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Abstract—Nonlinear optical processes have been used for sensitive
detection of chemicals, optical imaging and spectral analysis of small
particles. We have developed an exact theoretical framework to study
the angular dependence of coherent anti-Stokes Raman scattering
(CARS) intensity in the near field and far field for nanoparticle and
microparticle. We obtain exact analytical solution for the CARS signal
valid for arbitrary detection distance. Interesting angular dependence
is found for nanoparticle, especially with near field detection. The
study includes the effects of focused lasers and particle size on the
CARS intensity distribution. We find that the detection distance and
particle size do not affect the spectroscopic peaks of CARS. However,
interference of reflected waves in nanoparticle can produce a dip in the
backscattered spectrum.

1. INTRODUCTION

The CARS process [1, 2] has been used for developing a versatile
real-time detection technique in spectroscopy and microscopy [3]. In
particularly, backscattered ultra-violet CARS incorporated on LIDAR
system [4] is promising for remote detection of molecular species
present in hazardous biological aerosols [5, 6]. In practice, the
aerosols could be of any shape and size ranging from micrometers to
nanometers. Near field detection has been an important approach to
high resolution optical microscopy [7]. Thus, it is useful to study the
emission properties of the CARS technique for reliable detection of
chemicals in micro- and nano-particles in the near-field regime.
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We have developed an integral scattering approach combined with
nonlinear microscopic theory that can describe the CARS spectra for
a particle composed of a collection of complex molecules [8] as well
as simple few levels quantum systems [4]. The theory provides useful
results on the CARS intensity for different field components in the far
field at any observation angle and for any profile of laser pulses [8].

In this paper, we study the spatial/angular dependence of coherent
anti-Stokes Raman scattering (CARS) intensity and spectra for a
spherical particle with different sizes. We use a nonlinear theory which
goes beyond that of simple systems like dipole antenna [9]. Here, we
focus on the near-field for particle composed of molecules modelled by
simple few energy levels (see Fig. 1). The near field effect is interesting
and was found also in emission from semiconductor quantum well [10].
Effects of the detection distance and particle size are analyzed. We
compute the integral expression for the nonlinearly generated CARS
signal exactly by including the ∇∇ term exactly without making any
approximation. This enables us to obtain results on the angular
dependence of the CARS in the near-field regime, for the first time.
We also analyze to what extend the size of the particle and the tightly
focused laser pulses affect the backscattered light. Several new effects
and scattering features are found and discussed, providing potential
application as nano-sensor in near-field spectroscopy and imaging,
and further extension to an array of nanospheres. Since we want
to determine the factors that can change the spectrum, resonant or
quasi-resonant states is necessary to display the resonant peaks. Off-
resonant fields would not produce significant quantum coherence and
well resolved peaks.

Figure 1. Configuration of near-field CARS on nanosphere with
focused laser pulses. Also shown are the typical transitions in molecules
modelled by three-level scheme.
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2. INTEGRAL FORM OF THE SCATTERED FIELD

The physical process of interest in the nonlinear scattering by a particle
can be described by the CARS (anti-Stokes) signal E. The field
dynamics is for inhomogeneous and non-magnetic medium with no
free charge and no free current is described by(

∇2 − 1
c2

∂2

∂t2

)
E(R,t) = − 1

εo

{
∇∇ · − 1

c2

∂2

∂t2

}
P(R, t) (1)

which gives the electric field at any time t and space R outside
the source due to the polarization P. In frequency space
P̃(R, ω) =εoχ

(1)(ω)Ẽ(R, ω) + P̃
NL

(R, ω) and Eq. (1) becomes(
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with the solution
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V
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where k(ω) = ω
c

√
ε(ω), ε(ω) = 1+χ(ω)(e) includes the local field effect

χ(e)(ω) = ηα/εo

1− ηα
3εo

= ηα/εo

1− εr−1
εr+2

= ηα/εo

3 (χ(1)(ω) + 3), α is the polarizability

and χ(1)(ω) = εr(ω)−1 is the linear susceptibility without the local field
correction. Note that Eq. (3) implicitly includes the linear response.
The ∇ acts on the observation coordinates R outside the integration
volume V of the scattering medium.

The nonlinear polarization in spherical polar coordinates can
be written as P̃NL(r, ω) =

∑
j

℘
(j)
ca ρ̃

(3)
ac (rj , ω)δ(r − rj) = R̂P̃NL

R +

Θ̂P̃NL
Θ + Φ̂P̃NL

Φ where P̃NL
R = R̂ · PNL, P̃NL

Θ = Θ̂ · PNL and
P̃NL

Φ = Φ̂·PNL with the unit vectors R̂=(sinΘ cos Φ, sinΘ sin Φ, cosΘ),
Θ̂ = (cos Θ cosΦ, cosΘ sinΦ,− sinΘ) and Φ̂ = (− sinΦ, cosΦ, 0). The
relationship with density matrix element is

P̃NL(r, ω) = η℘caρ̃
(3)
ac (r, ω) (4)

where we use
∑
j
→ η

∫
V ′ d

3rj for a large number of molecules with each

molecule has the same dipole moment, with a homogeneous number
density η in a volume V . The coherence ρ̄ac is obtained from the
density matrix equations and Eq. (A3) in the Appendix as

ρ̃(3)
ac (r, ω)=

iΩ1(r)Ω∗2(r)Ω3(r)
[
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Γ∗
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] (5)
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where D = ν1−ν2+ν3−ωbc = ∆1−∆2+ν3, ∆1 = ν1−ωac,∆2 = ν2−ωab

and Γa′c = γa′c + i∆1, Γa′b = γa′b + i∆2, Γbc = γbc + i(∆2 −∆1). The
inversions are wa′b = ρa′a′−ρbb and wa′c = ρa′a′−ρcc. The denominator
of ρ̃

(3)
ac gives the saturation of the coherence ρ̃

(3)
bc when the laser fields

become arbitrarily large. For strong field the spectrum may be affected
by the focusing of the laser fields through the Ω1,2(r) = ℘ · E1,2(r)/~
in the denominator. The physical explanation of how collinear lasers
can satisfy the phase matching condition has been given in ref. [4].

The linear polarization is smaller than the nonlinear polarization
for strong laser fields such that the nonlinear processes (especially
CARS) dominate

Ẽ(R, ω) =
η

4πεo

[
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ω2

c2
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]
×
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ρ̃(3)
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where ℘ca = R̂℘ca,R + Θ̂℘ca,Θ + Φ̂℘ca,Φ and |R − r| = <(R, r) =√
(X − x)2 + (Y − y)2 + (Z − z)2 with X = R sinΘ cos Φ, Y =

R sinΘ sinΦ, Z = R cosΘ, x = r sin θ cosϕ, y = r sin θ sinϕ and
z = r sin θ. Note that R̂(R̂ · ℘ca) + Θ̂(Θ̂ · ℘ca) + Φ̂(Φ̂ · ℘ca) = ℘ca

with (℘R̂, ℘Θ̂, ℘Φ̂) = (R̂, Θ̂, Φ̂) · ℘ca. We may rewrite the integral as
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where F (R, r,ω) = eik(ω)<
< and W(R, r,ω) is defined below. Since we

are focusing on the near-field effect, it is sufficiently good to use the
analytical expression of Eq. (A2) in the Appendix for the coherence
rather than exact numerical solutions.

Here, we obtain results that are valid for arbitrary distance
without making the far field approximation. The main problem is the
exact evaluation of W(R, r,ω). In spherical coordinates, the R̂, Θ̂, Φ̂
components are
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where (GR̂, GΘ̂, GΦ̂) = ℘caF = (℘R̂, ℘Θ̂, ℘Φ̂)F . Note that ℘q are not
constants, but depend on the observation point; ℘R̂= ℘x sin Θ cos Φ +
℘y sinΘ sin Φ+℘z cosΘ, ℘Θ̂ = ℘x cosΘ cosΦ+℘y cos Θ sin Φ−℘z sinΘ
and ℘Φ̂ = −℘x sinΦ + ℘y cosΦ, giving, for example, ∂Gq

∂Φ = ℘q
∂F
∂Φ +
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∂℘q

∂Φ F . Thus, the derivatives of the G components are complicated
because of the dependency of the ℘q on R, Θ, Φ. The terms in Eq. (8)
have been evaluated analytically after lengthy calculations.

Alternatively, the vector W can be computed in the Cartesian
coordinates, which is much simpler, using

W(R, r, ω) =




℘x
∂2F
∂X2 + ℘y

∂2F
∂X∂Y + ℘z

∂2F
∂X∂Z

℘x
∂2F

∂Y ∂X + ℘y
∂2F
∂Y 2 + ℘z

∂2F
∂Y ∂Z

℘x
∂2F

∂Z∂X + ℘y
∂2F

∂Z∂Y + ℘z
∂2F
∂Z2


 (9)

The first and second order derivatives in Eq. (8) can be evaluated, for
examples ∂F

∂X = (ik< − 1)(X − x) exp(ik<)
<3 , ∂

∂Y ( exp(ik<)
<3 ) = (ik< − 3)

(Y − y) exp(ik<)
<5 , ∂2F

∂X2 = (ik< − 1) exp(ik<)
<3 [1 + (ik< − 3) (X−x)2

<2 ] and
∂2F

∂Y ∂X = (ik<−1)(ik<−3) exp(ik<)
<5 (X−x)(Y −y). The transformation

between the spherical and Cartesian components are obtained through(
R
Θ
Φ

)
=

( sinΘ cosΦ sinΘ sin Φ cos Θ
cosΘ cos Φ cos Θ sin Φ − sinΘ
− sinΦ cos Φ 0

)(
X
Y
Z

)
and its

inverse.
We have obtained the same results using both Eqs. (8) and (9),

showing consistency and correctness. We compute the emitted fields
versus space and the intensity versus Θ and ω for different ρo and R,
for incident collinear-fields and focused fields (see Figs. 2–6 and 7).

2.1. Far Field

For the far field |R − r| ' R
√

1− 2R·r
R2 ' R − R·r

R and the

integral becomes eik(ω)R

R

∫
V eik(ω)R·r

R ρ̃
(3)
ac (r, ω)d3r, so the spectrum of

the intensity may depend on the direction R
R but is independent of R.

The situation is different in the near field. This can be seen by taking
the next higher order R·r

R2 so we have |R−r| ' R−R̂·r− (R̂·r)2
2R where the

last term gives the distance and angular dependencies of the spectrum
on R when R is in the order of ρo. We may use |R− r| ' R − R̂·r to
write [4]

∇∇ ·
{
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}
' −R̂

R
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which gives zero radial component of the CARS field (∇∇·℘ca+ω2

c2
R̂(R̂·

℘ca)). In order to verify this analytically, we write the R component
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of the [. . . ] in Eq. (7) as
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For large R the last term vanishes and we have the ( ∂
∂R + iω

c )( ∂
∂R −

iω
c )GR̂ = 0 or lim

R→∞
R( ∂

∂R − iω
c )GR̂ = 0 which is the Sommerfeld

radiation condition [11, 12].
For a nanoparticle, the focusing effect due to particle refraction

is negligible. Thus, the internal field is essentially the same as the
incident field. This enables us to model the internal field more easily for
the case of tightly focused incident lasers, where the spatial distribution
of the field is given by [13]

E(ρ, ϕ, z) =

(
I0 + I2 cos 2ϕ

I2 sin 2ϕ
−2I1 cosϕ

)
(12)

where

Im =
∫ αmax

0
Em(α)

√
cosα sinαJm(kρ sinα)eikz cos αdα (13)

where Em(α) = Egm(α)e−(sin α/ sin αmax)2 with sinαmax = NA/n =
w0/f and g0(α) = 1 + cosα, g1(α) = sinα and g2(α) = 1 − cosα. We
use NA = 1.4, n = 1.5 [14].

3. RESULTS AND DISCUSSIONS

The results in Figs. 2, 4, 5, 6 show the angular plots and the spectrum
for three intensity components of the CARS signal from microparticle
and nanoparticle with far field and near field detections.

Based on the figures, we discuss the angular dependence,
directionality and subwavelength effect of the CARS signal.

3.1. Microparticle and Far Field

Although the incident lasers are polarized along the x axis, the
scattered signal has the y-component especially at Φ = 0◦ and 180◦
since the dipoles in the particles have random orientations and can
generate field in all directions transverse to the propagation direction.
Fig. 2 shows the backward signal for x and y components is about 50
times smaller than the forward, consistent with previous results [4, 8].
The z component vanishes in the forward and backward due to the
transversality of the propagating field. The focusing effect of the
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(a)

(b)

(c)

Figure 2. Far field (R = 1 km) CARS intensities |Eu|2 (u = x, y, z) in
log scale for microparticle (ρo = 0.5µm) with collinear lasers. (a)
lg |Eu|2 − min(lg |Eu|2) and (b) lg(|Eu|2/|E3|2). The plots are at
resonant frequency ωCARS = ν1 +ν3−ν2. (c) The spectra are shown in
log scale for forward and backward signals. The refractive indices at the
carrier frequencies of the pump, Stokes, control and antiStokes fields
are np = 1.6, ns = 1.7, nc = 1.8,

√
ε(ω) → na = 1 with λ = 0.25 µm

and number density N = 9.45493× 1026 m−3.

microparticle causes the backscattered far field intensity to be only
100 times smaller than the forward. This is in contrast to the case
of bulk medium where there is no focusing effect of the lasers, where
the forward intensity is typically 104 times larger than the backward.
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(a)

(b)

Figure 3. CARS intensities |Eu|2 (u = x, y, z ) in log scale for (a)
microparticle (ρo = 0.5µm) and (b) nanoparticle (ρo = 5 nm) at
R = 1 m with na = 1.6. All other parameters are the same as in
Fig. 2.
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(a)

(b)

(c)

Figure 4. Near field (R = 1.5ρo) CARS intensity |Eu|2 (u = x, y, z)
in log scale for microparticle (ρo = 0.5µm) with collinear lasers. Other
parameters are the same as in Fig. 2.

The strong backscattered light is mainly due to the internal reflection
(about 4%) of the laser fields at the particle-air boundary. This creates
reflected laser wavevectors with components in the backward direction,
as if the lasers were directed in the opposite direction, which leads
to the strong backscattered light. The focusing effect also creates
a localized region (within λ/2 scale) with high intensity. Thus, the
effective four-wave-mixing dimension is shrunk from the geometrical
dimension of ρo down to λ/2, giving better phase matching and higher
backscattered signal. At 90◦ detection, the x-component has a zero
emission.

The intensity at R = 1 m is about 106 times larger than the
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(a)

(b)

(c)

Figure 5. Far field (R = 1 km) CARS intensity |Eu|2 (u = x, y, z)
in log scale for nanoparticle (ρo = 5 nm) with collinear lasers. Other
parameters are the same as in Fig. 2.

intensity at R = 1 km, as shown in Fig. 3. This is expected due to the
inverse square law. The spectra for forward and backward detections
are almost identical for

√
ε(ω) → na = 1, the refractive index at the

antiStokes frequency. However, if the refractive index is greater than
unity, i.e., na = 1.6, Fig. 3 shows that there is a “Fano-like” dip in
the backward spectrum for nanoparticle. The dip is due to destructive
interference of two waves reflected from the inner and outer boundaries
of the nanoparticle and shifted out of phase for na > 1 but would be
in phase for na = 1.

The spectrum is essentially independent of the angle of
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(a)

(b)

(c)

Figure 6. Near field (R = 3ρo) CARS intensity |Eu|2 (u = x, y, z)
in log scale for nanoparticle (ρo = 5 nm) with collinear lasers. Other
parameters are the same as in Fig. 2.

observation. The CARS spectrum has double dominant peaks at
ωac = ν1 − ν2 + ν3 = ωcars and ωcars − ωbc. The locations of the
peaks do not depend on the angle of observation.

3.2. Microparticle and Near Field

Figure 4 shows that the backward signals for the x and y components
are about 1000 times smaller than the forward, which is smaller than
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(a)

(b)

Figure 7. The CARS intensities |Eu|2 (u = x, y, z) in log scale for
nanoparticle (ρo = 5nm) with tightly focused lasers. Detections are at:
(a) far field (R = 1000 m), (b) near field (R = 3ρo). Other parameters
are the same as in Fig. 2.
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the far field case. It is interesting to note the large (longitudinal) z-
component in the forward, but no z-component in backward. This
shows that the transversal property does not apply in the near field.
At near field, there is no dip at 90◦. The spectra in the near field case
are essentially the same as the far field.

3.3. Nanoparticle and Far Field

For nanoparticle, Fig. 5 shows that the backward signal is only 1000
times weaker than the forward for the x component, which is still larger
than bulk case. However, for the y component, the backward signal
is 5000 times smaller. The y component is slightly larger than the x-
component. The backscattered light is not generated by reflection as
discussed above for the case of microparticle. Since the nanoparticle
size is smaller than the wavelength, the focusing effect is negligible.
The large signal is due to the better phase matching of the nanoparticle
rather than the focusing effect. From nonlinear optics view, however,
the phase matching condition is improved by the small size and not
by the focusing effect, giving a strong backscattered signal. Note the
zero emission or dips at 90◦ for the x-component but at 80◦ degree
for the y component. The dip feature is the property of the far field,
physically could be due to destructive interference. As expected, the z
component is negligible for far field. Again, the spectrum is essentially
unchanged.

3.4. Nanoparticle and Near Field

Some interesting results are shown in Fig. 5. The forward intensity
is equal to backward for all x, y and z components. Besides, all the
components have comparable strengths. Again, the z component is
not negligible at the near field. The maximum intensity occurs on
side observation angles, instead of in the forward or in the backward.
This could be a useful asset for designing near field microscopy
with off-axis detection angle. The spectrum is again essentially the
same, independent of the observation angle, distance of observation
(detection) and the size of the particles.

For focused lasers on the nanoparticle, Fig. 7 shows similar angular
dependence, except that the intensities are higher. The forward and
backward intensities for the x component are almost equal. A counter-
intuitive feature is found for the near field, i.e., the backward intensity
is slightly larger than the forward for the x and y components.
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4. CONCLUSIONS

We have studied the effects of near field on the angular dependence
of the CARS spectra. For nanoparticle with tightly focused laser
fields, the backward far field is as strong as the forward. The actual
advantages of the near-field are the strength and the presence of
longitudinal field component in the forward direction. A possible
detection system for the near field should use a probe smaller
than the particle size. A narrow STM tip can be developed as
a detector or sensor. The tip has a dimension close to a single
atom that would be able to map out the near field distribution of
the nanoparticle [15, 16]. To conclude, near-field CARS does not
show subwavelength feature. The widely acclaimed subwavelength
resolution in near-field microscopy is due to the proximity effect of
the microscopic tip and has nothing to do with the fundamental
nature of the near-field. The results of this study would be useful
for designing efficient and sensitive detection systems for chemicals
in small particles, including optical imaging and spectral analysis.
Our study involving nonlinear process would be extended to metallic
sphere [17] to study plasmonic effects. It would also be useful to apply
the spectroscopic technique to combustion process by studying the
effect of relativistic motion on the angular dependence of CARS using
the recent formalism [18].
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APPENDIX A. DENSITY MATRIX ELEMENTS FOR
COHERENCE

We used d
dt ρ̄ac = −γacρ̄ac + iΩ3(r)e−i∆3tρ̄bc which describes the

transient evolution of the anti-Stokes coherence Eq. (A2) can be
written as

ρ̄(3)
ac (r, t) =

∫ t

0
iΩ3(r, t′)ρ̄bc(r, t′)e−Γac(t−t′)dt′ (A1)

where Γac = γac + i∆3, γac is the decoherence rate. For quasi-
monochromatic fields, the equation is linear and Fourier transform can
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be used, giving (γac − iω − i∆3)F(ρ̄ace
i∆3t) = iΩ3(r)F(ρ̄bc) or

ρ̃(3)
ac (r, ω) = iΩ3(r)

ρ̃
(3)
bc (r, ω − ν3 + ωbc)
(γac − iω + iωac)

(A2)

For monochromatic fields the ground states coherence is

ρ̃bc(r,ω − ν3 + wbc) '
Ω1(r)Ω∗2(r)

[
wa′c

Γ∗
a′c(ω−D) + wa′b

Γa′b(ω−D)

]

Γ∗bc(ω −D) + |Ω2(r)|2
Γ∗

a′c(ω−D) + |Ω1(r)|2
Γa′b(ω−D)

. (A3)

where D = ν1 − ν2 + ν3 − ωbc = ∆1 −∆2 + ν3, ∆1 = ν1 − ωac, ∆2 =
ν2−ωab and Γa′c = γa′c+i∆1, Γa′b = γa′b+i∆2, Γbc = γbc+i(∆2−∆1).
The inversions are wa′b = ρa′a′ − ρbb and wa′c = ρa′a′ − ρcc.
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