) =
σ|E(r)|2

2ρ
(12)
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with σ (S/m) being the conductivity and ρ is the mass density (kg/m3)
of the tissue, UBS and UBP being assigned limiting value profiles, and
B+

1desired
a prescribed minimum field intensity.

The above have the following motivations and meaning:

• Equation (8) enforces a B+
1 -field amplitude as homogeneous as

possible; note that by dealing with magnitudes of complex
fields, the above is different from requiring a constant (complex)
field altogether, i.e., spatial phase variations are allowed here.
Combining the advantage of a stronger physical meaning and of
the resulting better form of the cost functional, power densities
(i.e., amplitude squared) were considered here rather than simply
the absolute values of the complex fields; in fact, this choice leads
to a fourth-order polynomial in F2, with regularity properties
further discussed in the paragraphs below, that lead to improved
properties of the overall optimization instance;

• Equation (9) enforces limitations on the SAR in any given point of
ROI. We observe that the locus defined by the equality sing in (9)
is an hypercylinder, which amounts to saying that constraints (9)
are convex in terms of the real and imaginary parts of the unknown
coefficients (see [9] for more details);

• Equation (10) is meant to enforce the desired polarization. In fact,
provided the cost functional is sufficiently small, |B+

1 (r0)| is almost
equal to |B+

1 (r)|, so that enforcing (10) means essentially to keep
the undesired polarization under a given threshold, namely:

|B−
1 (r)|2 ≤ UBP (r) · |B+

1 (r0)|2 (13)

• Equation (11), provided the cost functional F2 in (8) is sufficiently
small, states that the field is (everywhere) sufficiently intense.
Note the reference phase, which can obviously be chosen at one’s
will, has been fixed herein in such a way that the B+

1 field is
real and positive at the reference point r0. Such a circumstance,
together with the choice of charging on the cost functional part
of the job, allows to deal again with a convex constraint. In fact,
the joint consideration of (8) and (11) will induce a field intensity
everywhere higher than (or of the same order of) the desired B+

1 ,
and the constraint comes out to be linear (and hence convex) in
terms of the unknowns.

As a consequence of the given choice for the unknowns, all
constraints (9)–(11), (13) are convex, so that, as the intersection
of convex sets is still convex, the cost functional (8) has to be
minimized onto a convex set. It is interesting to note that this
would not be the case by using as unknowns amplitude and phase
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of the current excitations (as in [1]) In fact, a set which is convex
in terms of real and imaginary parts (for instance, a segment in the
complex plane) becomes non-convex when observed in a amplitude-
phase plane. Then, the proposed formulation, as compared with
previous ones, has the advantage of dealing with convex (rather than
with generic) constraints. On the basis of the relatively low number of
control degrees of freedom (the Nsrc currents), utilization of a global
optimization procedure may be reasonable if the quantization of the
current amplitudes and phases is limited. Such a global optimization
would overcome the occurrence of a possible local minima which would
result in a sub-optimal solution of the problem. On the other hand,
other useful theoretical results come into play which further simplify
the solution of the problem, and justify a convex (deterministic)
optimization. In fact, functionals of this kind have been extensively
studied in the framework of the solution of quadratic inverse problems
including array antenna synthesis [10] and phase retrieval [11], showing
that fourth-order polynomial functionals of this kind can be assumed
to be convex whenever the number of unknowns is much less than the
number of (independent) contributions to the cost functional.

Then, when the requirement that the field intensity is uniform is
enforced at a sufficiently fine grid of points, the number of independent
quadratic equations which are generated (and hence the number of
independent contributions to the cost functional) is much higher
than the number of unknowns (which is very limited in the selected
application and it is dictated by the number of conductors of the
birdcage or number of microstrips in TEM coil). As a consequence,
by virtue of the choices which have been made in choosing the cost
functional, one can assume that also the cost functional is a convex
one, so that the overall problem is reduced to a Convex Programming
(CP) one. Therefore, any local optimization procedure will be able
to get the globally optimal solution to the problem at hand. To
get the maximum reliability of such a conclusion, such a result
(based on [10, 11]) has also been successfully checked by comparing
results of the proposed Convex Programming Approach to Shimming
(COPAS), (which does not require global optimizations), with the
ones resulting from a global optimization procedures based on genetic
algorithm (GA). In Section 4.2 we will verify the convexity under given
constraints. Finally, we observe that alternative formulations using an
uniform norm in the cost functional could be used — at the cost of
missing the polynomial nature of the cost functional — for example
substituting F2 in (8) with:

F1([I]) =
∥∥∥|B+

1 (r; [I])| − |B+
1 (r0; [I])|

∥∥∥
2

(14)
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It is worth to note that the intrinsic limitation of these kinds of
methods is in the regularity of the cost function: the functional must
have a continuous first derivative (at least) when a gradient-based
optimization technique is employed. Therefore, in the following we
use formulation (8) and a gradient-based optimization procedure, in
particular a Quasi Newton Line Search routine [12].

3. APPLICATION TO MRI

We will now describe one study case used in the following to test
the optimization procedure, and the system-level relevant quality
indicators to be used to monitor the optimization performances.

The test scenario is a realistic model of the brain. The rationale
for using a realistic model of the brain is almost self-evident, since
shimming the B+

1 field is challenging in the presence of a very
inhomogeneous media, and all the more so at higher frequencies.

3.1. 2D Realistic Phantom

In this section, we describe the realistic model used. We start with
a 3-D grey scale MRI generated by [13]. Each MRI image has been
produced taking into consideration a repetition time, τ , equal to 20ms,
and a T1 scanning modality with a thickness, along the z direction,
equal to 1 mm. Also, we consider the simplest pulse sequence known as
partial saturation [8]. The images are obtained using a simulator [13].
Once we have the MRI in grey scale we need to obtain a segmented
version of the different brain’s anatomical structures. According
to [13, 14], the digital MRI is classified by different constitutive parts
of the brain, which include: cerebrospinal fluid (CSF), grey matter
(GM), white matter (WM), fat, muscle, skin, skull, vessels, dura mater
(DM) and bone marrow. The segmentations of the single regions
are obtained by using [14]. In that model each anatomical tissue is
classified using a set of 3-dimensional “fuzzy” membership volumes,
one for each class listed above. The voxel value in these volumes
reflects the proportion of that tissue type, present in that voxel, in the
range [0, 1]. The segmentation yields a particular label for different
anatomical structures as indicated in Table 1.

Figure 1 depicts the whole assembled head model obtained with
the aforementioned procedure. Also, Figure 2 shows the different
constitutive parts of the brain.

Different B0 field strengths are accounted for by Larmor’s
frequencies, which are the frequencies of RF B+

1 field. In order
to meaningfully correlate the different RF frequency scenarios, it
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Table 1. Labels associated with each anatomical structure.

Label Name

0 Background

1 CSF

2 Grey Matter

3 White Matter

4 Fat

5 Muscle

6 Skin

8 Vessels

9 Around Fat

10 Dura mater

11 Bone marrow

Figure 1. Simulated MRI.

is necessary to account for dispersion [15–17] for each tissues in
Table 1. Table 2 shows the selected frequencies with related strength
of the static magnetic field B0. Tables 3 and 4 represent the
relative permittivity and conductivity at each frequency in Table 2,
respectively.

We note that mass density values for the tissues above are also
necessary to evaluate the SAR, which have been taken from [8].

The realistic model is now obtained by assembling all the different
tissues derived from the segmentation operation. Figure 3 shows the
dielectric properties at B0 = 7 T and B+

1 = f3.
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(a) CSF (b) Grey

matter

(c) White

 matter

(d) Fat (e) Muscle

(f) Skin (g) Skull (h) Vessels (i) Dura

matter

(j) Bone

marrow

Figure 2. Brain’s anatomical structures.

Table 2. Larmor’s frequency associated with the static field B0.

Frequency label B0 (T) B+
1 (MHz)

f1 1.5 64

f2 3 128

f3 7 300

f4 9 384

f5 11 469

Table 3. Relative permittivity for the selected frequencies.

Tissue f1 f2 f3 f4 f5

CSF 97.31 84.04 72.73 71.2 70.32

grey matter 97.43 73.52 60.02 57.76 56.26

White matter 67.84 52.53 43.78 42.29 41.29

Fat 65.06 59.21 56.34 55.87 55.54

Muscle 72.23 63.49 58.2 57.27 56.63

Skin 76.72 61.59 51.9 50.15 48.97

Skull 16.68 14.72 13.44 13.19 13

Vessels 68.64 55.99 48.32 47.17 46.43

Dura mater 73.26 55.97 47.96 46.83 46.11

Bone marrow 72.1 62.33 57.58 56.84 56.34
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Table 4. Conductivity for the selected frequencies (Sm−1).

Tissue f1 f2 f3 f4 f5

CSF 2.066 2.143 2.224 2.247 2.269

Grey matter 0.5109 0.5867 0.6924 0.7306 0.7664

White matter 0.2915 0.3421 0.4133 0.4398 0.4649

Fat 0.03527 0.03687 0.03957 0.04086 0.04226

Muscle 0.6882 0.7192 0.7705 0.7922 0.8142

Skin 0.488 0.5442 0.6308 0.6631 0.6936

Skull 0.05953 0.06735 0.08266 0.08992 0.09758

Vessels 0.4293 0.4789 0.537 0.5576 0.578

Dura mater 0.7067 0.7517 0.8036 0.8235 0.8436

Bone marrow 0.02109 0.02363 0.02737 0.0289 0.0306

(a) Relative permittivity (b) Conductivity Sm -1

Figure 3. Dielectric properties at f3 = 300 MHz.

Additionally, inserting the dielectric properties for each segmented
structure depicted in Figure 2 will depend on the employed EM forward
solver. As we will briefly describe in Section 4 using a Method of
Moments (MoM) with piece-wise constant basis function will allow us
to associate each pixel of the image with a specific dielectric constant
(conductivity and relative permittivity). Some MATLAB functions
have been written to interpolate the dielectric values in order to satisfy
the forward solver mesh grid.

3.2. Quality Indicator Parameters

In order to evaluate the results at a system-level, we discuss now the
parameters to be used to evaluate the effectiveness of the proposed
optimization method, called in the following quality indicators (QI).
Such parameters will take into account the shimming of the field as
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well as the polarization, the ripple and the flip-angle. In fact, in
order to achieve the angular deflection of the magnetic field B0, it
should be possible to produce a B+

1 field that actually rotates the net
magnetization vector, M . Concerning our setup, B+

1 should rotate
the B0 in x-y plane, when the B0 field is z-oriented and when the
partial saturation sequence is considered. The ability of the RF field
to effectively rotate the B0 field is a crucial parameter. This parameter
is known as a flip-angle. In fact, according to [18], the flip-angle is
defined as the degree of rotation of the macroscopic magnetization
vector produced by a radio frequency pulse with respect to the direction
of the static magnetic field, and is expressed by:

α(r) =
γτ

µ0

∣∣B+
1 (r)

∣∣ (15)

where γ is the gyromagnetic ratio and τ is the application time of the
RF. In partial saturation sequences, a flip-angle α = π/2 is required
inside ROI in order to have the complete deflection of the static field
in the x-y plane. It is apparent that the flip angle, important as it
is, it does not directly show deviation from uniformity. In order to
evaluate the homogeneity we employ the ripple in the ROI, that is, the
variation of the total magnetic field inside the brain with respect to a
reference point, namely:

∆B+
1 (r) = B+

1 (r)−B+
1 (r0) (16)

If the field in this region is homogeneous we expect the ripple of the
field, the quantity above, to vanish. In order to evaluate this parameter
we normalize the ripple with respect to the maximum value of the total
magnetic field B1, normalized ripple (NR):

NR(r) =
|∆B+

1 (r)|2∥∥∥|B+
1 (r)|2

∥∥∥
∞

(17)

Additionally, we will also use another numerical parameter that has
been considered to express the homogeneity of the B+

1 field according
to [1]; this parameter is the relative standard deviation (RSD), i.e., the
standard deviation divided by the average, namely:

RSD =
std{|B+

1 (r)|}
mean{|B+

1 (r)|} (18)

In order to evaluated polarization uniformity we will employ the
following normalized polarization deviation (NPD):

NPD(r) =
|B−

1 (r)|2∥∥∥B1(r)
∥∥∥

2

2

(19)
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Figure 4. Positions of conductors.

We note that the optimal solution is when B−
1 = 0 (pure RH

polarization), thus the quantity above (NPD) must vanish to preserve
the polarization of the field.

4. NUMERICAL RESULTS

In this section, we will show results of our optimization scheme by
considering the parameters described above for the proposed head
model.

Before starting to present results, we stress the fact that the
proposed optimization method is suitable to operate at any frequency
and intensity field. However, we concentrate our analysis on one of
the most critical case at high frequency: 300 MHz, which stands for
B0 = 7T. The number of excitations (number of unknowns in the
optimization procedure) is Nsrc = 16 sources. The coefficients [I] at
the starting point in (1) and (2) have been selected according to [8]:

Iv = I0e
−jΦv (20)

with the phase for the vth conductor set to:

Φv =
(v − 1)2π

Nsrc
(21)

Figure 4 shows the geometry and position for each conductors.
Also, all of our simulations were performed on a PC with Windows

Xp 32 bit, 4 GB RAM and Intel 2 Duo processor. With regards to
the EM solver, we used a Method of Moments (MoM) with piece-
wise constant basis function in 2-D [19]. By using the excitation
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(a) (b)

Figure 5. Normalized electric field in unloaded and loaded MRI
scanner at f3. (a) Empty scanner. (b) System coils loaded with the
brain model.

coefficients [I] as a point-source excitation [20], we solve the 2-D MoM
for Equation (2). Once we compute the electric field, the magnetic
induction (1) is obtained through differentiation.

4.1. Application to Realistic Head Model

Here we test the presented approach on the brain model described in
Section 3.1; for the sake of conciseness we will consider only the case
at frequency f3 = 300 MHz i.e., for a static field B0 = 7 T.

First of all, it is instructive to analyze the situation with
the conventional choice for the current driving as described in
Equations (20), (21). This is reported in Figure 5 showing the electric
field obtained before and after inserting the proposed brain model.

As indicated by [8], in the absence of a head inside the scanner
system, the electric field produced by the excitations in (20) and (21)
varies linearly along the radial direction. When the system coils is
loaded with the brain asymmetric model the field loses its symmetry
both in radial and azimuthal directions as expected. The field inside
the MRI scanner is very inhomogeneous and the polarization of B1
field (not shown in the figure) is far from circular.

In order to have an estimate of both the achievable field strength
and a goal for realistically improving performances, we employ the
field obtained with the usual current driving, i.e., (20) and (21), as
a reference in setting the constraints of COPAS optimization; this
excitation and the related fields will be indicated as “initial” in the
following. For the polarization, we constrain the solution to have an
undesired polarization component bounded by 1/2 of that of the initial
configuration (at the center of the ROI, where polarization would be
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RH in the empty scanner); similarly, using (24) we constraint the
optimized field to have a minimum strength no less than 2/3 of the
value pertaining to the initial configuration. These specific values (1/2
and 2/3) were suggested by conducting a certain number of tests with
different values.

Because of its different functional nature, at a difference with
the other constraints, the SAR constraint has been chosen instead in
compliance with [6] and [7].

Summarizing, the constraints of COPAS are therefore as follows:

SAR(r) ≤ UBS(r) = 3.2W/kg (22)

|B−
1 (r)|2 ≤ UBP (r) · |B+

1 (r)|2 =
1
2
|B+init

1 (r)|2 (23)

B+
1 (r0) ≥ B+

1desired
=

2
3

∥∥∥Real{B+init

1 (r)}
∥∥∥
∞

(24)

In the above, the SAR constraint is enforced within the entire
scanner volume, while the polarization constraint is enforced only in
the ROI.

Before analyzing the results obtained by COPAS with full
constraints, we deem it important to analyze the role of polarization
constraint. It is intuitive that controlling the ripple of RF field
amplitude (i.e., its homogeneity), does not guarantee spatial uniformity
in the polarization, but to appreciate that from a quantitative
standpoint we conduct a test with the same set-up as for the previous
example (23) to (24) but deleting the constraints on polarization (23).
As the results in Figure 6 we show that even if the constraints on

(a) (b)

Figure 6. Variation of polarization at f3. (a) NPD after optimization
without constrain on polarization. (b) NPD after optimization with
constrain on polarization.
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Figure 7. Polar plot for initial and optimized excitation coefficients:
normalized amplitude (A), and phase (degree).

ripple, SAR and B+
1 are completely fulfilled, the polarization is far

from uniform (we explicitly omit the ripple and SAR constraints plot).
Finally, before listing the results of COPAS on QI parameters,

in Figure 7 we report the distribution of the excitation coefficients
(magnitude and phase) for the initial choice in (20), (21) and after the
optimization. The results are reported for three different frequencies:
f1, f3 and f5. With regards the aforementioned QI parameters we
show the SAR in Figure 8, flip-angle in Figure 9, NPD and NR in
Figures 10, and 11, respectively.

Also, Figure 12 reports the relative standard deviation for all
frequencies listed in Table 2.

As clearly seen from Figure 12, the higher the frequency, the higher
the non-homogeneity, and the worse the performance in the absence
of optimization. Conversely, at the highest frequency the proposed
method shows better performances in fulfilling the constraints and in
minimizing the cost function. Also, the percentage variation increases
with the B+

1 frequency (i.e., with B0 strength) and at the highest
selected frequency, f5, we may encounter a very non homogeneous
example. In fact, the relative variation between the RSD before and
after COPAS is almost 50%.,
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(c) optimized 

SAR at f .
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(d) initial
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(e) initial

SAR at f .

(f) initial

SAR at f .51 3

Figure 8. Quality indicators parameters for dielectric head-model:
SAR.

(a) optimized 
flip-angle at f .1

(b) optimized 
flip-angle at f .3

(c) optimized 
flip-angle at  f  .5

(f) initial flip-
angle at f   .

(d) initial flip-
angle at f  .

(e) initial flip-
angle at f .1 53

Figure 9. Quality indicators parameters for head-model: flip-angle.

4.2. Verification of Overall Convexity Under Convex
Constraints

At a first glance the cost functional (8) is easily recognized as non
convex. That is, if X represents the set of all excitation coefficients,
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(e) initial 
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(d) initial 
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53

1 53

1

Figure 10. Quality indicators parameters for head-model: NR.

(a) optimized

NPD at f .

(f) initial 

NPD at f .

(e) initial 

NPD at f . 

(d) initial 

NPD at f .

(c) optimized

NPD at f  .

(b) optimized

NPD at f .

53

1 53

1

Figure 11. Quality indicators parameters for head-model: NPD.

and Y the set of all possible solutions (strength of field, polarization
and SAR) then Y is a non convex set. Also, due to the possible
presence of relative minima, and due to the non convexity of the set Y ,
convergence to a local minimum could appear. Thus, we can pick up a
false solution of our initial problem. Such points are in general called
trap points [21] and they occur when the non convexity of the set Y
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Figure 12. Relative standard deviation for all Larmor frequencies:
black bar is the RSD for the initial field, light grey bar is the obtained
RSD after COPAS. The percentage is related to the relative variation
with respect to the initial RSD.

is involved. The only way to overcome this kind of problem seems, in
principle, the adoption of a global optimization algorithm such as a
genetic algorithm. Resorting to a global technique allows us to verify
that the found minimum for our problem is indeed the global one. In
fact, since a rigorous proof of the convexity of the shimming problem
under certain constraints is not obtainable, using the GA will provide
an empiric confirmation of that.

In the following we report a numerical experiment comparing GA
and our optimization procedure for the experiment illustrated in the
previous section at f3. The GA optimization procedure was employed
with the parameters listed in Table 5, while COPAS was employed with
the parameters selected as in Table 6; Figure 13 depicts the excitation
coefficients [I] obtained by using GA and COPAS. We have verified
that the fields obtained with excitation coefficients resulting from the
global GA optimization fulfill the convex constraints in (9)–(11). For
the sake of brevity, we do not report the QI parameters for this solution
in view of the fact that there are no significant changes with respect the
results obtained with COPAS and depicted in Figures 8–10, and 11.

Moreover, we compute the relative error for magnitude and phase
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Figure 13. Excitation coefficients for each transmitters at f3:
comparison between GA and COPAS. Polar plot: normalized
magnitude (A), and phase (degree).

Table 5. Results using GA with convex constraints.

Number of samples in population 20

Cross over probability 0.8

Mutation probability 0.2

Elite count 2

Number of generations 20

Starting point (X0) randomly selected

Selection function stochastic uniform

Stopping criteria (tolerance on fitness) 2e− 2

Final function value 0.0104252

Number of function callings 9507

Total time 600 sec

between GA and our method as followings:

ε|I| =

∥∥∥|IGA| − |Iconv|
∥∥∥

2

2∥∥∥|Iconv|
∥∥∥

2

2

= 0.023 (25)
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Table 6. Results using COPAS.

Iteration numbers 15

Stopping criteria (tolerance on fitness) 2e− 2

Final function value 0.0089

Number of function callings 165

Total time 150 sec

ε∠I =

∥∥∥∠IGA − ∠Iconv

∥∥∥
2

2∥∥∥∠Iconv

∥∥∥
2

2

= 0.032 (26)

It is apparent from the above that, while requiring a rather different
number of iterations, both global GA and convex COPAS algorithms
converged to the same result; this can be explained only resorting to
a convexity of the problem in the set Y (i.e., of the functional subject
to the examined constrained). Even if the shimming problem is non
convex in general, the constraints on SAR, ripple, and polarization
tends to delete the non convex nature of the problem. We can now
classify the shimming problem as convex under certain constraints. A
similar behavior was observed in many practical problems ([22, 23] and
this allows us to use any local minimization algorithm to get a global
solution.

5. CONCLUSIONS AND FUTURE WORK

A novel approach for shimming the RF field (B+
1 ) in MRI has

been proposed that employs an optimization procedure with convex
constraints (COPAS). The convexity of the presented approach is
crucial: it ensures to achieve the global minimum of the problem. Such
a formulation allowed us to have an accurate, repeatable, and optimal
solution of the shimming problem.

Also, by using this procedure we were able to reduce the SAR
and control the uniformity and polarization of the B1-field. The
role of polarization has been studied and tested on an application
instance confirming the importance of such parameter. Contrary to
other shimming procedures, controlling the polarization of the field
allows to reduce the polarization change for the total RF B1-field.
The proposed method has been tested also with medium and high MRI
(static) field values. We show that in virtue of the constraints, a convex
optimization procedure applied to a non convex functional produces a
solution that is a global optimum, as verified using genetic algorithm
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(GA) to check the obtained solution. We have shown results relative
to brain imaging MRI in 2-D. Future works will involve application of
COPAS on 3-D problem. In this case, special care must be devoted to
develop and design the birdcage in 3-D for high-field MRI. As outlined
in [24], producing a magnetic field B1 with a desired strength inside
the birdcage is far to be trivial and different configurations have been
proposed for both birdcage and TEM coil. The development of a 3-D
model for the birdcage is under our investigation, while the proposed
optimization scheme needs not be changed.
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