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Abstract—This paper presents the unified efficient fundamen-
tal alternating-direction-implicit finite-difference time-domain (ADI-
FDTD) schemes for lossy media. The schemes presented include aver-
aging, forward-forward, forward-backward and novel exponential time
differencing schemes. Unifications of these schemes in both conven-
tional and efficient fundamental forms of source-incorporated ADI-
FDTD are provided. In the latter, they are formulated in the sim-
plest, most concise, most efficient, and most fundamental form of
ADI-FDTD. The unified update equations and implementation of the
efficient fundamental ADI-FDTD schemes are provided. Such efficient
fundamental schemes have substantially less right-hand-side update co-
efficients and field variables compared to the conventional ADI-FDTD
schemes. Thus, they feature higher efficiency with reduced memory
indexing and arithmetic operations. Other aspects such as field and
parameter memory arrays, perfect electric conductor and perfect mag-
netic conductor implementations are also discussed. Numerical results
in the realm of CPU time saving, asymmetry and numerical errors as
well as specific absorption rate (SAR) of human skin are presented.

1. INTRODUCTION

The alternating-direction-implicit finite-difference time-domain (ADI-
FDTD) method [1–3] has gained much prominence recently due to
its unconditionally stable feature where the time step is no longer
restricted by the Courant-Friedrich-Lewy (CFL) stability criterion.
The popularity of ADI-FDTD method has further brought about
the successful extensions into modeling lossy media [4–9], while
retaining its unconditional stability feature. The proof of unconditional
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stability feature for various ADI-FDTD schemes for lossy media has
been provided in [10]. However, the conventional form of ADI-
FDTD method has made the algorithm rather complicated. Apart
from solving tridiagonal systems, the right-hand-sides (RHS) of the
update equations involve many update coefficients and field variables
(resultant from RHS matrix-operators) that require considerable
arithmetic operations. Furthermore, one should not overlook the huge
amount of memory indexing operations incurred throughout the whole
procedures. The introduction of conductivity terms for lossy media
into ADI-FDTD algorithm has made such overhead worse from the
efficiency point of view where the arithmetic operations and memory
indexing increase considerably. Furthermore, it is often desirable
to formulate various schemes of ADI-FDTD method under unified
schemes which feature higher efficiency and simplicity.

Recently, a new algorithm of efficient ADI-FDTD method [11]
which features higher efficiency has been proposed. Such efficient
ADI algorithm is included within a family of fundamental implicit
schemes, which feature similar fundamental updating structures that
are in simplest forms with most efficient matrix-operator-free RHS [12].
Extension of such efficient fundamental form of ADI-FDTD method for
lossy media with forward-backward scheme has been discussed in [13],
where the conductivity terms are applied at the forward time (n+ 1

2) in
the first substep and backward time (n+ 1

2) in the second. In this paper,
we consider many more schemes and further unify these schemes based
on both conventional form (with RHS matrix-operators) and efficient
fundamental form (with RHS matrix-operator-free) of ADI-FDTD for
lossy media. Among the schemes considered are averaging, forward-
forward, forward-backward and novel exponential time differencing
(ETD) schemes (These schemes will be elaborated further in Section 2).
The novel scheme based on the ETD [14, 15] is introduced for the
first time (in the main grid) in efficient fundamental form of ADI-
FDTD method, which also achieves higher accuracy compared to other
schemes.

The organization of this paper is as follows. Section 2 presents
various ADI-FDTD schemes for lossy media. Unifications of these
schemes in both conventional and efficient fundamental forms of source-
incorporated ADI-FDTD are then provided in Section 3. Subsequently,
the detailed implementation of these unified efficient fundamental
schemes for lossy media is provided in Section 4. Other aspects
such as field and parameter memory arrays, perfect electric conductor
(PEC) and perfect magnetic conductor (PMC) implementations are
also discussed. In Section 5, numerical results which include CPU
time saving (efficiency gain) as well as asymmetry and numerical errors
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will be presented and discussed. The specific absorption rate (SAR)
computation of human skin exposed to electromagnetic radiation will
also be considered.

2. VARIOUS ADI-FDTD SCHEMES FOR LOSSY MEDIA

2.1. Averaging

The averaging scheme [4–6] is one of the most common schemes used
where the conductivity terms are averaged between two time indices in
both substeps. The scheme calls for the following update procedure:(
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where I is the 6× 6 identity matrix, A and B are the splitting matrix
operators commonly used in ADI-FDTD compact notations [12]:

A =




0 0 0 0 0 1
ε ∂y

0 0 0 1
ε ∂z 0 0

0 0 0 0 1
ε ∂x 0

0 1
µ∂z 0 0 0 0

0 0 1
µ∂x 0 0 0

1
µ∂y 0 0 0 0 0




(2)

B =




0 0 0 0 −1
ε ∂z 0

0 0 0 0 0 −1
ε ∂x

0 0 0 −1
ε ∂y 0 0

0 0 −1
µ ∂y 0 0 0

−1
µ ∂z 0 0 0 0 0
0 −1

µ ∂x 0 0 0 0




(3)

and L is the diagonal loss matrix L = diag([σε , σ
ε , σ

ε , σ∗
µ , σ∗

µ , σ∗
µ ]).

∂x, ∂y and ∂z are the spatial differential operator in x, y and z-
directions, respectively. ε, µ, σ and σ∗ are the medium permittivity,
permeability, electric and magnetic conductivities, respectively. Note
that the averaging scheme is second-order in temporal accuracy.

2.2. Forward-Forward

Another possible scheme is the forward-forward scheme [7], where the
conductivity terms are applied at forward time for both substeps (n+ 1

2
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for the first and n+1 for second). According to [7], such scheme allows
effective modeling of highly conductive material. The scheme calls for
the following update procedure:
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Note however that the forward-forward scheme is only first-order in
temporal accuracy.

2.3. Forward-Backward

In forward-backward scheme [13], the conductivity terms are applied
at the forward time (n + 1

2) in the first substep and backward time
(n + 1

2) in the second. Such scheme allows exploitation of the efficient
algorithm in [13] which feature programming simplicity, whereby the
current density source and conductivity terms are added only to the
first substep. The scheme calls for the following update procedure:
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The forward-backward scheme is second-order in temporal accuracy.

2.4. Exponential Time Differencing

It has been demonstrated in [16] that ETD scheme is generally better
to model doubly lossy media in explicit FDTD method compared to
other schemes. In this subsection, we incorporate the ETD scheme
into ADI-FDTD method to reap its unconditionally stable advantage.
The ETD scheme calls for the following update procedure:
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where C = L−1(I− e−L∆t
2 ) is diagonal. Note that the ETD scheme is

also second-order in temporal accuracy.
In addition to the schemes presented above, there are also other

possible schemes including backward-forward and backward-backward
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schemes. The former is essentially a dual of the forward-backward
scheme, while the latter is found to be not unconditionally stable [10],
and hence they shall not be discussed further in this paper.

3. UNIFICATIONS OF SOURCE-INCORPORATED
ADI-FDTD SCHEMES FOR LOSSY MEDIA

3.1. Unified Conventional Form (with RHS
Matrix-Operators)

The previous section has discussed many possible schemes in
conventional form of ADI-FDTD method for lossy media, it would
be desirable if all those schemes can be unified and generalized. The
aforementioned schemes are first unified based on the conventional
form of ADI-FDTD method as

(I−AL)un+ 1
2 = (Du + BL)un + Dssn+ 1

2 (7a)

(I−BL)un+1 = (Du + AL)un+ 1
2 + Dssn+ 1

2 (7b)

Here, we have also incorporated the symmetric source implementa-
tion [17–19] where s is the current source vector. Du (diagonal), AL,
Ds (diagonal) and BL for various schemes are listed in Table 1. With
such formulation, all previous schemes can be concisely described by (7)
along with Table 1. Such unified form is amenable to the same com-
puter code for all the schemes, except possibly with different update
coefficients. All schemes are directly reducible to the lossless case when
L is null, except for ETD scheme where AL, BL and Ds are undefined.

Table 1. Matrices for various ADI-FDTD schemes for lossy media.
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ETD: Exponential Time Differencing; Avg: Averaging;

F-F: Forward-Forward; F-B: Forward-Backward
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For ETD scheme, when L is approaching null, the expressions of AL,
BL and Ds can assume those of the averaging scheme because the
update coefficients of the latter scheme is essentially a Pade approxi-
mation of the former scheme up to second order in time. Note however
that (7) still involves matrix operators A and B (embedded in AL and
BL) at the RHS.

3.2. Unified Efficient Fundamental Form (with RHS
Matrix-Operator-Free)

We next proceed to transform the unified schemes (7) into
efficient fundamental form of ADI-FDTD method. Introducing the
(temporary) auxiliary ṽ’s, (7) is rewritten as

ṽn = (Du + BL)un (8a)

(I−AL)un+ 1
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2 (8b)
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2 . (8d)

Next, (8d) is expressed at one time step backward as
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and (8a) can be subsequently reduced into
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2 . (10)

Similarly, by rewriting (8b) as
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Finally, the unified schemes in efficient fundamental form of ADI-
FDTD method read:
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with initialization ṽ−
1
2 = (I − BL)u0. Now, (13a), (13b) forms the

first substep while (13c), (13d) forms the second. Note that (13) has
been formulated in the simplest, most concise, most efficient, and most
fundamental form of ADI-FDTD scheme with its RHS free of matrix
operators A and B (It is the simplest because there are no more A and
B to be simplified further at RHS). Besides, the source is incorporated
concisely at only the first substep (13a), (13b) in the unified efficient
fundamental ADI-FDTD schemes.

4. IMPLEMENTATION OF UNIFIED EFFICIENT
FUNDAMENTAL ADI-FDTD SCHEMES

4.1. Unified Update Equations

We now provide the update equations for (13). Assuming only electric
current density, J , and defining

u = [Ex, Ey, Ez,Hx, Hy,Hz]T (14)
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the unified update equations of efficient fundamental ADI-FDTD
schemes read
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x, h̃n

z
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Table 2. Coefficients and parameters of update equations for various
efficient fundamental ADI-FDTD schemes.

Scheme
Implicit Update Explicit Update

ce1 ce2 ce3 ce4 ch1 ch2 cea cha

ETD 1 b b b 1 d 1 + p 1 + q

Avg 1 b b b 1 d p q

F-F 1 b b b 1 d 1 + p 1 + q

F-B p bq bq− b 2q d 2 2

Scheme b d p q
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All the update coefficients and associated parameters for various
schemes are tabulated in Table 2. Note that for simplicity, we have
omitted the subscript indices for all media parameters ε, σ, µ, σ∗ and
b, d, p, q. In fact, the subscript indices of ε, σ, b and p should follow
that of the electric fields, whereas those of µ, σ∗, d and q follow that
of the magnetic fields. For instance, in the above update equations,
cf. (17)–(19), b and p have subscript indices of i + 1

2 , j, k while d and q

have those of i + 1
2 , j + 1

2 , k. For d− and q−, the subscript indices are
i + 1

2 , j − 1
2 , k where d− = di+ 1

2
,j− 1

2
,k and q− = qi+ 1

2
,j− 1

2
,k.

The update equations for all other field components can be written
down by permuting the subscript indices of the parameters, fields and
spatial steps. Similar procedures can then be performed to derive the
update equations for the second substep. It should be reminded that
no electric current source J is needed in the second substep, which
is made possible by the efficient fundamental form (13c), (13d). For
forward-backward scheme, note also that the update coefficients in the
second substep are derived by setting σ and σ∗ equal zero (lossless) [13].

Examining (18) indicates that the number of RHS update
coefficients and field variables are substantially lower than that of the
conventional ADI-FDTD schemes (Eq. (11) in [4]). Moreover, a look at
Table 2 reveals that the update coefficients ce2, ce3 and ce4 are the same
(independent of µ and σ∗) for ETD, averaging and forward-forward
schemes. This is particularly useful for inhomogeneous magnetic
media where no additional memory indexing is required in the electric
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Table 3. Comparisons of number of arithmetic operations per grid
between conventional and efficient fundamental forms of ADI-FDTD
schemes for lossy media over one complete time step.

Arithmetic operations
Conventional

form

Efficient

fundamental form

Implicit, RHS
M/D 84 12

A/S 48 12

Explicit, RHS
M/D 30 30

A/S 24 24

Total, RHS

M/D 114 42

A/S 72 36

M/D + A/S 186 78

Tridiag. matrices

inversion

M/D 18 18

A/S 12 12

Overall

M/D 132 60

A/S 84 48

M/D + A/S 216 108

Efficiency gain
RHS 1 2.38

Overall 1 2

field update Equations (18). For forward-backward scheme, the
simplicity lies in the second substep where the algorithm is as easy
as implementing a lossless ADI-FDTD method. Lastly, the symmetric
current source excitation [17–19] is only needed in the first substep for
all efficient fundamental schemes. All the aforementioned advantages
contribute towards reducing the flops count and memory indexing
throughout the whole update procedures and thus improving the
overall efficiency compared to the conventional ADI-FDTD schemes.

Table 3 shows the comparisons of number of arithmetic operations
per grid between conventional and efficient fundamental forms of ADI-
FDTD schemes for lossy media over one complete time step. The
number of multiplications/divisions (M/D) and additions/subtractions
(A/S) are determined from (7a), (7b) for conventional form of ADI-
FDTD and (13a)–(13d) for efficient fundamental form of ADI-FDTD.
We can see that the total flops count for the RHS is considerably less for
the efficient fundamental form (78 against 186 for conventional form),
which gives an efficiency gain of 2.38. Since there is cost for solving
tridiagonal systems, Table 3 also includes the arithmetic operations
needed for inverting tridiagonal matrices. The algorithm used for the
tridiagonal matrices inversion is Thomas algorithm, which is a special
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type of Gaussian elimination method. Taking this cost into account,
the efficient fundamental form still achieves an overall efficiency gain
of 2.

4.2. Field Memory Arrays

The field memory arrays needed for efficient fundamental ADI-FDTD
schemes are initially found to be (ξ = x, y, z){

ẽ
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ξ , ẽn
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}
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ξ
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2

ξ

}
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{
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ξ ,H
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2
ξ ,Hn+1

ξ

} (20)

where the variables grouped within the same curly braces share the
same memory arrays, i.e., in computer programs, they share the
same variable names to be assigned with new values successively.

For instance, {ẽn− 1
2

ξ , ẽn
ξ , ẽ
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ξ }. Since there are x, y and z-directed fields (ξ =

x, y, z), the total number of field memory arrays needed are 4×3 = 12.
To reduce the field memory storage, one can combine (19)

with (17b) in the next half time step (n + 1
2) to yield
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This can always be done because we are not interested in the
intermediate magnetic field values at n + 1

2 . In this case, the explicit
update of (19) is no longer needed and the efficiency can be further
improved. Furthermore, if the final magnetic field values are not
frequently needed, we can repeat the above procedures for the final
magnetic field update equations in the second substep. In doing so,
the field memory arrays needed are now{

ẽ
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}
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}
. (22)

Now the total number of field memory arrays needed is 3× 3 = 9.
For comparison, we note that in conventional ADI-FDTD schemes,

the field memory arrays are given as
{

En
ξ , En+1

ξ

}
;

{
E

n+ 1
2
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}
;

{
Hn

ξ ,H
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2
ξ ,Hn+1

ξ

}
. (23)
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The total number of field memory arrays needed is also 3 × 3 = 9,
which is the same as the efficient fundamental ADI-FDTD schemes.

4.3. Parameter Memory Arrays

Conventionally, all coefficients in Table 2 are computed in run time
during each iteration from four media parameter memory arrays, which
comprise

{ε} ; {µ} ; {σ} ; {σ∗} . (24)

To further improve the efficiency, instead of storing (24), we can
first precompute and store the following four alternative parameter
memory arrays:

{b} ; {d} ; {p} ; {q} . (25)

It can be seen from Table 2 that, with the above alternative parameter
memory arrays, all the respective RHS coefficients can be directly
computed. This not only reduces the memory indexing effort but
also reduces the arithmetic operations needed. For instance, with
the alternative parameter memory arrays, to compute ce2 for ETD,
averaging and forward-forward schemes, one would only need to
access b instead of both ε and σ. No further arithmetic operations
are needed. Note that such redefinition and storing of alternative
parameter memory arrays is not effectively applicable in forward-
backward scheme. This is because unlike the other schemes, the update
coefficients of forward-backward scheme are different in both substeps
(lossless in second substep).

4.4. PEC and PMC Implementations

Recently, PEC condition implementation within a computation domain
for ADI-FDTD method has been considered in [20] by means of
a modified tridiagonal matrix. Although it provides sufficient
accuracy, the implementation is rather cumbersome, especially when
the intended PEC structure is of arbitrary shape and not planar in
nature. In this subsection, we make use of our efficient fundamental
ADI-FDTD schemes for lossy media to implement PEC or PMC
conveniently inside a computation domain. This can be directly
realized by taking the limit of all the update coefficients tabulated
in Table 2 when σ or σ∗ tends to infinity. Note that such limit
exists for all efficient fundamental ADI-FDTD schemes. Although
the update procedures of the conventional ADI-FDTD schemes are
not shown explicitly, it should be pointed out that for its forward-
backward scheme, some RHS update coefficients of second substep
will be undefined when σ or σ∗ tends to infinity. Therefore, the
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implementation of PEC or PMC will fail in the forward-backward
scheme in conventional form of ADI-FDTD method, but not in the
forward-backward scheme in our efficient fundamental form of ADI-
FDTD method.

5. NUMERICAL RESULTS

5.1. CPU Time Saving

In this subsection, we compute the CPU time needed to run using
various schemes of ADI-FDTD for lossy media in a PEC cavity of
50× 50× 51 cells. The programs have been compiled using Microsoft
Visual C++ under Microsoft Windows XP operating system (OS), and
run on a platform of 2.66 GHz Intel Duo Core Processor with 4 GB
RAM. We consider the alternative parameter memory arrays given
in (25), i.e., all the respective RHS coefficients are directly computed,
to reduce all the memory indexing effort and arithmetic operations.
ε, µ, σ and σ∗ can be of arbitrary values at different grid points.
Cell size is set at 50 mm and ∆t is specified at CFLN = 5 where
CFLN = ∆t/∆tCFL, and ∆tCFL is the CFL limit in Yee’s explicit
FDTD method. A z-directed monochromatic sinusoidal point current
source with frequency 300 MHz is excited at the centre (is, js, ks) of
the cavity. The program is run for a total of 100 time steps.

Table 4 shows the relative CPU time incurred for various ADI-
FDTD schemes for lossy media, with respect to the reference Yee’s
explicit FDTD method [1]. The forward-backward scheme is omitted
because the storing of alternative parameter memory arrays of (25) is
not effectively applicable as mentioned earlier. Note that the time
step used in the reference Yee’s explicit FDTD method is set at
its maximum allowed limit of CFLN = 1 to ensure stability. All
ADI-FDTD schemes incurs the same relative CPU time due to the
fact that all RHS coefficients are precomputed. At CFLN = 5, the
conventional form of ADI-FDTD schemes incur relative CPU time of
0.83 while the efficient fundamental form of ADI-FDTD schemes incur
relative CPU time of 0.33. With the aforementioned advantages of the
efficient fundamental form of ADI-FDTD schemes (such as reduced
RHS coefficients, field variables, etc.), the efficiency gain over the
conventional form of ADI-FDTD schemes is around 2.5. Moreover, if
compared against the Yee’s explicit FDTD method, the efficiency gain
is further increased to 3. This makes our efficient fundamental form of
ADI-FDTD schemes attractive for its high algorithm efficiency. The
RAM needed for efficient fundamental form of ADI-FDTD schemes is
the same as the conventional form counterpart but higher than the
Yee’s explicit FDTD due to additional field memory arrays.
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Table 4. Relative CPU time for various ADI-FDTD schemes for lossy
media.

ADI-FDTD
Relative CPU time

Avg ETD F-F

Conventional form 0.83 0.83 0.83

Efficient fundamental form 0.33 0.33 0.33

Efficiency gain over conventional ADI-FDTD 2.5 2.5 2.5

Efficiency gain over explicit FDTD 3.0 3.0 3.0

Table 5. Efficiency gain in terms of CPU time achieved by efficient
fundamental form over conventional form of ADI-FDTD and explicit
FDTD for different computational domain sizes.

Domain size
Efficiency gain over

conventional ADI-FDTD explicit FDTD

50× 50× 50 2.5 3.0

100× 100× 100 2.1 3.0

250× 250× 250 1.3 2.0

Table 5 further shows the efficiency gain in terms of CPU time
achieved by efficient fundamental form over conventional form of ADI-
FDTD and explicit FDTD for different computational domain sizes.
For 50 × 50 × 50 and 100 × 100 × 100 computational domain sizes,
the efficiency gain over the conventional form of ADI-FDTD is around
2 to 2.5 while the efficiency gain over the explicit FDTD is 3. For
large computational domain size of 250 × 250 × 250, the efficient
fundamental form of ADI-FDTD still achieves an efficiency gain of 1.3
and 2 over conventional ADI-FDTD and explicit FDTD, respectively.
The lower efficiency gain in large computational domain size may be
attributed to the bottleneck caused by the memory indexing, where its
computational cost is more expensive than the computational cost of
arithmetic operations.

5.2. Numerical Examples for PEC and PMC
Implementations

The implementation of PEC and PMC can also be used as a gauge for
accuracy assessment for the efficient fundamental ADI-FDTD schemes
detailed. For this purpose, we consider a 50 × 50 × 50 cells cavity of
uniform cell size 3 mm with a PEC sphere located at the centre and
the rest free space. The radius of the PEC sphere is 30 mm. The
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Figure 1. Normalized electric field leakage recorded at the centre of
PEC sphere using different schemes. Only forward-backward scheme
exhibits electric field leakage.

PEC medium is realized by setting σ to the extreme value of 10308.
A z-directed line current source of modulated Gaussian pulse with
centre frequency 5GHz extending from top to bottom of the cavity
is located 24 mm away from the PEC sphere. The source illuminates
upon the PEC sphere and the electric field leakage is measured at
the centre of the PEC sphere throughout 1000 time steps with CFLN
equals 5. The numerical experiments are carried out using different
efficient fundamental ADI-FDTD schemes detailed. The PEC sphere
is then replaced by a PMC sphere by setting σ∗ to 10308 instead of σ,
and the electric field leakage is also measured at the centre of the PMC
sphere.

Figures 1 and 2 show the electric field leakage recorded at centre
of PEC and PMC spheres normalized to the maximum value of electric
field at the exterior. Analytically, no fields shall be able to penetrate
the PEC or PMC material. We note that all three averaging, ETD
and forward-forward schemes record zero electric field at the centre
of the PEC and PMC spheres. On the contrary, forward-backward
scheme records a field leakage of around 0.1 percent, which indicates
the inaccuracy of the scheme.
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Figure 2. Same as Fig. 1, but for PMC sphere. Again, only forward-
backward scheme exhibits electric field leakage.

5.3. Asymmetry and Numerical Errors

Next, we proceed to analyze the asymmetry and numerical errors
posed by various ADI-FDTD schemes for lossy media. Comparisons
of these errors could be made with either conventional or efficient
fundamental form since both forms can be transformed into each other
(and essentially yield the same computation). We adopt a dimension
of 20×20×21 cells, ε = ε0, µ = µ0, σ = 10−4 S/m and σ∗ = 0.05Ω/m.
Cell size, ∆t and source are the same as the previous subsection. We
also define the electric field asymmetry error as

Easymerr = 20 log
|Ez(i,j,ks) − Ez(j,i,ks)|

max(|Ez|) (26)

Figure 3 shows the asymmetry error (in dB) with respect to
x and y grid positions for various ADI-FDTD schemes. It can be
seen that averaging, ETD and forward-forward schemes have very low
level of electric field asymmetry error (in the vicinity of −320 dB).
On the other hand, even though symmetric source is implemented,
forward-backward scheme still records considerably higher electric field
asymmetry error. We hereby point out that the symmetric source
implementation described in [17–19] also utilized forward-backward
scheme for its independent current source J , i.e., J is forward (at
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Figure 3. Asymmetry error (in dB) with respect to x and y
grid positions for (a) exponential time differencing, (b) averaging,
(c) forward-forward and (d) forward-backward schemes. Forward-
backward scheme records considerably higher electric field asymmetry
error.

n + 1
2) in the first substep and backward (still at n + 1

2) in the
second. While it was shown previously that the forward-backward
scheme of an independent source is accurate and has lower electric
field asymmetry error, similar argument cannot be applied here if the
source is dependent on electric field, such as in the case of lossy media
here, where J = σE.

To further compare the accuracy among ETD, averaging and
forward-forward schemes, we now consider 20 × 20 × 21 cells cavity
of doubly lossy media with σ = 0.3 S/m and σ∗ = 60Ω/m. A z-
directed line current source with modulated gaussian pulse excitation
of centre frequency 300 MHz and bandwidth 600 MHz is flowing from
bottom to top through the cavity centre. Cell size is now chosen as
16mm to resolve 1/20 times of the medium wavelength. Simulation is
terminated after 200 and 100 time steps with CFLN equals 5 and 10,
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Figure 4. Normalized electric field error exhibited by various schemes
for (a) CFLN = 5 and (b) CFLN = 10.

respectively. The experiment is also run using explicit FDTD method
of time-averaging scheme [1], with ∆t set at the CFL limit to serve as
the reference. We define the normalized electric field error as

Eerr =
EADI −Eexplicit

max(|Eexplicit|) (27)

where EADI is the electric field recorded by various efficient
fundamental form of ADI-FDTD schemes and Eexplicit is the electric
field recorded by the explicit FDTD method. Fig. 4 shows the
normalized electric field error recorded at position (17,17,17) using
various schemes at (a) CFLN = 5 and (b) CFLN = 10, respectively.
The normalized error shown by ETD scheme is the lowest among all,
followed by averaging, forward-forward and lastly forward-backward
schemes. Note that although forward-forward scheme is only first-order
accurate in time, the overall accuracy is higher than that of forward-
backward scheme, which may be due to the higher asymmetry error
exhibited by the latter. The highest accuracy of ETD scheme may
be attributed to its closer resemblance of solution to the first-order
differential equation.

Table 6 further shows the efficiency gain and relative root-mean-
square (RMS) error of efficient fundamental ADI-FDTD schemes for
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Table 6. Efficiency gain and relative root-mean-square error of
efficient fundamental ADI-FDTD schemes for various CFLNs.

CFLN 2 4 6 8 10

Efficiency gain 1.2 2.4 3.6 4.8 6.0

Relative

RMS

error

ETD 1.57% 4.38% 6.84% 8.96% 11.02%

Avg 1.95% 6.32% 11.44% 16.18% 19.84%

F-F 2.56% 4.83% 7.38% 10.08% 12.93%

2 3 4 5 6 7 8
0.6

0.65

0.7

0.75

0.8

Frequency (GHz)

M
a

g
n

it
u

d
e

 o
f 

R
e

fl
e

c
ti
o

n
 C

o
e

ff
ic

ie
n

t

Analytical

ETD

Averaging

Forward-Forward

Figure 5. Magnitude of reflection coefficient for a half space lossy
medium computed using various schemes.

various CFLNs. The efficiency gain is taken over the explicit FDTD
and the RMS error is taken relative to the explicit FDTD within the
whole computational domain for a sinusoidal excitation of 300 MHz.
Cell per wavelength (CPW) is set as 20 which corresponds to cell
size of 16 mm. This table gives a clear illustration on the trade-off
between accuracy and efficiency of our efficient fundamental ADI-
FDTD schemes. For practical CFLN of 4, the efficiency gain is 2.4, and
the relative RMS error of all schemes ranges only from 4–6 percent.
Even at CFLN = 10, our ETD scheme consumes 6 times less simulation
time than the explicit FDTD, at the expense of only 11 percent
relative RMS error. This implies that our efficient fundamental form of
ADI-FDTD schemes achieves a good trade-off between efficiency and
accuracy.
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Table 7. Relative permittivity, εr and conductivity, σ of skin layers
at 42.25 GHz and 61.22GHz.

Skin layers
εr σ

42.25GHz 61.22GHz 42.25GHz 61.22GHz

epidermis and dermis 11.40 8.00 33.00 37.40

fat 3.37 3.12 2.28 2.83

Finally, we compute the reflection coefficients of a half space lossy
medium numerically. σ and σ∗ of the lossy medium is set as 5 S/m and
60Ω/m respectively. A modulated Gaussian pulse with a bandwidth
of 6GHz around centre frequency of 5 GHz is launched from the free
space. Cell size is set at 0.9375mm which corresponds to CPW of
around 20 for the lossy medium at 5 GHz and CFLN = 4. The
reflection coefficients in frequency domain can be obtained numerically
by taking the ratio of the discrete Fourier transform of the reflected
wave to the discrete Fourier transform of the incident wave. Fig. 5 plots
the magnitude of reflection coefficient for a half space lossy medium
computed using various schemes and they are compared against the
reference analytical reflections coefficient Γ given as

Γ =
η2 − η1

η1 + η2
(28)

where η1 is the wave impedance of free space at 377 Ω and η2 is the
wave impedance of the lossy medium. It is evident that the magnitude
of reflection coefficient computed using ETD scheme is the closest to
the magnitude of reference analytical reflection coefficient. This again
shows the highest accuracy of ETD scheme among all other schemes.

5.4. Specific Absorption Rate (SAR)

The specific absorption rate (SAR) is a measure of energy absorption
rate for biological media exposed to electromagnetic radiation. It can
be computed from

SAR =
1
2

σ|Ẽ|2
ρ

(29)

where Ẽ is the Fourier transform of the recorded electric field
components and ρ is the density of the biological media in kg/m3.
The SAR has the overall unit of W/kg.

In this numerical example, the exposure of human skin to
electromagnetic radiation is considered. The human skin has a cross
sectional area of 3.75mm ×3.75mm in y and z directions and a depth



236 Heh and Tan

of 2 mm in x direction. In x direction, the skin has two layers. The
top layer consists of epidermis and dermis which has a total thickness
of 1.5mm, and the bottom layer consists of fat. The interaction of
human skin with electromagnetic waves at two therapeutic frequencies
of 42.25GHz and 61.22GHz are considered [21]. The relative
permittivity, εr and conductivity, σ of the skin layers at these two
frequencies are listed in Table 7 [22]. The cell size ∆x = ∆y = ∆z =
∆ is chosen at 75µm and a z-directed line current source located
1.5mm away from the surface of the human skin illuminates upon
it. The computational domain size is 50 × 50 × 50 and 10 layers of
perfectly matched layer (PML) [23–26] terminates the computational
boundaries. The exterior boundaries of the PML is simply terminated
with PEC. The perfectly matched layer used is the complex frequency
shifted convolutional perfectly matched layer (CFS-CPML) having
constitutive parameters

σ(ζ) =
σmax | ζ − ζ0 |m

δm
(30)

κ(ζ) = 1 + (κmax − 1)
| ζ − ζ0 |m

δm
(31)

where δ is the thickness of the PML, ζ0 is the interface to free space and
m is the order of the polynomial. In our simulation, m = 4, κmax = 15
and another constitutive parameter, α is set as a constant 0.08. σmax

that will minimize reflection is given as

σmax =
m + 1
150π∆

= 141.49 S/m. (32)

The SAR of human skin at 42.25GHz and 61.22GHz is computed
using (29) at steady state. The densities of the top layer (epidermis
and dermis) and bottom layer (fat) are assumed as 1000 kg/m3 and
850 kg/m3, respectively. Figs. 6 and 7 plot the SAR of human skin at
42.25GHz and 61.22 GHz, respectively. Both figures show the SAR at
z cut plane of 2 mm. The SAR values at each location have been scaled
to correspond to incident power density S = 1

2 Re(Ẽ×H̃∗) of 1mW/m2

in free space. The SAR is computed using the efficient fundamental
form of ADI-FDTD method with ETD scheme at CFLN = 5. It can be
seen that at 61.22 GHz, the maximum SAR at the surface of the human
skin is higher than that of 42.25 GHz and the SAR quickly decreases
with respect to the depth (x axis) of human skin. Fig. 8 further plots
the SAR of human skin at y = 2mm with respect to only the depth.
It is observed that the SAR at 61.22 GHz decreases at a higher rate
along the depth of human skin compared to the SAR at 42.25GHz. At
depth of less than 0.3 mm, the human skin experiences more absorption
at 61.22 GHz. Beyond 0.3mm, the absorption at 42.25GHz is more.
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Figure 6. SAR of human skin at 42.25GHz with respect to depth and
width.
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Figure 7. SAR of human skin at 61.22GHz with respect to depth and
width.

Furthermore, beyond 1.5 mm which is the fat layer, the human skin
has negligible absorption at both frequencies. This is due to the fact
that most of the electromagnetic energy has already been absorbed in
the epidermis and dermis layers of the human skin, which results in
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Figure 10. Normalized SAR error with respect to depth and width
at 42.25 GHz for averaging scheme.
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Figure 11. Normalized SAR error with respect to depth and width
at 42.25 GHz for forward-forward scheme.

weak penetration of power into the fat layer.
For comparison, we have also computed the SAR using the efficient

fundamental form of ADI-FDTD with averaging and forward-forward
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schemes. As reference, the same numerical example is performed
using the explicit FDTD method of time-averaging scheme [1]. The
normalized SAR error is defined as

SARerror =
SARADI − SARexplicit

max(SARexplicit)
(33)

where SARADI is the SAR computed using various efficient
fundamental form of ADI-FDTD schemes and SARexplicit is the SAR
computed using the explicit FDTD method. Figs. 9, 10 and 11 show
the normalized SAR error of ETD, averaging and forward-forward
schemes at 42.25GHz and z cut plane of 2 mm. It is seen that the
forward-forward scheme incurs the highest error due to the fact that
the scheme is only first-order in temporal accuracy. The ETD and
averaging schemes are both second-order in temporal accuracy and
thus, exhibits lower error.

6. CONCLUSION

This paper has presented the unified efficient fundamental ADI-
FDTD schemes for lossy media. The schemes presented include
averaging, forward-forward, forward-backward and novel exponential
time differencing schemes. Unifications of these schemes in both
conventional and efficient fundamental forms of source-incorporated
ADI-FDTD have been provided. In the latter, they have been
formulated in the simplest, most concise, most efficient, and most
fundamental form of ADI-FDTD. The unified update equations and
implementation of the efficient fundamental ADI-FDTD schemes have
been provided. Such efficient fundamental schemes have substantially
less RHS update coefficients and field variables compared to the
conventional ADI-FDTD schemes. Thus, they feature higher efficiency
with reduced memory indexing and arithmetic operations. Other
aspects such as field and parameter memory arrays, PEC and PMC
implementations have been discussed. Numerical results in the realm
of CPU time saving, asymmetry and numerical errors as well as SAR
of human skin have been presented.
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