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Abstract—The inter/extrapolation accuracy of the cubic polynomial
method has been improved by optimizing three frequency samples
for frequency-sweeping in the method of moments (MoM). In the
method, the frequency samples are optimized by minimizing the global
maximum of the polynomial component at the stationary points and
two terminal points of the frequency band. The optimal frequency
samples can be expressed as analytical forms of the two terminal points.
Numerical examples are presented to validate the proposed method
through comparison with the Padé approximation.

1. INTRODUCTION

The method of moments (MoM)-based surface integral equation
solver has been a tool in wide use for analyzing time-harmonic
electromagnetic (EM) radiation and scattering from perfect electrically
conducting (PEC) objects [1, 2]. The MoM results in a dense
impedance matrix, and the MoM matrix is computationally
intensive especially for frequency-sweeping cases. The polynomial
interpolation and extrapolation methods [3–12, 19], the rational
polynomial approaches [13–18, 20], and other techniques [21–27]
have been proposed for fast generating the MoM matrices, the
current distributions, and the radar-cross-section (RCS) results over
a frequency band. The quadric polynomial interpolation method
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originally adopted in [3] was improved by extracting the dominant
phase term [4]. A cubic polynomial interpolation scheme with
derivative term was proposed in the authors’ previous work [11]. In this
scheme, the modified matrix element consists of the remaining phase
term and the quadratic polynomial term of the normalized frequency,
and it is more suitable for polynomial interpolation than the version
in [4]. The position of the internal frequency sample is optimized.
Hence, this scheme yields more accurate matrices over the frequency
band than the schemes in [4] and [10]. However, the positions of the
first and third frequency samples still need to be optimized within
the frequency band. In [13–16], the rational polynomial approaches
such as the Padé approximation have been developed to fast obtain
the current distributions or the far field results over a frequency band.
Compared with the matrix element, these parameters vary drastically
with frequency [4], respectively. Hence, a number of frequency data
and frequency-derivative data are needed to obtain the coefficients of
the approaches, respectively.

In this paper, a cubic polynomial inter/extrapolation method is
investigated for efficiently generating MoM matrices over a frequency
band. The method is the improved version of the previous work [11],
and its significant difference is that the positions of all three frequency
samples are optimized within the frequency band by minimizing the
amplitude of the polynomial component and they can be expressed
as analytical forms of two terminal points of the frequency band.
The lowest and highest frequency samples define one sub-band.
The matrices inside and outside the sub-band are generated via
interpolation and extrapolation, respectively.

The rest of this paper is organized as follows. In Section 2, a cubic
polynomial inter/extrapolation method is described in detail. Section 3
provides numerical examples to validate the proposed method. Some
conclusions are given in Section 4.

2. CUBIC POLYNOMIAL INTER/EXTRAPOLATION
SCHEME WITH THREE OPTIMAL FREQUENCY
SAMPLES

The electric field integral equation (EFIE) or the combined field
integral equation (CFIE) is used to analyze the 3D EM problem from
PEC objects in a free space [1]. The surface current density J induced
by the incident time-harmonic EM field is expanded in terms of the
RWG functions [2]. After the Galerkin’s procedure, the EFIE-MoM
or CFIE-MoM impedance matrix at each frequency f ∈ [fl, fh] is
yielded. For simplicity, we denote by Zmn the matrix element (10)
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(or (12)) in the frequency-sweeping case [11]. The modified matrix
element employed here is

Z̃mn = Zmnfre
j2πfrRmn , (1)

where fr = f/fh is the normalized frequency and varies from fl/fh to
1, and Rmn is the distance between the centers of the RWG elements
Sm and Sn in the electrical size at fh.

As elucidated in [11], Z̃mn is a product of a quadratic polynomial
in fr and the remaining phase term. Compared with the quadratic
polynomial, the cubic polynomial may effectively mitigate the negative
effect of the remaining term on the inter/extrapolation accuracy.
In [11], the optimal position of the second frequency sample is located,
however the positions of the first and third frequency samples still need
to be optimized.

The scheme under investigation involves three frequency samples
fi (i = 0, 1, 2) within [fl, fh] and the matrices at the normalized
frequencies xi = fi/fh (i = 0, 1, 2) as well as the first derivative at x1.
The inter/extrapolation formula for each fr in [fl/fh, 1] is expressed
as

Z̃A
mn(fr) =

2∑

i=0

yiφi(fr) + y′1ϕ1(fr), (2)

where yi is Z̃mn at xi for i = 0, 1, 2, and y′1 is Z̃ ′mn at x1; φi(fr)
(i = 0, 1, 2) and ϕ1(fr) have been defined in [11]. Its remainder term
is given by

Z̃mn − Z̃A
mn(fr) =

Z̃
(4)
mn(ξ)
4!

W (x0, x1, x2, fr), (3)

where ξ lies in (fl/fh, 1), and

W (x0, x1, x2, fr) = (fr − x0)(fr − x1)2(fr − x2). (4)
Let

t =
fr − fl/fh

1− fl/fh
, (5)

ti is obtained by substituting xi into (5) for i = 0, 1, 2. Then,

W (x0, x1, x2, fr) = (1− fl/fh)4U(t0, t1, t2, t), (6)
where t varies within [0, 1], and

U(t0, t1, t2, t) = (t− t0)(t− t1)2(t− t2). (7)
The error norm is defined, for indicating the inter/extrapolation

error of matrix, as

error(fr) =
||Z̃ − Z̃A||F
||Z̃||F

, (8)
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where || · ||F denotes the Frobenius norm of matrix. By using (3)
and (6), (8) is rewritten as

error(fr) = coeff(t0, t1, t2, fr)(1− fl/fh)4|U(t0, t1, t2, t)|, (9)

where the error coefficient is

coeff(t0, t1, t2, fr) =
||Z̃(4)({ξ})||F

4!||Z̃||F
, (10)

and {ξ} denotes the set of ξ in (3).
We have investigated extensive numerical examples for analyzing

the frequency response of (8) and (10), respectively. Without loss
of generality, a PEC sphere of radius 1 cm is considered. Seen from
Figure 1, the error norm varies drastically with the positions of
the frequency samples and the operating frequency, and the error
coefficient is not sensitive to (t0, t1, t2) and fr. It is practical to
minimize max

t∈[0,1]
|U(t0, t1, t2, t)| by optimizing (t0, t1, t2).

Section 3 in [11] shows that max
fr∈[x0,x2]

|W (x0, x1, x2, fr)| attains

the minimum when x1 = (x0 + x2)/2, which means that
max

t∈[t0,t2]
|U(t0, t1, t2, t)| attains the minimum when t1 = (t0 + t2)/2.

Hence, we minimize max
t∈[0,1]

|U(t0, t1, t2, t)| by optimizing (t0, t2) over

Ω = [0, 1]× [0, 1].

Figure 1. Frequency response of the error norm and the error
coefficient for the sphere obtained from (2) with different choices of
(t0, t1, t2) in the EFIE case, respectively.
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Since the stationary points of |U(t0, t1, t2, t)| with t over [0, 1]
are t±1 = t1 ± (t2 − t0)

√
2/4 and ti (i = 0, 1, 2), the minimum of

max
t∈[0,1]

|U(t0, t1, t2, t)| with (t0, t2) over Ω can be expressed as

min
(t0,t2)∈Ω

max
{
|U(t0, t1, t2, 0)|, |U(t0, t1, t2, 1)|, |U(t0, t1, t2, t±1 )|

}
. (11)

After solving (11) (see the Appendix), the optimal values of t0 and t2
can be expressed as

t0 =
1
2

(
1−

√
2
√√

2− 1
)

, t2 =
1
2

(
1 +

√
2
√√

2− 1
)

(12)

and max
t∈[0,1]

|U(t0, t1, t2, t)| attains the minimal value of (
√

2−1)2/16. As

a result, (9) is less than or equal to

coeff(t0, t1, t2, fr)(1− fl/fh)4
(√

2− 1
)2

/16. (13)

When (t0, t1, t2) = (0, 0.5, 1), max
t∈[0,1]

|U(t0, t1, t2, t)| attains the

minimal value of 1/64, which is the case in [11]. Then, (9) is less
than or equal to

coeff(0, 0.5, 1, fr)(1− fl/fh)4/64. (14)

Figure 2. Frequency response of the error norm and the error
coefficient for the sphere obtained from the different schemes in the
EFIE case, respectively.
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The Equations (5) and (12) show that the optimal frequency
samples can be expressed as analytical forms of fl and fh, and they
are all located inside [fl, fh]. In this way, the range between the
lowest and highest frequency samples is one sub-band of [fl, fh]. By
using (2), the matrices inside and outside the sub-band are generated
via interpolation and extrapolation, respectively.

Figures 2 and 3 plot the error norms and the error coefficients for
the optimized scheme and the interpolation scheme with (t0, t1, t2) =
(0, 0.5, 1), respectively, in the EFIE and CFIE cases. The error

Figure 3. Frequency response of the error norm and the error
coefficient for the sphere obtained from the different schemes in the
CFIE case, respectively.

(a) (b)

Figure 4. Two PEC objects. (a) Model of bowtie; (b) hemisphere
with cone cavity.
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Figure 5. Frequency dependence of the error norm and the error
coefficient for the model of bowtie obtained from the different schemes,
respectively.

coefficients for the two schemes are almost identical to each other,
and the error norm for the optimized scheme is less than that for the
interpolation scheme. From (13) and (14), it is easily known that the
error norm for the optimized scheme is reduced to about 68.63% of
that for the interpolation scheme.

A model of bowtie with edge 7.5 cm is investigated as shown in
Figure 4(a), where 422 unknowns are involved. In Figure 5, the error
norm for the optimized scheme is less than that for the interpolation
scheme. The reason is the same as in the above case.

In the optimized scheme, the inter/extrapolation error of matrix
is a product of the error coefficient and the polynomial component.
The error coefficient is not sensitive to the positions of the frequency
samples and the operating frequency, and the frequency behavior of the
inter/extrapolation error of matrix is closely related to the polynomial
component. Hence, it is practical to minimize the amplitude of the
polynomial component rather than the inter/extrapolation error of
matrix by optimizing the frequency samples. The above approach
offers a practical guideline to locate the optimal frequency samples.
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Figure 6. Error of the current distributions for the model of bowtie
obtained from the optimized scheme and the Padé approximation,
respectively. Here, P and Q denote the polynomial degrees of the
numerator and denominator in the Padé approximation, respectively,
and the frequency increment is 0.1 GHz.

3. NUMERICAL EXAMPLES

In this section, the inter/extrapolation scheme optimized in (12) is
tested on the two objects of Figures 4(a) and (b) through comparison
with the MoM and the Padé approximation [14]. The incident wave
is a ŷ-polarized plane wave propagating along ẑ-axis. The EFIE and
CFIE equations are applied to the open and close objects, respectively.
All the calculations are carried out on a Xeron computer with 2.5 GHz.

The first example is the model of bowtie as elucidated in Section 2.
The current distributions and the monostatic RCS are calculated
through the optimized scheme, the Padé approximation (with the
expanded points of 1.875 and 4.625 GHz), and the MoM, respectively.
Figure 6 shows that the optimized scheme yields more accurate current
distributions than the Padé approximation. Here, the error is defined
as the ratio of the difference between the results obtained from the
MoM and one of the other methods to the results from the MoM.
The Padé approximation yields the results deviating from those from
the MoM at the low and middle frequency ranges. In Figure 7,
the monostatic RCS results from the optimized scheme are in good
agreement with those from the MoM and the results from the Padé
approximation are not.
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Figure 7. Frequency response of the monostatic RCS for the
model of bowtie obtained from the optimized scheme and the Padé
approximation, respectively.

Figure 8. Error of the current distributions for the model of the
hollow hemisphere obtained from the optimized scheme and the Padé
approximation, respectively.
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The second example is a hemisphere with cone cavity as shown in
Figure 4(b), where the radius of the hemisphere is 5 cm and the radius
and depth of the cone cavity are 3.5 cm, respectively. The surface
is discretized into 2426 triangles with 3639 unknowns. The errors
of the current distributions from the optimized scheme and the Padé
approximation are plotted in Figure 8, respectively, and the monostatic
RCS results plotted in Figure 9, respectively. The Padé approximation
(with the expanded points of 1.875 and 4.625 GHz) gives less accurate
results than the optimized scheme.

Listed in Table 1 is the CPU time for solving the current

Figure 9. Frequency response of the monostatic RCS for the
hollow hemisphere obtained from the optimized scheme and the Padé
approximation, respectively.

Table 1. CPU time for solving the current distributions at 56
frequencies for the hemisphere with cone cavity used in the different
methods (in minutes).

Optimized Padé MoM

Matrices at frequency samples 133.64 601.36 1870.09

Inter/extrapolation of matrices or currents 1.84 0.029 /

Iteration solution 20.54 6.60 20.47

Total time 156.02 607.99 1890.56
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distributions at 56 frequencies used in the optimized scheme, the
Padé approximation, and the MoM, respectively. The CPU time for
calculating and inter/extrapolating the matrices used in the optimized
scheme is 22.53% of that used in the Padé approximation and 7.24%
of that used in the MoM. The total CPU time used in the optimized
scheme is much less than that used in the other methods, respectively,
though the iteration time used in the optimized scheme is the largest.

4. CONCLUSION

In this paper, a cubic polynomial inter/extrapolation method is
improved for efficiently generating the MoM matrices over a frequency
band. The frequency samples employed are optimized by minimizing
the amplitude of the polynomial component of the error norm. The
optimized scheme yields more accurate current distributions and far-
field results over the frequency band than the Padé approximation.
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APPENDIX A.

Let

ΨI(x, y) = (y − x)4/64, (A1)
ΨII(x, y) = (1− x)(2− x− y)2(1− y)/4, (A2)
ΨIII(x, y) = x(x + y)2y/4, (A3)

and then we define over the domain Ω = [0, 1]× [0, 1]

$(x, y) = max {ΨI(x, y), ΨII(x, y), ΨIII(x, y)} . (A4)

The focus of the appendix is to minimize $(x, y) by optimizing the
point (x, y) over Ω.
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Figure A1. Sub-domains separated by the lines li (i = 1, 2, . . . , 5).

The function $(x, y) is continuous in Ω and can be further
expressed as

$(x, y) =





ΨI(x, y), (x, y) ∈ ΩI,

ΨII(x, y), (x, y) ∈ ΩII,

ΨIII(x, y), (x, y) ∈ ΩIII,

(A5)

where ΩI, ΩII, and ΩIII are separated by the following lines li (i =
1, 2, . . . , 5) in Figure A1:

l1 : x = y

(
5 + 4

√
2− 2

√
14 + 10

√
2
)

,

l2 : 1− y = (1− x)
(

5 + 4
√

2− 2
√

14 + 10
√

2
)

,

l3 : 1− y = (1− x)
(

5 + 4
√

2 + 2
√

14 + 10
√

2
)

,

l4 : x = y

(
5 + 4

√
2 + 2

√
14 + 10

√
2
)

,

l5 : x + y = 1.

In fact, l2 and l3 are solutions to ΨI(x, y) = ΨII(x, y), and l1 and l4
are solutions to ΨI(x, y) = ΨIII(x, y); l5 is a solution to ΨII(x, y) =
ΨIII(x, y).

Since ∇Ψi(x, y) is not equal to zero inside Ωi for i = I, II, III,
no stationary point of $(x, y) exists inside these sub-domains.
Consequently, $(x, y) attains the global minimum only on the lines
li (i = 1, 2, . . . , 5) and the boundary of Ω. By comparing the values
of $(x, y) on the lines and the boundary, two optimal points in Ω,
i.e., (x∗0, y

∗
0) intersected by l1 and l2, and (x∗1, y

∗
1) by l3 and l4, can be



Progress In Electromagnetics Research, Vol. 117, 2011 279

expressed as

x∗0 = y∗1 =
1
2

(
1−

√
2
√√

2− 1
)

, (A6)

x∗1 = y∗0 =
1
2

(
1 +

√
2
√√

2− 1
)

. (A7)

In such case, the minimum of $(x, y) is (
√

2− 1)2/16.
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