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Abstract—A new method is introduced to construct a slab that has
electric fields with propagation properties which are equivalent to a
fractional-space wave equation in two-coordinate system. While its
magnetic fields have propagation properties which are equivalent to
the complementary fractional-space wave equation. Analytical forms
for the reflection and transmission coefficients of this slab are derived.
Results of these reflection and transmission coefficients show that
such quasi-fractional-space slab has spatial and frequency selectivity
properties.

1. INTRODUCTION

Fractional calculus is found to be a good tool for presenting
homogenous models for fractal boundaries in different physical
problems including electromagnetic wave propagation [1, 2]. This
was the motivation for many researchers to introduce extensive
studies of formulating and solving fractional dimensional problems
in electromagnetics [3–13]. Engheta [3, 4] introduced an early
investigation of fractional solution of wave equation. This analysis was
mainly based on introducing source distributions which are equivalent
to fractional-dimensional Dirac delta functions. This analysis was more
investigated by Naqvi and Rizvi [5] to introduce dual solutions and
corresponding sources for this fractional electromagnetic wave. More
recently, another view for fractional-space wave was introduced based
on the propagating medium instead of the source. As examples, chiral
media and perfect electromagnetic (PEMC) boundary are found to be
good candidates that can be modeled by using fractional calculus [6–
8]. Other problems related to propagation, reflection and diffraction
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of electromagnetic waves in fractional space medium have also been
studied [9–13].

On the other hand, recent advances in synthesized materials,
like metamaterials, artificial magnetic conductors and perfect
electromagnetic conductors, open the door for investigating the
features of non-standard materials which may be available in near
future. These synthesized materials were the key for introducing
new applications like electromagnetic cloaking [14, 15] by controlling
the constitutive parameters of the cloaking structure. This is the
motivation in this research to study the possibility of constructing a
slab that has fractional space properties by controlling its permittivity
and permeability.

The present analysis is based on assuming that both the
permittivity and permeability of the slab are general functions of
the normal direction on the slab. By following conventional steps of
deriving the wave equations for electric and magnetic field, one can
obtain a general form for these wave equations for general constitutive-
parameters distributions. The relations between these constitutive
parameters are chosen such that the wave equation of the electric
fields would correspond to a fractional space wave equation in two-
coordinate system. These relations are not found to be satisfying
the same fractional wave equation for the magnetic field components,
but they satisfy the complementary fractional-space wave equation
as it is shown in the following section. Reflection and transmission
coefficients of this quasi-fractional-space slab are derived analytically
in Section 3. In Section 4, sample results for these reflection and
transmission coefficients are presented and discussed.

2. EQUIVALENT PARAMETERS OF A
QUASI-FRACTIONAL-SPACE MEDIUM

The slab is assumed to be infinite in x and y directions and it is
bounded in the region zi ≤ z ≤ zb. Assuming that the fields in all
regions are transverse magnetic with respect to the normal direction
on the slab and the xz plane is the plane of incidence. Thus, the field
components inside or outside the slab can be presented as:

E = Ex(x, z)ax + Ez(x, z)az (1a)
H = Hy(x, z)ay (1b)

The permittivity and permeability of the slab are assumed to be
depending only on the normal z direction. The following analysis
is used to determine the required dependence which makes the



Progress In Electromagnetics Research Letters, Vol. 24, 2011 121

wave propagation equation inside the slab is equivalent to fractional-
dimensional wave equation. The rotation of the differential form of
Faraday’s law inside the slab can be presented as:

∇(∇ ·E)−∇2E =
(

jω
∂µ1

∂z
Hy + jωµ1

∂Hy

∂z

)
ax − jωµ1

∂Hy

∂x
az (2)

where
∂

∂z
Hy = −jωε1Ex (FromAmpere’s Law) (3a)

Hy = − 1
jωµ1

(
∂

∂z
Ex − ∂

∂x
Ez

)
(FromFaraday’s Law) (3b)

∇ ·E = − 1
ε1

∂ε1

∂z
Ez (FromGauss’ Law) (3c)

By using Eq. (3) into Eq. (2), one can obtain the generalized wave
equation for a slab with varying permittivity and permeability along
its normal direction for 2-D TM wave as follows:
∂2Ex

∂x2
+

∂2Ex

∂z2
+

1
ε1

∂ε1

∂z

∂Ez

∂x
+

1
µ1

∂µ1

∂z

(
∂Ez

∂x
− ∂Ex

∂z

)
+ω2µ1ε1Ex =0 (4)

Assuming that the permittivity and the permeability of the slab are
related as follows:

1
ε1

∂ε1

∂z
= − 1

µ1

∂µ1

∂z
=

D − 2
z

(5)

where D is a constant and 0 ≤ D ≤ 2. Thus, the resulting wave
equation of the electric field in Eq. (4) would be:

∂2Ex

∂z2
+

∂2Ex

∂x2
+

D − 2
z

∂Ex

∂z
+ ω2µ1ε1Ex = 0 (6)

which is exactly the form of the fractional-dimensional wave Equation
for two-coordinate system [9].

By using Eq. (5), one can obtain the permittivity and the
permeability of the corresponding slab are given by:

ε1(z) = ε0εr1z
D−2 (7a)

µ1(z) = µ0µr1z
−(D−2) (7b)

It can be noted that this slab has a constant propagation wave number
where k1 = ω

√
µ1ε1 = k0

√
εr1µr1 while its intrinsic impedance is

varying as η1 = η0

√
µr1/εr1z

−(D−2).
It is interesting to note that the wave equation for the magnetic

field in this case is the complementary for the wave equation of the
electric field as follows:

∂2

∂z2
Hy +

∂2

∂x2
Hy +

2−D

z

∂Hy

∂z
+ ω2µ1ε1Hy = 0 (8)
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Analytical solutions of Eqs. (6) and (8) can be obtained by using
separation of variables to get the fields inside the fractional-space slab
as follows [10]:

Ex = (kz1z)n (C1Jn(kz1z) + C2Yn(kz1z)) e−jkxx (9a)

Hy = (kz1z)nh (D1Jnh
(kz1z) + D2Ynh

(kz1z)) e−jkxx (9b)
where n = |3−D|/2, nh = |D − 1|/2 and ω2µ1ε1 = k2

1 = k2
x + k2

z1.
It can be noted that for the limit where D = 2 which corresponds

to the conventional 2-D case, both n and nh would be 0.5. In this
case the limits of the Bessel functions in Eq. (9) would be simply
combination of sin(kz1z) and cos(kz1z) which are the basic functions of
standing wave-function inside a 2-D slab. It should also be noted that
the relation between the magnitudes of the electric and magnetic field
components in this case is not still the simple characteristic impedance
as in the case of the conventional fractional space electromagnetic field
solution [10]. To obtain this relation it would be required to apply
Maxwell’s curl equations on Eq. (9). This step would introduce only
two equations. Additional relations based on the boundary conditions
are used combined with these two equations to obtain the amplitudes
of the electric and magnetic field components as it is discussed in the
following section.

By following the same steps, one can obtain the same wave
equations of Eqs. (6) and (8) for the case of a transverse electric
fields. The only difference in this case is exchanging the transverse
field components to be Ey and Hx. The remaining parts would be
exactly the same as the previous case.

Before ending this section, it should be mentioned that the case
where the permittivity and permeability are functions of x has also
been studied. In this case we could obtain wave equations which are
similar to Eqs. (6) and (8) while the fractional-space term is function
of x. However, the propagation wave number k1 is found to be also
a function of x, not a constant like in the present case. Thus, the
resulting equations in this case do not coincide with the conventional
definition of the fractional-dimensional wave equation.

3. REFLECTION AND TRANSMISSION OF
ELECTROMAGNETIC WAVES DUE TO A
FRACTIONAL-SPACE SLAB

For the case of a TM oblique incident plane wave in free space side,
the incident fields can be presented as:

Exi = cos θi exp (−jkxx− jkzoz) (10a)
Ezi = − sin θi exp (−jkxx− jkzoz) (10b)
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Hyi =
1
η0

exp (−jkxx− jkzoz) (10c)

where kx = k0 sin θi and kzo = k0 cos θi. On the other hand, the
reflected and transmitted fields can be presented as:

Exr = Γ cos θi exp (−jkxx + jkzoz) (11a)
Ezr = Γ sin θi exp (−jkxx + jkzoz) (11b)

Hyr = − Γ
η0

exp (−jkxx + jkzoz) (11c)

Ext = τ cos θi exp (−jkxx− jkzoz) (12a)
Ezr = −τ sin θi exp (−jkxx− jkzoz) (12b)

Hyt =
τ

η0
exp (−jkxx− jkzoz) (12c)

where Γ and τ in this case are the TM reflection and transmission
coefficients respectively. Thus, it is required to determine six unknown
quantities which correspond to the four amplitude values of Eq. (9)
and the transmission and the reflection coefficients. These unknowns
can be obtained by applying continuity of the tangential electric and
magnetic fields on the two sides of the fractional-space slab. These
continuity equations introduce four equations. To obtain the other
two equations, one can use Faraday’s and Ampere’s laws to obtain
the relations between the electric and magnetic fields inside the slab.
Following these steps, one can obtain these six unknown quantities as
follows:



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τ


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
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0
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(13a)

where
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0 0 0
Jnh

(kz1zi) Ynh
(kz1zi) 0

kz1
jη0ωε1(zi)

Jnh−1(kz1zi) kz1
jη0ωε1(zi)

Ynh−1(kz1zi) 0
−kz1

jη0ωε1(zi)
Jnh

(kz1zi) −kz1
jη0ωε1(zi)

Ynh
(kz1zi) 0

0 0 −cosθiexp(−jkz0zb)(
zb
zi

)nh

Jnh
(kz1zb)

(
zb
zi

)nh

Ynh
(kz1zb) − exp(−jkz0zb)




(13b)

By following similar steps, one can obtain the reflection and
transmission coefficients of TE oblique incident plane wave due to a
fractional space slab as follows:



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(14a)

B=




− exp(jkz0zi) Jn(kz1zi) Yn(kz1zi)
− cos θi exp(jkz0zi) 0 0

0 Jn(kz1zi) Yn(kz1zi)
0 Jn−1(kz1zi) Yn−1(kz1zi)

0
(

zb
zi

)n
Jn(kz1zb)

(
zb
zi

)n
Yn(kz1zb)

0 0 0

0 0 0
Jnh

(kz1zi) Ynh
(kz1zi) 0

jωµ1(zi)
η0kz1

Jnh−1(kz1zi)
jωµ1(zi)

η0kz1
Ynh−1(kz1zi) 0

− jωµ1(zi)
η0kz1

Jnh
(kz1zi) − jωµ1(zi)

η0kz1
Ynh

(kz1zi) 0
0 0 − exp(−jkz0zb)(

zb
zi

)nh

Jnh
(kz1zb)

(
zb
zi

)nh

Ynh
(kz1zb) cos θi exp(−jkz0zb)




(14b)

4. RESULTS AND DISCUSSIONS

In this section, we present sample results for the reflection and
transmission coefficients of a quasi-fractional-space slab. The present
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Figure 1. TM Reflection and transmission coefficients of a quasi-
fractional-space slab as functions of incident angle for different values of
fractional-space parameter D. The parameters of the slab are εr1 = 5,
µr1 = 1, zi = 0.2m and zb = 0.25m. The frequency of the incident
wave is 10 GHz. (a) TM reflection coefficient. (b) TM transmission
coefficient.

results are based on TM fields. Similar results are obtained for TE
fields, thus these results are not presented here.

Figure 1 shows the TM reflection and transmission coefficients for
a quasi-fractional-space slab as functions of the incident angle. The
parameters of the slab are εr1 = 5, µr1 = 1, zi = 0.2m and zb = 0.25m.
The frequency of the incident plane wave is fixed at 10 GHz. It can
be noted that the transmission coefficient in this case has a maximum
at the angle on incidence of nearly 50◦. By decreasing the fractional-
space parameter D, it can be noted that the transmission coefficient
would have a sharp decrease around the peak transmission angle. This
corresponds to spatial selectivity property.

Figure 2 shows the dependence of this spatial selectivity property
on frequency. In this case the fractional-space parameter D is fixed to
be 0.5. The remaining parameters are the same as in Fig. 1. It can
be noted from Fig. 2 that the maximum transmission angle depends
on the operating frequency and it can be spanned over wide scanning
angles starting from 0◦.

Figure 3 shows the dependence of these reflection and transmission
coefficients on frequency. The fields are assumed to be normal incident.
The parameters of the quasi-fractional-space slab in this case are
εr1 = 1, µr1 = 1, zi = 0.2 m and zb = 0.25m. It can be noted that the
slab in this case represents a frequency selective surface with a center
frequency of nearly 6GHz. By decreasing the fractional-space factor
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Figure 2. TM Reflection and transmission coefficients of a quasi-
fractional-space slab as functions of incident angle for different
frequencies. The parameters of the slab are D = 0.5, εr1 = 5, µr1 = 1,
zi = 0.2m and zb = 0.25m. (a) TM reflection coefficient. (b) TM
transmission coefficient.
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Figure 3. TM Reflection and transmission coefficients of a quasi-
fractional-space slab as functions of frequency for different values of
fractional-space parameter D. The parameters of the slab are εr1 = 1,
µr1 = 1, zi = 0.2m and zb = 0.25m. (a) TM reflection coefficient.
(b) TM transmission coefficient.

D, this frequency selectivity increases as it can be noted from Fig. 3.
It can be concluded that by controlling the fractional-space factor

one can control both the spatial and frequency selectivity of the quasi-
fractional-space slab.
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5. CONCLUSION

In this paper we presented a detailed analysis of the parameters
for a slab to be equivalent to a quasi-fractional-space slab where
the electric fields inside the slab are following fractional space wave
equation and the magnetic fields are following the complementary
fractional space wave equation. It is shown that these properties can
be obtained if the relative permittivity and permeability of the slab
are proportional to zD−2 and z2−D respectively where z is the normal
direction on the slab and D is the fractional space factor. These
fractional space wave equations are used to obtain closed forms for
the fields inside the fractional space slab based on Bessel functions.
These solutions are used combined with boundary conditions on the
two sides of the fractional-space slab and Maxwell’s curl equations to
obtain the reflection and transmission coefficients of a quasi-fractional-
space slab. The results of these reflection and transmission coefficients
show interesting spatial and frequency selectivity properties of these
fractional space slabs.
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