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Abstract—Core loss data are usually provided in the form of tables
or curves of total loss versus flux density or frequency for electrical
machine designers. These tables or curves can be used to extract the
loss coefficients of the core loss formulas because accurate calculations
of the coefficients have an important issue in electrical machine design.
In this study, using original loss data given for M19 steel material, the
core loss coefficients are calculated by the genetic algorithm developed
in Matlab environment and electromagnetic analysis software (Ansoft
Maxwell) is also used to extract the core loss coefficients in order to
verify the proposed method. It is found that the exponent of flux
density (B) depends on the flux range or the frequency range and
these changes in the exponent of B can be correlated to the physical
phenomenon of domain wall movement in response to an external field.
As a difference from existing studies in literature, this study suggests
a new method for extracting the core loss coefficients without any
requirement for mathematical operations due to the nature of genetic
algorithms and over the range of frequencies between 50–400 Hz and
flux densities from 0 to 1.5 T, the new method yields lower errors for the
specific core losses than those obtained by the magnetic field analysis
software.

1. INTRODUCTION

Calculation of loss coefficients of core materials plays an important role
for the design of electric machinery. Manufacturers of core materials
provide tables or curves of total loss versus flux density or frequency
instead of giving core loss coefficients. Loss coefficients of a material
can be extracted with the help of these tables or curves. There are some
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numerical approaches used for this process. However, there are always
deviations between the original loss value and the calculated loss value
due to the lack of the numerical approaches and the formulas. Hence,
numerical approaches and equations, which represent the relationship
between the total loss versus the flux density or frequency, need to be
modified.

Recently, some outstanding algorithms have been presented in
literature. Some of these methods include genetic algorithm, simulated
annealing, particle swarm optimization, ant colony optimization and
evolutionary algorithms [1]. These methods generate new points in the
search space by applying operators to current points and statistically
moving toward more optimal places in the search space. They rely on
an intelligent search of a large but finite solution space using statistical
methods. In addition, the algorithms do not require taking objective
function derivatives and can thus deal with discrete variables and non-
continuous objective functions [2].

Genetic algorithm (GA) starts with an initial random population
containing a number of chromosomes which represent a probable
solution to the problem. The fitness of each chromosome in the
population is calculated using a “fitness function” that evaluates how
well each particular member solves the given problem [3].

In this study, loss coefficients of a material called M19 steel
are determined by using both genetic algorithms and magnetic field
analysis software (Ansoft Maxwell). The total core losses of this
material are calculated using these determined coefficients for both
methods. The obtained results are compared to the given original loss
data specified by the manufacturer. Since the comparisons show the
results of the proposed method are closer to the original loss data, the
feasibility of genetic algorithms is verified successfully.

2. CORE LOSSES IN ELECTRICAL MACHINERY

Core loss in a magnetic material occurs when the material is subjected
to a time varying magnetic flux [4]. In electric machinery, energy
is dissipated in the windings, core and surrounding structures. Core
losses under sinusoidal flux condition have been divided up in three
components: hysteresis loss Ph, eddy current loss Pc and excessive loss
(or anomalous) Pe [5]. When the external field is reduced or reversed
from a given value, domain wall motion again occurs to realize the
necessary alignment of domains with the new value of the magnetic
field. The energy associated with domain wall motion is irreversible
and manifests itself as heat within the magnetic material. This loss
is known as hysteresis losses [6]. For a given material, the loss is
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proportional to the frequency and is a function of the peak flux density
to which it is subjected. The metallurgical structure of the magnetic
material, including its electrical conductivity, also has a profound effect
upon the magnitude of the loss.

As the magnetic field reverses direction and cuts across the core
structure, it induces a voltage in the core known as ‘eddy’ voltages.
This action in turn causes eddy currents to circulate in the core.
Also, the lines of flux that link the copper conductor windings of the
transformer pass through the core itself and contribute to induce the
electrical currents in it. These eddy currents heat up the core and
dissipate power [7]. Eddy current losses can be reduced by making the
core of a stack of sheets electrically insulated from each other. Silica
is used as insulating material between the sheets. The eddy current
paths are reduced in the core made of insulated sheets and thus the
eddy current losses are minimized [7–9].

The origin of the excess loss can be well understood by describing
the magnetization dynamics in terms of a random distribution of
magnetic correlation regions (i.e., groups of interacting domain walls),
termed magnetic objects (MO). It assumes that the excess loss is
governed by the statistical distribution of the local threshold fields
at which different MOs become magnetically active [6].

2.1. Computation of Core Losses

According to the Steinmetz equation, measurement and calculation of
core losses are normally made with sinusoidal flux density of varying
magnitude and frequency [10]. The specific core losses pv in watts per
pound (or watts per kilogram) can be expressed by

pv = ph + pc + pe (1)
where the eddy-current loss is

pc = kc (fBm)2 (2)
the hysteresis loss is

ph = khfB2
m (3)

and the last term corresponds to the excess or anomalous loss
component. Despite the complicated physical background and based
on a statistical study, Bertotti has proposed the simple expression for
the excess losses, similar to that of the eddy-current losses, but with
an exponent value of 1.5 [11].

pe = ke (fBm)1.5 (4)
where f is the frequency of the external magnetic field, Bm is the flux
density, kh, kc and ke are the coefficients.
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Figure 1. The measured manufacturer’s data.

The eddy-current loss, which is often referred as “classical loss”,
can be estimated with a constant value coefficient calculated as

kc = π2σ
d2

6
(5)

where σ is the electrical conductivity and d is the lamination thickness.
Analytical estimations or typical values are not available for kh and ke.
Thus, the total core loss can be expressed as

pv = khfB2
m + kc (fBm)2 + ke (fBm)1.5 (6)

Manufacturers often use multiple sets of Steinmetz coefficients to
represent the core loss of their materials, each set being “tuned” to
more accurately reflect core loss over a particular range [10]. The
measured manufacturer’s loss data for M19 steel are shown in Figure 1.

Core loss measurements are provided over a range of frequencies
from 50 to 400 Hz and in flux density increments of 0.1T [12].

3. GENETIC ALGORITHMS

The genetic algorithms (GAs) are optimization techniques that have
been used to solve general problems with objective functions that do
not possess continuity and differentiability properties. Because of GAs’
robustness and their uniform approach to large number of different
classes of problems, they have been used in many applications [13, 14].
A GA allows a population composed of many individuals to evolve
under specified selection rules to a state that maximizes or minimizes
the “fitness” function [2].
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The operation of the GA changes slightly depending on the base of
the numbers to apply the genetic operator such as crossover, mutation,
mating and elitism. The selection process evaluates each chromosome
by some fitness mechanisms and assigns it a fitness value [15]. Although
there are many techniques for the selection of parents, the tournament
selection procedure is used in this study because it is computationally
more efficient and more amenable to parallel implementation [16].
According to this selection scheme, two small groups of chromosomes
are randomly selected from the mating pool and each group usually
consists of two or three chromosomes. The chromosome with the
highest fitness in each group becomes a parent. Enough of these
tournaments are held to generate the required number of parents [1].

At the end of each selection process, crossover and mutation
operations are performed, respectively. Crossover operation can be
considered as a form of local search in the search space, whereas
mutation operation induces random variations in the population, thus
keeps the algorithms exploring diverse areas [2].

3.1. Chromosome Structure

Genetic algorithms begin by defining a chromosome or an array of
variable values to be optimized and each variable in a chromosome is
called a ‘gene’ [1]. Hence, core loss coefficients should be coded to
a chromosome. In classical genetic algorithms, binary numbers are
mainly used. However, in this paper, real number coding method
is chosen in order not to consider how many bits are necessary to
accurately represent a coefficient and also to reduce the processing
time. Each variable can take any value from 0–20.

While Eq. (6) provides useful insights into the loss mechanism, it
has been shown that this equation does not accurately reflect the core
loss data provided by a steel manufacturer. To reduce these errors
between the original loss data curve and the estimation curve, a new
modification using the genetic algorithm can be represented by

pv = khf︸︷︷︸
K1

Bx
m + kc (fBm)2 + kef

1.5

︸ ︷︷ ︸
K2

B1.5
m (7)

where K1, K2 are the coefficients and x is the exponent of hysteresis
loss, which are variable with frequency f and flux density B. It can
be noticed that the exponent, x, should be optimized as well as K1

and K2. Eq. (7) is found in good agreement with the original core loss
data if the parameters are properly selected. The core loss coefficients
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kh and ke in Eq. (7) can be obtained by

kh =
K1

f
(8)

ke =
K2

f1.5
(9)

In this study, each gene can take any value in the range 0–20.
Since there are three parameters to be optimized, the structure of a
chromosome can be represented in Figure 2.

[ ] [ ]20...0,20...0,20...0,,
21
≡KxK

Figure 2. Chromosome structure.

3.2. Defining Evaluation Criteria

The fitness of each chromosome in the population is calculated using a
“fitness function” that characterizes how well each particular member
solves the given problem [17]. In the actual problem, the aim is to
reduce the deviations between the original loss data and the resulting
curve based on Eq. (7) parameters of which are optimized by the
GA. Let i denote the i-th point of the data on the measured loss
characteristic curve.

F =
∑

i

[
Pvi −

(
K1B

x
mi + kcf

2B2
mi + K2B

1.5
mi

)]2 (10)

where F is the sum of squared errors (SSE) and Pvi is the i-th
data on the original loss curve. The fitness of each chromosome
in the population is calculated according to this performance index
represented in Eq. (10).

3.3. Design of the Genetic Algorithm

In this study, the population is composed of 8 chromosomes. Each
chromosome represents three parameters to be optimized, which are
coded in the range 0–20. The initial population is randomly created
and is sorted from the fittest chromosome to the worst chromosome.
Deciding how many chromosomes to keep is somewhat arbitrary.
Using the discard rate of 50% results in discarding the bottom four
chromosomes. The four with the highest fitness survive to the next
generation and become potential parents to generate child population.
Tournament selection process is applied among the potential parents
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and produces four offspring to replace the discarded chromosomes
in the population. The crossover and mutation operations are also
performed at the end of the natural selection process. In addition,
elitism is used in this study, which means that the fittest individual
of the population is transferred to the next generation without any
change. That is, the fittest chromosome in the current generation is
saved [17]. These steps continue until the termination condition is
satisfied, except the creation of the initial population.

The detailed flowchart of the genetic algorithm is shown in
Figure 3.

The aim of all these operations in this flowchart is to operate on
the basis of the survival of the fittest and hence to select the most
appropriate chromosome in the search space.

4. SIMULATION RESULTS

In practice, the lamination steel manufacturers do not present the
loss coefficients. They only provide the loss curves and tables in
watts per kilogram (W/kg) or watts per pound (W/lb) versus flux
density or frequency to indicate the combination of hysteresis loss, eddy
current loss and excess loss for the design of electrical machines [6].
The classical estimation of core loss is systematically lower than
the measured values. This underestimation of core loss is due to
the waveform distortion, to the complexity of the electrical machine
structures and to the complex behavior of dynamic hysteresis loops.
For the analysis and calculation of core loss, the definition of the loss
coefficients based on the original loss data or curves provided by the
lamination steel manufacturers is essential [18].

In this paper, the core loss coefficients are extracted based on
the original loss data supplied by a steel manufacturer using the
formula represented in Eq. (7). In this formula, the coefficients
K1, K2 and x are optimized to generate more proper shape to the
Total Loss versus Flux Density or Frequency Curve. Under the same
conditions, magnetic field analysis software (Ansoft Maxwell) is also
utilized. The sum of the squared errors between the original loss data
and the estimated loss data is calculated in the range of frequencies
between 50 Hz and 400Hz and is compared. The agreement between
the experimental loss data and calculations based on Eq. (7) whose
parameters are optimized by GA is more acceptable in the suggested
method. Table 1 shows the parameters used in genetic algorithm.

In Figure 4, the hysteresis component of the total loss is a function
of frequency to the first power, but the relationship between hysteresis
loss and flux density varies depending on flux density or frequency.
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Figure 3. Detailed flowchart of the genetic algorithm.

The comparisons between the original core loss curves and the
resulting curves obtained from magnetic analysis software are also
given in Figure 5.
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Table 1. The genetic algorithm parameters.

GA parameters Values/Methods

Population size (N) 8

Maximum generation 500

Selection method Tournament selection

Crossover type Heuristic

Mutation rate (pm) 0.60

Discard rate (pd) 0.50

Elitism On

Fitness function (F ) Eq. (10)
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Figure 4. Comparisons between the manufacturer-provided loss
curves (solid lines) and the calculations based on Eq. (7) (dashed lines)
for M19 steel material at (a) f = 50 Hz, (b) f = 100Hz, (c) f = 200 Hz,
(d) f = 400Hz.
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Figure 5. Comparisons between the manufacturer-provided loss
curves (solid lines) and the resulting curves obtained from magnetic
analysis software based on Eq. (6) (dashed lines) for M19 steel material
at (a) f = 50 Hz, (b) f = 100 Hz, (c) f = 200Hz, (d) f = 400Hz.

It can be seen from Figures 4–5 that the formula defined in
Eq. (7) fits better with the experimental data than the model defined
in Eq. (6). Under low flux densities and low frequencies, this
equation is in a good agreement with the original data. However,
significant discrepancies between the calculation results of this model
and the experimental data occur under high flux densities and high
frequencies [6].

The training curves of the genetic algorithm according to the
generation are shown in Figure 6. These training curves show the
convergence of the GA along 500 generations.

In Figure 6, only very small improvements are noticed after
250 iterations. After an initial sharp drop, the best solution of the
population remains relatively constant. It can also be seen that



Progress In Electromagnetics Research M, Vol. 19, 2011 143

0 250 500
-1

0

1

2

3

4

5

6

7

8

generation

S
u

m
 o

f 
S

q
u

a
re

d
 E

rr
o

rs
 (

S
S

E
)

0 250 500

0

2

4

6

8

10

12

generation

S
u

m
 o

f 
S

q
u

a
re

d
 E

rr
o

rs
 (

S
S

E
)

0 250 500

0

100

200

300

400

500

600

S
u

m
 o

f 
S

q
u

a
re

d
 E

rr
o

rs
 (

S
S

E
)

generation
0 250 500

0

2

4

6

8

10

12

14

16

18

20

generation

S
u

m
 o

f 
S

q
u

a
re

d
 E

rr
o

rs
 (

S
S

E
)

(a) (b)

(c) (d)

Figure 6. Convergence of the GA for (a) f = 50 Hz, (b) f = 100 Hz,
(c) f = 200Hz, (d) f = 400Hz.

the best curves either stay the same or go lower than the previous
generation due to elitism.

Reinitializing the random-number generator and running the
algorithms again will produce different results. Changing the GA
parameters, such as population size and mutation rate, will also
produce different results [1].

According to four different frequency values, core loss coefficients
and the calculated sum of the squared errors obtained from both the
proposed method and the magnetic field analysis software (Ansoft
Maxwell) are given in Table 2.

In Table 2, the core loss parameter units are in W/kg. It is easily
seen that there are major differences between the proposed method
and cad-based software according to the SSE values. For example,
at 200 Hz, in genetic based parameter extraction, the performance
index SSE is 0.1439 while it is about 1.09 in cad-based software.
Similar results can be observed in other three frequencies. In both
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Table 2. Comparison between the proposed method and cad-based
software.

Frequency
Values (Hz) 

f =50

Genetic based parameter extraction

SSEkh x ke

0.009512 2.3684 0.001675 0.0524

f =100 0.004817 3.8209 0.002149 0.0279

f =200 0.011230 3.1840 0.001795 0.1439

f =400 0.018057 3.4759 0.001782 0.3398

Cad-based parameter extraction

k ekh SSE

0.0004230.018174 0.0548

0.0001690.025282 0.1827

00.037302 1.0900

00.057145 28.322

extraction methods, the constant eddy loss coefficient is calculated
from Eq. (5) and found kc = 1.6449.10−5. Finally, the match between
the calculation of Eq. (7) and the original loss data is quite closer than
that obtained by the magnetic field analysis software based on Eq. (6).
It should be mentioned that in Eq. (7) the eddy current coefficient kc

is constant, whereas the hysteresis loss coefficient kh, the excess loss
coefficient ke and the exponent of the flux density x are variables with
frequency and the changes of the hysteresis loss coefficients kh and x
with frequency indicate the hysteresis loop area change, which reveals
in turn the change of the material domain wall motion.

5. CONCLUSION

In this study, the core loss coefficients of M19 steel material are
optimized using genetic algorithm developed in Matlab environment
and electromagnetic analysis software in order to reflect the original
loss data more accurately. As a difference from existing studies in
literature, this study suggests a new method for extracting the core loss
coefficients without any requirement for mathematical operations due
to the nature of genetic algorithms. These coefficients are determined
by both the proposed genetic-based approach and the traditional
approach. The observations show that the proposed method has a
better performance for estimating the original core loss data. As a
result, the extracting method of the loss coefficients and the agreement
between the original loss data and the calculation of Eq. (7) are more
acceptable and effective.



Progress In Electromagnetics Research M, Vol. 19, 2011 145

REFERENCES

1. Haupt, R. L. and D. H. Werner, Genetic Algorithms in
Electromagnetic, IEEE Press, 2007.

2. Haupt, R. L. and S. E. Haupt, Practical Genetic Algorithms, 2nd
edition, Wiley-Interscience Pub., John Wiley & Sons, INC., New
York, 2004.

3. Gen, M. and R. Cheng, “A survey of penalty techniques in genetic
algorithms,” Proceedings of IEEE International Conference on
Evolutionary Computation, 804–809, May 20–22, 1996.

4. Fiorillo, F. and A. Novikov, “An improved approach to power
losses in magnetic laminations under nonsinusoidal induction
waveform,” IEEE Transactions on Magnetics, Vol. 26, No. 5,
2904–2910, 1990.

5. Landgraf, F. J. G., J. C. Teixeira, M. Emura, M. F. de Campos,
and C. S. Muranaka, “Separating components of the hysteresis
loss of non-oriented electrical steels,” Materials Science Forum,
Vol. 302–303, 440–445, 1999.

6. Chen, Y. and P. Pillay, “An improved formula for lamination core
loss calculations in machines operating with high frequency and
high flux density excitation,” 37th IAS Annual Meeting Industry
Applications Conference, Vol. 2, 759–766, 2002.

7. Boglietti, A., A. Cavagnino, M. Lazzari, and M. Pastorelli,
“Predicting iron losses in soft magnetic materials with arbitrary
voltage supply: An engineering approach,” IEEE Transactions on
Magnetics, Vol. 39, No. 2, 981–989, 2003.

8. Yang, F., M. Rong, Z. Sun, Y. Wu, and W. Wang, “A
numerical study of arc-splitting processes with eddy-current
effects,” 17th International Conference on Gas Discharges and
Their Applications, 2008, GD 2008, 197–200, 2008.

9. Mohammed, O. A. and G. F. Uler, “A hybrid technique for the
optimal design of electromagnetic devices using direct search and
genetic algorithms,” IEEE Transactions on Magnetics, Vol. 33,
No. 2, 1931–1934, 1997.

10. Ridley, R. and A. Nace, “Modeling ferrite core losses,” Switching
Power Magazine, 8–9, Winter, 2002.

11. Ionel, M. D., M. Popescu, S. J. Dellinger, R. J. Heideman, and
M. I. McGilp, “On the variation with flux and frequency of the
core loss coefficients in electrical machines,” IEEE Transactions
on Industry Applications, Vol. 42, No. 3, 658–667, 2006.

12. Technical Datasheet for Core Material of Sura, http://www.sura.s
e/Sura/hp products.nsf/vOpendocument/03A8B2433FAE16C4C1
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