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Abstract—A new kind of field representation on the far field sphere is
presented. This representation is based upon the polarisation states of
the field. Polarisation states can easily be obtained upon determining
the peculiar loci in the field. Depending on the polarisation state
of the field, it is demonstrated that, either one of the magnetic or
the electric dipole moments is dominant. Subsequently, criteria which
may be applied to determine which dipole moment is responsible for
the main radiation are derived. This characterization scheme which is
a good figure of merit for an antenna designer may be useful in mobile
communications especially in identifying possible adverse effects of RF
fields on human health. The approach is also helpful for EMC engineers
seeking to characterize and identify radiation sources of equipment
under test.

1. INTRODUCTION

The past two decades have seen considerable advances in mobile
communication technologies along with the proliferation of end-devices
like cell phones, wireless notebooks, etc. to a degree that concerns
about adverse effects of electromagnetic (EM) fields on biological
tissues have risen in importance. Both the proliferation of electronic
devices and the biological effects of EM field place new challenges on
the EMC community: The EMC engineer should not only characterize
the propagation and absorption of EM energy in tissues, but should
also find approaches to avoid or at least to drastically reduce adverse
effects on a tissue exposed to an EM field. Furthermore, the EMC
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engineer should quantify and identify radiation sources of equipment
under test (EUT) in order to ensure reliability of the product. Sessions
held on these issues during major EMC symposia are a vibrant
testimony and also reveal their very high rank on the priority list of
the EMC community.

The large amount of unknowns and the number of possible
combinations in providing quantitative and qualitative comprehensive
solutions to these problems make the task very tedious. One of the
approach among others is however to take a look at the radiation
properties of the device under consideration. The fact that most of
the mobile communication devices contain electrically small antennas
of arbitrary geometry makes it particularly appealing to go through
the radiation of these antennas with a fine-tooth comb. Knowledge
of the dipole moment (electric or magnetic) from which the radiation
mainly arises can help the antenna designer in making up his mind
about the nature of the antenna being designed. For example,
purposely designing antennas for cell phones with a predominantly
electric behavior is health promoting: it helps limiting the EM energy
which can couple into human body, since the maximum and average
energy absorptions for a tissue exposed to an EM field arise primarily
from magnetic induction [1].

As far as electrically small antennas are concerned, their efficient
radiation requires resonances, i.e., the reactive power that in turn
implies the existence of both an electric and a magnetic energy
storage. These two energy contributions result in corresponding dipole
moments. If the magnetic dipole moment is hidden in a stray flux
free inductor and only the electric dipole can be observed, then the
arrangement is considered to be a small electric dipole or monopole.
Alternatively, hiding the electric dipole moment in a capacitor leads
to the magnetic dipole. For wire structures, these two options can
easily be distinguished. For modern resonant antenna structures of
arbitrary geometry however, the task becomes cumbersome. It is
almost impossible to distinguish which of the magnetic or the electric
behavior is predominantly responsible for the radiation.

This paper aims at generalizing the approach developed in [2]
for the decomposition of the radiation of electrically small resonant
antennas into the radiation from an electric and a magnetic dipoles.
For the sake of completeness “short-cuts” adopted in our discussion
in [2] are avoided. Nevertheless, some parts of [2] will be repeated
here below not only to ensure a smooth and continuous reading from
one section to another but also to provide readers with an interesting
discussion about the “ins and outs” of the method.

The decomposition of small resonant antennas into electric and
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magnetic elementary dipoles is demonstrated by taking canonical
structures like bent wire and mini-loop as examples (Section 2).
Section 3 is devoted to the decomposition of the field radiated by
an antenna of arbitrary geometry. Polarisation plays a role of equal
importance in antennas and waves propagation as it can convey
significant identification information about the antenna being used,
radar targets, etc. [3, 4]. Due attention is therefore given in Section 4
to the concept of far-field polarisation. The phenomenology of the
analysis is presented and validated in light of considerations elaborated
in Section 3. The aim is to provide a new valuable approach for
visualizing the state of polarisation on the far-field sphere. Circular
and linear polarisation are here of particular interest. The graphical
representation of these different polarisation states is the subject
matter of Section 5. Section 6 imparts insights into the dipole moment
mainly responsible for the radiation and characterizes dipoles into
dominant and non-dominant dipoles.

2. ASSIGNMENT OF THE THREE CURRENT DENSITY
TO THE DIPOLE MOMENTS

The Maxwell total current density Jt can be expressed as the sum of
the conduction current Jc and the displacement current Jd = ∂D

∂t

Jt = Jc +
∂D
∂t

(1)

and is divergence free. The three currents, i.e., Jt, Jc and ∂D
∂t , should

be distinguished, because
a)- on metal, at places where lines of the flux density D end, electric

charges are present;
b)- time varying surface charges are present at places where lines of

current displacement end. These are places where the divergence
of the conduction current, ∇ · Jc, which is responsible for the
electric dipole moment, does exist. Therefore, the surface charges
can be determined from ∇ · Jc or −∂D/∂t.
A consequence from the aforementioned nomenclature is that the

total current Jt can be used for the determination of the magnetic
dipole moment, since it is divergence free; while ∂D

∂t will be used to
obtain the electric dipole moment. Equation (1) may therefore be
rewritten as

Jc = Jt︸︷︷︸
deter. of magn. dipole moment

− ∂D
∂t

,
︸︷︷︸

deter. of elec. dipole moment

(2)
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whereby ∂D/∂t is only considered by such lines, which still land on the
metal, not however from already detached ones (Figs. 1(a) and 2(a)).

Equation (2) suggests that if the magnetic dipole moment is
hidden in a stray flux free inductor and only the electric dipole can
be observed, the arrangement is then considered to be a small electric
dipole or a monopole. Alternately, hiding the electric dipole moment
in a capacitor leads to the magnetic dipole. For canonical wire
structures like a bent wire or mini-loop, these two options can easily
be distinguished.

As an illustration, consider the wire antennas of Figs. 1(a)
and 2(a). A triangular current distribution varying along the antennas
assumed, the conduction currents produced by the source through the
wire may then be decomposed into closed currents circulating clockwise
around loops of different sizes (divergence free current) and vertical
currents (displacement currents) depositing periodically charges at the
bottom and the top of the loop (Figs. 1(b) and 2(b)). The closed
currents form a magnetic dipole moment, whereas the charges at the
bottom and at the top of the antenna generate an electric dipole.

Conduction

current Jc

Displacement

current Jd

Charges  of  the  dipole

div  J

(a) (b)

Figure 1. Decomposition of a bent wire in electric and magnetic dipole
moments. (a) Triangular current along the antenna decomposed into
closed currents and displacement currents. (b) Charges deposited by
displacement currents.

Equation (2) describes in reality three dimensional currents.
Nevertheless, the examples illustrated are precise models although
their graphs only show two dimensional currents. Recall that, despite
the negative sign, the divergence in either dimension remains the same.

For electrically small resonant antenna structures of arbitrary
geometry, the task of distinguishing the two options mentioned here
above is more complicated. Common representation only allows the
decomposition into electric and magnetic dipole moments with an
arbitrary phase between the dipole moments [5, 6]. Consequently,
the fields have more possibilities. However, the resonant character of
the antennas under consideration here necessarily requires electric and
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Displacement

current Jd

Conduction

current Jc

(a) (b)

Figure 2. Decomposition of a mini-loop in electric and magnetic
dipole moments. (a) Triangular current along the antenna decomposed
into closed currents and displacement currents. (b) Charges deposited
by displacement currents.

magnetic dipole moments to be coercively 90◦ out of phase. Indeed,
this condition is properly met, since the charge maximum and the
current maximum are 90◦ out of phase which in turn makes the
well known spherical-wave expansion after Hansen [5] not necessarily
applicable in this case. The application of the spherical-wave expansion
approach would result in three electric and three magnetic dipoles
requiring a huge amount of data on the whole sphere. In addition, it is
almost impossible to distinguish which of the magnetic or the electric
behavior is predominantly responsible for the radiation. Therefore, a
new kind of field representation on the far field sphere is called for.
We deal with this point in Section 4. Prior to that, let us decompose
the radiated field of an antenna of arbitrary geometry into radiations
produced by elementary dipoles.

3. DECOMPOSITION OF THE RADIATED FIELD INTO
RADIATIONS FROM ELEMENTARY DIPOLES

Let us consider an electrically small antenna as depicted in Fig. 3.
The resonant character of the antenna permits considering only
contributions from dipoles, since higher order multipoles do not play
a major role [7–9]. In fact, for normal-gain radiators the contribution
of higher order multipoles to the radiating power is negligibly small,
less than 1% [8].† Moreover, because of the aforementioned character,
† For an arbitrary small antenna, a high directivity can theoretically be obtained. This
does not however mean that the contribution of higher order multipoles to the radiated
power is significant. As demonstrated by Harrington in [7] and later reproduced by Zinke
and Brunswig in [9], upon expanding the field radiated by an arbitrary antenna in spherical
coordinates, the contribution of higher-order multipoles to the overall radiated power
remains negligible. Field strengths arising from higher expansion terms mainly contribute
to the reactive power for normal gain antennas.
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Figure 3. Antenna of arbitrary geometry.
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Figure 4. (a) Equivalent dipole for calculating the total field of an
arbitrary antenna. (b) Planar antenna with equivalent dipoles for
calculating the total field in spherical coordinates. The electric dipole
is associated with r; ϑ; ϕ while its magnetic counterpart is associated
with r′; ϑ′; ϕ′.

all electric dipole moments are coercively in phase. As a result, many
electric dipole moments can be summed up into a single one. This also
applies for magnetic dipoles. Therefore, the overall field radiated by the
antenna can be seen as emanating from a combination of an electrical
dipole associated to the cartesian coordinate system x, y, z and a
magnetic dipole associated to the prime coordinates x′, y′, z′ (Fig. 4):

E = Ee + Em. (3)
In the far field region, Ee and Em build an electric angle of π/2.

For simplicity, the electric dipole moment is assumed vertically
oriented along the z axis throughout this work whereas the magnetic
dipole moment is aligned with the z′ axis. Their respective spherical
coordinates are r, ϑ, φ for the electric dipole and r′, ϑ′, φ′ for the
magnetic dipole. The two dipoles build an angle α (0 ≤ α ≤ π/2)
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to each other and their respective coordinates are also related through
the following transformation




x′

y′

z′


 =




1 0 0
0 − cosα sinα

0 − sinα − cosα




︸ ︷︷ ︸
M

·



x

y

z


 (4)

whereby M is the transformation matrix.
The electric field of the magnetic dipole can be expressed

temporarily in the non-prime Cartesian system as (see details in the
Appendix)

Em = −Em

r
[(cos α sinϑ sinφ− sinα cosϑ) · ex − cosα sinϑ cosφ · ey

+sin α sinϑ cosφ · ez] , (5)

where

Em = −ωµI0

4π
Ake−jkr. (6)

For convenience, the distance phase term e−jkr is dropped and
throughout the rest of this work, Em is taken to be

Em = −ωµI0

4π
Ak. (7)

As we are seeking a new kind of field representation on the far
field sphere, (5) may be transformed in spherical coordinates using
the well known transformation matrix from Cartesian to spherical
coordinates [3]. Performing the necessary algebra we get (see
Appendix)

Em
r = 0, (8a)

Em
ϑ =

Em

r
cosϕ sinα, (8b)

Em
φ =

Em

r
(sinϑ cosα− sinϕ cosϑ sinα) . (8c)

For the special case of planar antennas where the two dipoles are
orthogonal, i.e., α = π/2, (8) simplifies and becomes [2]

Em
r = 0, (9a)

Em
ϑ =

Em

r
cosϕ, (9b)

Em
ϕ = −Em

r
sinϕ cosϑ. (9c)
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Note that the aforementioned transformation from rectangular to
spherical components is a straightforward process.

The electric field component of the electric dipole is in turn given
by

Ee = Ee
ϑeϑ =

Ee

r
sinϑ · eϑ, (10)

with Ee being

Ee = − I0∆z

4jωεπ
k2e−jkr. (11)

Again, as for the case of the magnetic dipole moment, the distance
phase term e−jkr is dropped for convenience and Ee throughout the
rest of this work becomes

Ee = j
I0∆z

4ωεπ
k2

︸ ︷︷ ︸
E0

e

= jE0
e . (12)

In the equations above, the superscript/subscript e and m indicate the
electric and magnetic fields respectively. The total field (Equation (3))
in the far field region can now be expressed as

E = Eϑ + Eϕ = Eϑeϑ + Eϕeϕ = (Ee
ϑ + Em

ϑ )eϑ + Em
ϕ eϕ. (13)

Note that Eϑ and Eϕ have a geometric angle of π/2.

4. FAR FIELD POLARISATION ANALYSIS

So far, it has only been shown mathematically that a radiated field from
an antenna can be decomposed into fields emanating from elementary
electrical and magnetic dipoles. One of the two dipoles may, however,
be mainly responsible for the radiation under certain conditions. It
might also be necessary to know the orientation of the dipole moments.
For example, if the antenna has characteristics of a loop, the magnetic
dipole may be dominant and its orientation easily determined. This
is however not the case for the antenna depicted in Fig. 3 or modern
resonant antennas commonly used nowadays in mobile phones.

An approach which may help us to gain more insight into the
aforementioned issues is the representation of the fields on the far field
sphere. This representation, as shown in the following, is based upon
the polarisation states of the field.



Progress In Electromagnetics Research B, Vol. 32, 2011 199

4.1. Phenomenology of the Approach

Polarisation states might easily be obtained upon determining the
peculiar loci in the field. These loci can be found along

a)- the lines of linear polarisation (LLP) — Here Eϑ and Eϕ are in
phase, Êϑ, Eϕ = 0, or 180◦ out of phase, Êϑ, Eϕ = ±π,

b)- the symmetry line which is the line where the electric field
components are orthogonal (Êϑ, Eϕ = π/2) and

c)- the lines of equal amplitudes (|Eϑ| = |Eϕ|).
All these lines are schematically graphed in Fig. 5. As can be seen,
the LLP must be closed, since they separate the area with left hand
polarisation sense from the area with right hand sense. The existence of
zeros in the pattern along the axis of each dipole leads to an overall field
consisting only of the field from the other dipole for linear polarisation.
Both axes of the dipoles must therefore break through the sphere at
points located on the LLP, when circumscribed in a sphere of radius r.

magnitude=1

Phase
difference=0

o

Phase
difference=90

o

_
A

B

C

Figure 5. Lines on which peculiar loci of the field can be found.

The lines of equal amplitudes may also be closed curves. They may
intersect the lines of linear polarisation at least at two points A and B.
That is, two different phase differences at one point are required. This
contradiction can only be resolved if either Ee or Em vanishes in A and
B thereby making the phase undefined. As a result, the axes of the
two dipoles are found in A and B. In fact, their axes pass through A
and B respectively. The lines, where the electric fields are orthogonal,
are big circles or half circles for patch structures with ground plane.
Their intersection point C with the curve of equal amplitudes which lies
within the area delineated by the line of linear polarisation indicates the
point of circular polarisation. Circular polarisation requires however
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equal amplitudes as well as geometric and electric orthogonality. This
holds for Eϑ and Eφ as well as for the fields of the two dipoles, viz, Ee

and Em. Hence the position of point C between A and B is determined
by the strength of the two dipole moments.

Indeed, the strength of the two dipole moments and by extension
the proportionality between them are assessed by means of the ratio
between Eϑ and Eϕ.

4.2. Validation

Let us now synthesize the approach described here above in light of the
considerations elaborated in Section 3 for an antenna with unspecified
geometry as illustrated in Fig. 3.

The procedure in the following is to demonstrate as rigorously as
possible the existence of the LLP and the point of circular polarisation
defined here above and then prove it by a simple example.

4.2.1. Lines of Linear Polarisation

The configuration of the electric and magnetic dipoles for an antenna of
arbitrary geometry are displayed in Fig. 4. For this case, (8) are valid
for the magnetic dipole and (10) describes the electric field produced
by the electric dipole. LLP is given if

Ee ×Em =
Ee · Em

r2
(sinϑ cosα− sinϕ cosϑ sinα) sin ϑ · er = 0. (14)

Equation (14) is fulfilled if

sinϑ = 0 (15a)
or

sinϑ cosα− sinϕ cosϑ sinα = 0. (15b)

Solving (15a) after ϑ yields

sinϑ = 0 ⇒ ϑ = nπ; n = 0, 1, 2, . . . (16)

Equation (16) suggests that the LLP will pass through the point ϑ = 0
and/or its antipode ϑ = π. Whether the LLP consists only of one curve
passing simultaneously through the two points or two curves antipodal
to one another each passing through one of the two points, depends to
a large extent on the configuration of the antenna. The configuration
of the dipoles chosen in this work allows us however to expect that
the LLP above and below the equator are antipodal to one another as
demonstrated here below.
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Equation (15b) can be transformed into

sinϕ =
sinϑ

cosϑ
· cosα

sinα
= tanϑ · cotα. (17)

It follows from (17) that the form of the LLP does not depend on the
ratio between the amplitudes of the two elementary dipoles, but rather
on the angle between their axes. These axes break through the sphere
at points which lie along the LLP. At these points, the strength of the
dipoles can be directly deduced.

Multiplying Equation (17) by r · sinϑ yields

r · sinϑ sinϕ = r
sin2 ϑ

cosϑ
cotα = r

1− cos2 ϑ

cosϑ
cotα. (18)

Transforming (18) by applying the relation cosϑ = z
r and recognizing

that y = r sinϑ sinϕ, one obtains

y =
r2 − z2

z
cotα, (19)

which may be rewritten in a more elaborated form as

z2 + yz · tanα = r2. (20)

Remembering now that r2 = x2 + y2 + z2, (20) turns to become

x2 + y2 − y · z tanα = 0

⇐⇒ x2 + (y − z

2
tanα)2 = r2

0, (21)

where r0 = z
2 tanα.

It is helpful to emphasize the geometric consequences of (21)
for the structure of the LLP on the sphere. (21) is a non-linear
equation, i.e., it does not represent a straight line. More precisely,
it is a second-degree equation describing circles of varying radius that
are all tangent at the point O(0, 0) when mapped in the xy-plane,
with z being an array parameter, also referred as the so-called schar-
parameter (Fig. 6(c)). Hence the curve described by (17) does not lie
in a plane. That means, on the surface of the sphere, the LLP is a
closed second-order curve.

This curve can not pass simultaneously through the north pole
in the upper hemisphere and through its antipodal point in the lower
hemisphere. Otherwise, the LLP would become a circle around the
sphere. As a consequence, the LLP would lie in a plane, in which
case, the aforementioned result demonstrating that the LLP can not
belong to a plane, is contradicted. Instead, we have two antipodal
LLPs passing through the north pole for the first and through the
south pole for the second and/or vice versa (Fig. 6(a)). That means,
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Figure 6. Sketches showing the line of linear polarisation, the
symmetry line and the point of circular polarisation. (a) For an
antenna of arbitrary geometry on the far field sphere and (b) for a patch
antenna. The symmetry line is in general a circle but because of the
ground, it is reduced to a semicircle in the case of the patch antenna.
(c) Mapping of the line of linear polarisation in xy-plane as seen by an
observer located on the upper hemisphere above the sphere (continuous
lines), and on the lower hemisphere below the sphere (dotted lines).

given a point M on the LLP on the upper hemisphere of the far-field
sphere with latitude δ = π/2 − ϑ and longitude γ, its antipode is a
point Ma of latitude −δ and longitude γ ± π (the sign is taken so that
the result is between −π and π).

Recall that the north and south poles of the sphere are points
where ϑ = nπ. Note also that the form of the curve on the sphere
and the radius of the corresponding circle in the xy-plane are strongly
dependent on the angle α between the electric and magnetic dipole
moments.

Two special cases are of particular interest: the case where the two
dipole moments are parallel and the case where electric and magnetic
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dipole are orthogonal.
If the two dipoles are parallel (α = 0), it is obvious that the

LLP dwindles down to the north pole or its antipode counter part
for the dipoles lying along the vertical z axis according to the chosen
convention. A = B, and the wave is everywhere circular polarised.

For the special case of planar patch antennas as displayed in
Fig. 4, the LLP is a curve lying along the equator (α = π/2) and
the “Greenwich meridian” (ϕ = 0 — Fig. 6(b)). The corresponding
graph in the xy-plane is the unit circle (the largest one in Fig. 6(c)).

The preceding explanation is corroborated by simulation results
on Fig. 7 displaying the phase angle difference m

m = φEϑ
− φEϕ = arctan

(=(Eϑ)
<(Eϑ)

)
− arctan

(=(Eϕ)
<(Eϕ)

)
, (22)

between Eϑ and Eϕ on the far field sphere for a dual-band PIFA (Fig. 8)
at the resonant frequency f1 = 990 MHz and a resonant wire antenna
of arbitrary geometry at f = 600 MHz respectively. The bright blue
curve (where m = 0) in Fig. 7(a) and the yellow curve in Fig. 7(b)
portray the LLP. As expected, the curves are closed lines.

Data displayed in Figs. 7 are gathered from simulation results in
HFSS upon implementing Formula (22) in Matlab.

(a) (b)

2
x

y

1

0.5

0

0.5

1

 

 

1

1 

0

1 

0

1

z

0.03

0.02

0.01

0

0.01

0.02

0.03

 

 

 

1

0.5

0

0.5

1

 

 

0.5 

1 

0
0.5

1

y

1 
0.5 

0
0.5

x

1

12

10

8

6

4

2

0

 

−

−

−

−

− − − −

−

−

−

−

z

Figure 7. The function m. (a) For a PIFA at f1 = 990 MHz. Below
the equator, all values are zero because of the ground plane of the
antenna. The bright blue curve (where m = 0) delineates the LLP.
(b) For a wire antenna of arbitrary geometry resonant at f = 600 MHz.
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204 Pouhè, Kamga, Mönich

L

W

r1 r2
ε

ε

h
h

L

1

2

Figure 8. Simulated dual-band-PIFA. The antenna is of the same
design as presented in [11]. PIFA stands for planar inverted antenna.
Readers seeking for details about the antenna are kindly referred to
the literature.

4.2.2. Symmetry Line

In the phenomenology of the method, the symmetry line is defined as
the line where the electric field components are orthogonal. Setting the
scalar product of Ee and Em equal to zero can help us to determine
this line:

Ee ·Em =
Ee · Em

r2
sinϑ cosϕ sinα (23)

Equation (23) is equal to zero for

sinϑ = 0 =⇒ ϑ = nπ; n = 0, 1, 2, · · · (24a)
or

cosϕ = 0 =⇒ ϕ = (2n + 1)
π

2
; n = 0, 1, 2, . . . (24b)

or
sinα = 0 =⇒ α = nπ; n = 0, 1, 2, . . . (24c)

In (24c), n only takes the value zero, since it is assumed throughout
this work that 0 ≤ α ≤ π/2. For n = 0, α = 0 and it follows that
the two dipole moments are parallel. Moreover, the ϑ component of
the electric field of the magnetic dipole vanishes (Equation (8b)) and
only its ϕ component remains. As a result, Ee and Em are always
orthogonal.

Let us now consider the case α 6= 0. It follows from (24a)
and (24b) that Ee and Em are perpendicular to each other for ϑ = nπ
or ϕ = (2n + 1)π

2 .
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In both cases, the symmetry line lies on the sphere surface. The
line of equation ϕ = ±π/2 containing the points ϑ = nπ is for
example a symmetry line. This is readily seen by verifying that
Em(π

2 + ϕ) = Em(π
2 − ϕ) and Ee(π

2 + ϕ) = Ee(π
2 − ϕ).

4.2.3. Line of Equal Amplitude and Point of Circular Polarisation

As you might have deduced from the section on the phenomenology of
the approach, the point of circular polarisation is to be found along the
symmetry line. Circular polarisation occurs when, in addition to the
π/2-phase shift between Eϑ = Eϑeϑ and Eϕ = Eϕeϕ, the two vectors
are of equal amplitudes. It is therefore appropriate to put first more
emphasis on the line of equal amplitudes before determining the point
of circular polarisation.

a) Line of equal amplitude: Equal amplitudes, |Eϑ| = |Eϕ|, are
obtained, if the differential function p is equal to zero:

p =
√
<(Eϑ)2 + =(Eϑ)2 −

√
<(Eϕ)2 + =(Eϕ)2. (25)

Figure 9 displays the function p. From the legend of the graph, it
is readily seen that the line of equal amplitudes is as predicted in
the phenomenology of the approach, a closed line. It intersects the
symmetry line at the point C which is the point of circular polarisation.

This point can also be rigorously determined mathematically as
shown in the next subsection.

b) The Point of Circular Polarisation: Let us introduce the
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Figure 9. The function p. (a) For the dual-band-PIFA of Fig. 8
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symmetry line. (b) For a wire antenna of arbitrary geometry resonant
at f = 600 MHz.
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modified polarisation ratio η as [3]

η = ±jP, (26)

where P is the polarisation ratio defined as quotient between Eϑ and
Eϕ

P =
Eϑ

Eϕ
=

Ee
ϑ + Em

ϑ

Em
ϕ

=
Em cosϕ sinα + Ee sinϑ

Em(sinϑ cosα− sinϕ cosϑ sinα)
. (27)

On the symmetry line (ϕ = π/2) where the point of circular
polarisation lies, the ϑ-component of the magnetic dipole is zero. P is
then reduced to

P =
Ee sinϑ

Em(sinϑ cosα−cosϑ sinα)
=

Ee sinϑ

Em sin(ϑ−α)
=

jE0
e sinϑ

Em sin(ϑ−α)
, (28)

whence with η = jP , we get

η =
−E0

e sinϑ

Em sin(ϑ− α)
. (29)

Because of (10) and (11) P takes imaginary values, while η = ±jP
instead has real values. The point C can now be obtained by setting
η = ±1 for right and left circular polarisation respectively, since at
C both components are of equal magnitude. We define C as point of
coordinates (ϕ0 = π/2, ϑ0), where ϑ0 is given by

ϑ0r = arctan
(

Em sinα

E0
e + Em cosα

)
= arctan

(
sinα

E0
e

Em
+ cosα

)
, (30a)

ϑ0r = arctan
(

sinα

1 + cosα

)
, (30b)

for right circular polarisation and

ϑ0l
= arctan

(
Em sinα

Em cosα−E0
e

)
= arctan

(
sinα

cosα− E0
e

Em

)
, (31a)

ϑ0l
= arctan

(
sinα

cosα− 1

)
, (31b)

for left circular polarisation.
In (30) and (31), the subscripts r and l stand for right and left

respectively.
From the foregoing investigation, two points of circular

polarisation might exist. But do they both satisfy the topology? Are
the two points within the domain of definition of ϑ? We are now going
to prove the uniqueness of the point of circular polarisation.
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The assumption placed earlier on the angle α between the dipole
moments suggests that sinα and cosα vary between 0 and 1. It follows
that cosα−1 takes values between −1 and 0 whereas 1+cosα belongs
to the interval 1 to 2. This leads respectively to negative arguments
in (31b) and always positive values in (30b) for α 6= 0. Hence ϑ0l

takes
negative values which do not belong to the domain of definition of ϑ
while ϑ0r always satisfies the topology. Consequently, only one point of
circular polarisation exists, since the point of left circular polarisation
does not satisfy the topology. This also holds for the boundary values
of α, i.e., for α = 0, where ϑ0r = 0◦ and ϑ0l

= −90◦, and for α = π/2,
where ϑ0r = 45◦ and ϑ0l

= −45◦.
Recall that in spherical coordinates, the colatitude ϑ runs from 0

to π.
C is, together with the zeros of the electric dipole (point A) and

magnetic dipole (point B) along the symmetry line, displayed on Figs. 6
and 9. It hardly needs to be pointed out that the zeros of the electric
dipole on the symmetry line are given for ϑ = nπ and those of the
magnetic dipole are obtained for ϑ = (2n + 1)π/2, n = 0, 1, 2, . . .

Summing up, given simulated or measured data in the far field
from an arbitrary electrically small antenna at resonance, the LLP:s
are found upon displaying the phase difference m between Eϑ and Eϕ

on the far field sphere. These lines are closed curves of equation m = 0
passing through the north pole or the south pole. The line where
the electric field components are orthogonal is the symmetry line. Its
shape is a circle lying on the sphere surface. This circle passes through
the north and south poles and cuts the sphere into two equal parts.
The line of equal amplitudes is, its side, determined by calculating the
differential function p and portraying the obtained results on a sphere.
The curve of equation p = 0 is the sought-for-line. Its intersection with
the symmetry line represents the point of circular polarisation.

5. POLARISATION STATES ON THE FAR-FIELD
SPHERE

Having determined the peculiar loci in the field and validated the
phenomenology of the approach, we would now proceed further and
give a synoptic view of the different polarisation states described in the
preceding sections on the far-field sphere. However, let’s first provide a
brief explanation on the difference and similarities between the far-field
sphere and the well-known Poincaré sphere.

The Poincaré sphere is often used to visualize the state of
polarisation of a plane wave [3, 10, 12, 13]. It has some similarities with
the far-field sphere but should not be confused with the far-field sphere
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used here. The Poincaré sphere is a sphere of radius S0, whereby

S0 = |E2
x|+ |E2

y |
and of spherical angular coordinates 2τ and 2γ, with

2τ = arctan
(

S2

S1

)
and 2γ = sin

(
S3

S0

)

being the latitude and longitude respectively [3, 12]. S1, S2 and S3 are
defined as

S1 = |E2
x| − |E2

y |, S2 = 2|Ex||Ey| cosψ, S3 = 2|Ex||Ey| sinψ,

whereby |Ex|, |Ey| are the component amplitudes of the wave and ψ
is its phase difference.

The far-field sphere in turn, is a sphere with a geometrical radius
r, with r being the distance from any point on the source to the
observation point in far-field region.

On the surface of both spheres, Poincaré and far-field sphere,
circular polarisations are visualized through single points. On the
Poincaré sphere, north and south poles represent left-handed and right-
handed circular polarisation respectively, while the equator is the LLP.

On contrary, on the far-field sphere, points of circular polarisation
are not automatically located at the poles. Their location depends
to a large extent on the configuration between the elementary electric
dipole and the magnetic dipole moments. Moreover, the LLP is a
closed curve on the surface of the sphere, whose form depends on the
angle α between the electric and magnetic dipole moments. This curve
lies along the “Greenwich meridian” and the equator for α = π/2
(Figs. 6(b) and 10(b)). Elsewhere on the surface of the sphere, the
polarisation is elliptical as on the Poincaré sphere.

The sense of polarisation on the far-field sphere can best be
visualized along the symmetry line, since this line cuts not only the
LLP, but also divides the sphere in two equal parts or semi-spheres.
Fig. 11 shows the various states of polarisation. It is readily seen
that we have four zones within which right-handed polarisation states
(zones 1 and 3) alternate with left-handed states of polarisation (zone 2
and 4). The point of circular polarisation in the upper hemisphere
is of the same state as its antipode in the lower hemisphere: Ca is
antipodal to C. The same is valid for the LLPs: the LLP in the upper
hemisphere is of identical state as its antipode in the lower hemisphere.
These polarisation states can also be displayed as curves on the far-field
sphere as depicted in Fig. 10(b).

We have discussed the polarization states with little mention of
field polarization at the LLP and symmetry line intersection points A
and B. Points A, B are transition points of polarisation between the



Progress In Electromagnetics Research B, Vol. 32, 2011 209

Upper Hermishere

Linear polarisation
on the Equator

Lower Hermishere

RHC

RH

LHC

LH

S S

S3

1 2

LLP

x

y

z

RHC

RHC

LLP

Lower Hermishere

(a) (b)

Figure 10. Representation of polarisation states. (a) On the Poincaré
sphere. (b) On the far field sphere for 0 < α < 2/π. LH = Left-handed,
LHC = Left-handed circular, RH = Right-handed, RHC = Right-
handed circular and LLP = Line of linear polarisation.
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Figure 11. Visualization of polarisation senses along the symmetry
line. RH means right-hand polarisation (zones 1 and 3) while LH
stands for left-hand polarisation (zones 2 and 4). Aa, Ba and Ca are
antipodes of A; B; and C. C and Ca are points of circular polarisation.

right-hand (RH) and left-hand (LH) polarisations. Except for A = B
(see discussion on the LLP in Subsection 2, Paragraph 1), the wave
is at these points linear polarised, since the points belong to the LLP.
The question is whether the polarisation is RH or LH.

Calculation of the limit values of the modified polarisation ratio,
eta, left and right of A and B may help making a decision. The
analytical procedure is this case is similar (but not totally identical!)
to the discussion on the Characterization of the Dipole Moments in
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the next section. It will therefore not be anticipated here. Rather, a
graphical solution is presented for simplicity.

Observations of Fig. 11 show the following evidences: from the
left of A, the field is LH-polarised whereas it is RH-polarised from the
right. Further, from the left of B, the field is RH-polarised whereas it
is LH-polarised from the right.

Similarly, we can analyze the antipodes Aa and Ba, which are
themselves polarisation transition points. From the left (right) of Aa,
the field is RH-polarised (LH-polarised). From the left of Ba, we see
LH-polarisation while there is RH-polarisation from the right.

6. CHARACTERIZATION OF THE DIPOLE MOMENTS

In this section we will be dealing with the characterisation of the
dipoles in dominant and non-dominant radiators. For identical reasons
as for visualizing the sense of polarisation, this characterisation
is carried out along the symmetry line. Moreover, the incoming
investigations are carried out for LLP different from the symmetry
line. For LLP and symmetry line coinciding, only one dipole exists.
This case is left out here, as is not relevant for our discussion.

The ratio between the electric field component of the electric
dipole and that of the magnetic dipole along the symmetry line is

Ee
ϑ

Em
ϕ

= j
E0

e

Em
· sinϑ

sin(ϑ− α)
(32)

At point C, the wave is right-handed circular polarised, η = 1, and we
get from (29)

E0
e

Em
= −sin(ϑ0r − α)

sinϑ0r

(33)

Replacing now the ratio E0
e

Em
in (32) by its expression obtained in (33)

yields

Ee
ϑ

Em
ϕ

= −j
sin(ϑ0r − α)

sinϑ0r

· sinϑ

sin(ϑ− α)
= K · sinϑ

sin(α− ϑ)
, (34)

where K = j
sin(ϑ0r−α)

sin ϑ0r
is a constant. Equation (34) indicates that the

ratio
sinϑ

sin(α− ϑ)
(35)

is a good figure of merit in characterizing which of the two dipoles
is mainly responsible for radiation. Since simplicity usually leads
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to clarity, we will first evaluate (35) graphically based on some few
examples and then generalize obtained results. Note that in each of
the forthcoming examples, ϑ runs from 0 to π.

6.1. The Angle α Between the Dipoles is α = π
2

Figure 12(a) displays the curves drawn by sin(α − ϑ) and sinϑ. It is
readily seen that for:

- 0 ≤ ϑ < π
4 , sin(α − ϑ) > sinϑ, which means that the ratio

sin ϑ
sin(α−ϑ) < 1. As a result, the magnetic dipole dominates.

- ϑ > π
4 , sin(α−ϑ) < sinϑ. It follows that sin ϑ

sin(α−ϑ) > 1; the electric
dipole is dominant.

- ϑ = π/4, sin(α−ϑ) = sinϑ. This point corresponds to the point of
circular polarisation C. The two dipoles are of equal magnitude.

6.2. α = π
4 and α = π/6

A synoptic view of Figs. 12(b) and 12(c) shows similar relationships
between electric and magnetic dipoles as for α = π/2. The point where
sin(α − ϑ) = sinϑ, for both cases is the point of circular polarisation,
since at this point ϑ = ϑ0r as can be verified upon calculating ϑ0r
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from (30b). For ϑ < ϑ0r the radiation arises principally from the
magnetic dipole and for ϑ > ϑ0r the radiation is predominantly electric.

Before generalizing insights already gained in this section it is
worth noting that the examples discussed above substantiate the main
result obtained in our discussion on the point of circular polarisation:
the uniqueness of the point of circular polarisation on the far field
sphere.

The foregoing investigations, together with the insight that at
A the electric dipole has zero radiation and, at B no radiation of the
magnetic dipole exists, allow us to draw the following general summary:

- For 0 ≤ ϑ < ϑ0r , i.e., between A and C, the radiation is
predominantly magnetic.

- For ϑ > ϑ0r , the radiation is predominantly electric.

The characterization scheme above is a good figure of merit for an
antenna engineer in deciding the antenna design: whether an antenna
with a dominant electric dipole or an antenna showing a behavior of
a magnetic dipole. This may be useful in mobile communication to
avoid possible adverse effects of RF field on human health.

7. CONCLUSION

The radiation of electrically small resonant antennas has been
decomposed into radiation from electric and magnetic dipoles upon
applying successively the approach of assigning current density to
dipole moments and the far field polarisation method. This approach
provides a new valuable method for visualizing the state of polarisation
on the far-field sphere with circular and linear polarisation being the
main focus of interest. The first polarisation state arises only at one
point on the symmetry line which cuts the sphere into two equal parts.
The later one is along a closed line, the form of which depends on the
angle between the dipole moments.

It is shown that the far field polarisation does not only allow the
decomposition of more complicated cases, but also permits an easy
characterization of dipole moments in dominant and non-dominant
dipoles, thus providing some foresight to the antenna engineer. This
figure of merit may help the antenna designer in making up his
mind about the nature of the antenna being designed. The approach
may also find application in EMC upon permitting the identification
and characterisation of radiation sources of equipments under test.
As a case of fact, in a PCB with an integrated antenna of known
polarisation, this method may help in determining the presence of other
radiation sources than the integrated antenna.
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Example: Let us consider an antenna of arbitrary geometry
integrated in a PCB and let’s also suppose that the polarization of the
antenna is known. Our task is to identify different radiation sources
(if any) on the PCB.

The presented method may help us to determine the presence of
radiation sources on the PCB other than that of the integrated antenna
by comparing the polarization of the overall radiated field to that of the
antenna. Should there be any difference, then other radiation sources
do exist on the board.

An additional domain of application of the method might be the
studies of scattering by electrically small objects.

APPENDIX A. DERIVATION OF EQUATION (5) AND
ITS TRANSFORMATION IN SPHERICAL
COORDINATES

The cartesian coordinates x, y, z and x′, y′, z′ may be transformed in
spherical coordinate system as [10]

x = r sinϑ cosϕ (A1a)
y = r sinϑ sinϕ (A1b)
z = r cosϑ (A1c)

and
x′ = r′ sinϑ′ cosϕ′ (A2a)
y′ = r′ sinϑ′ sinϕ′ (A2b)
z′ = r′ cosϑ′ (A2c)

respectively, and are related to each other by means of Equation (A3)


x′

y′

z′


 =

(1 0 0
0 − cosα sinα
0 − sinα − cosα

)

︸ ︷︷ ︸
M

·



x

y

z


 (A3)

with M being the transformation matrix.
Upon setting (A1a)–(A1c) and (A2a)–(A2c) in (A3) one obtains( sinϑ′ cosϕ′

sinϑ′ sinϕ′
cosϑ′

)
= M ·

( sinϑ cosϕ
sinϑ sinϕ

cosϑ

)
. (A4)

Carrying out the necessary algebra yields
sinϑ′ cosϕ′ = sin ϑ cosϕ (A5a)
sinϑ′ sinϕ′ = − sinϑ sinϕ cosα + cosϑ sinα (A5b)

cosϑ′ = − sinϑ sinϕ sinα− cosϑ cosα (A5c)
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(A5a)–(A5c) are the relationships between ϑ, ϕ and ϑ′, ϕ′. In the
prime spherical coordinates ϑ′, ϕ′, r′ the electric field of the magnetic
dipole is

Em = Em
ϕ′ (e′ϕ) = −Em

r
· sinϑ′e′ϕ, (A6)

which transformed in the prime Cartesian system turns to become

Em =
Em

r

( sinϑ′ sinϕ′
− sinϑ′ cosϕ′

0

)
. (A7)

In obtaining (A7), we applied the transformation relation from
spherical to cartesian coordinates and also replaced e′ϕ by the following:
e′ϕ = − sinϕ′e′x + cosϕ′e′y.

Having expressed the electric field of the magnetic dipole in the
prime Cartesian system, it can now be transformed in the non-prime
Cartesian coordinates. We have

Em = M−1 · Em

r

( sinϑ′ sinϕ′
− sinϑ′ cosϕ′

0

)
,

where

M−1 =

(1 0 0
0 − cosα − sinα
0 sinα − cosα

)
.

In a more explicit form

Em =
Em

r

( sin(ϑ′) sin(ϕ′)
cosα sinϑ′ cosϕ′
− sinα sinϑ′ cosϕ′

)
. (A8)

Setting now (A5a)–(A5c) in (A8), we get

Em =
Em

r

(− cosα sinϑ sinϕ + sin α cosϑ
cosα sinϑ cosϕ
− sinα sinϑ cosϕ

)
. (A9)

Equation (A9) is the sought for expression for the electric field of the
magnetic dipole in the non-prime Cartesian coordinates. Transforming
this expression in the non-prime spherical coordinates is a trivial
process which is readily done.

Em =
Em

r
A ·

(− cosα sinϑ sinϕ + sin α cosϑ
cosα sinϑ cosϕ
− sinα sinϑ cosϕ

)
(A10)
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A is the transformation matrix from Cartesian to spherical
coordinates [10]

A =

( sinϑ cosϕ sinϑ sinϕ cosϑ
cosϑ cosϕ cosϑ sinϕ − sinϑ
− sinϕ cosϕ 0

)
.

Carrying out the elementary calculus leads to

Em
r = 0 (A11a)

Em
ϑ =

Em

r
cos(ϕ) sin(α) (A11b)

Em
ϕ =

Em

r
[sin(ϑ) cos(α)− sin(ϕ) cos(ϑ) sin(α)] (A11c)

Note that a simplified representation of vectors has been chosen here
above.
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