
Progress In Electromagnetics Research M, Vol. 21, 1–17, 2011

A NEW ACCURATE MODEL OF HIGH-IMPEDANCE
SURFACES CONSISTING OF CIRCULAR PATCHES
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Abstract—In this paper, we consider a dense array of metallic circular
patches printed on a electrically thin metal-backed dielectric substrate.
Since the sub-wavelength dimensions, the array and the metal-backed
substrate can be described in terms of a lumped capacitance and a
lumped inductance, respectively. Around the resonant frequency, the
structure, known as high-impedance surface, reflects totally an incident
electromagnetic wave with zero shift in phase. Due to this property,
it is widely employed in antenna systems as compact back reflector
with improved performances with respect to typical metal reflector.
Starting from the concept of the grid capacitive reactance of a planar
array of squared patches and its related formulas, we investigate on
the field distribution on the array plane and properly modify the
formulas for the case of the circular patches. We present two new
analytical formulas which can be effectively used for the fast design of
2D-isotropic circular HISs. In order to validate the models, we compare
the resonant frequency of the array obtained through our approaches
to the one resulting from full-wave numerical simulations and from
other analytical methods available in the open technical literature.

1. INTRODUCTION

In the past two decades, the development of wireless communication
systems has been possible thanks to significant progress in the fields
of electronics and applied electromagnetics. Device miniaturization,
superior performances with respect to the state-of-the-art solutions,
and low production costs represent the main challenges driving current
academic and industry efforts. For what concerns the radiating
segment of wireless systems, miniaturization and low-cost solutions
are commonly achieved exploiting microstrip printed technology.
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In order to enhance the performances and reduce the size
of the radiating systems, antennas can be properly loaded by
artificial materials or surfaces [1–5], among which include the so-
called metamaterials and metasurfaces, exhibiting functionalizing
properties [6–14]. For instance, in order to reduce the thickness of
printed antennas and enhance the performances in terms of efficiency
and gain, it is possible to use the concept of High-Impedance Surfaces
(HISs) [15], capable of highly reduced propagation of surface waves
trapped within the substrate. An HIS is a metasurface consisting of a
planar array of metallic patches printed on a metal-backed dielectric
substrate. Provided that the array periodicity is electrically small,
as well as the dimension of the individual particle representing the
array unit-cell, an HIS can be represented in terms of its homogenized
surface impedance [15]. At and around its resonant frequency, an
HIS approximately behaves as a perfect magnetic wall, leading to
several interesting applications in the antenna field [15–19]. Shape
and dimensions of the individual patch element represent the key
parameters for the design of an HIS and the synthesis of its frequency
response. Generally, patch elements are arranged in a dense array and
exhibit squared [15], hexagonal [16], and rectangular [20] shapes.

In this paper, we refer to an HIS made of a grounded dielectric
thin slab with a dense array of circular patches printed on top. Such a
configuration is particularly appealing due to its 2D isotropic response
on the array plane. The sub-wavelength periodicity of the array and
thickness of the substrate, the structure can be studied in the quasi-
static regime and consequently in terms of a lumped elements: the
metallic patch array can be described as a capacitive reactance, the
metal-backed substrate as a inductive one. The shape of the patch
element affects the value of the capacitive reactance that need to be
properly defined for the geometry under study, i.e., circular in this case.
It is possible to find two different approaches in the open technical
literature: the first considers the dense array as an frequency selective
surfaces (FSSs) in long-wavelength regime [21], and the latter defines
the electrically small individual patches in terms of an electric dipoles
represented through its electric polarizability [22, 23]. Both define a
lumped impedance, that in the case of an array of perfect conducting
metallic disks, is capacitive. The sub-wavelength-FSS-based model [21]
is derived approximating the Floquet theory under the assumption
that the periodicity is few tenths of the operating wavelength. On
the contrary the polarizability-based model [23] assumes that the
inclusions are so electrically small that they can be described in terms
of an electric dipoles, losing the information about the geometry of the
inclusion itself.
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The aim of this paper, thus, is to propose a new model for the
grid impedance of a planar array of circular disks used to evaluate the
frequency behavior of an HIS. Starting from a detailed study of the
near-field distribution of the electric field around the circular patches,
we modify the analytical formulas already developed for the grid
impedance of a squared-patch-based HIS [24, 25] in order to accurately
describe the behavior of a circular-patch-based one. The new proposed
model is validated considering its ability to reproduce the full-wave
numerical results obtained through the commercial electromagnetic
simulator CST Studio Suite [26]. As further comparison, we report the
results of the frequency response estimated by the other models [21, 23].

The structure of the paper is as follows. In Section 2, we
briefly review the model of an HIS and discuss the grid impedance
of a circular-patch-based HIS, presenting the related analytical
formulas. In Section 3, we show the comparison between the resonant
frequencies estimated using the proposed analytical model, the full-
wave numerical simulator [26], the sub-wavelength-FSS-based model
and the polarizability-based model.

Figure 1. Side and top views of an HIS made by a regular array of
circular patches.
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2. ANALYTICAL MODEL

An HIS consisting of a regular array of circular patches is shown in
Figure 1. The surface is infinite in the xy plane and the dielectric
material considered is non-magnetic, i.e., its permeability is taken to be
the free-space permeability µ0. The thickness and the relative electric
permittivity of the dielectric slab are h and εr, respectively. The period
of the array is D in both directions. The metallic components are
assumed to have a negligible thickness. The radius of the patches is
R, and g is the gap between two adjacent patches.

As well known, the frequency behavior of an HIS can be easily
studied using the transmission line model shown in Figure 2.

The metal-backed dielectric slab is equivalent to a transmission
line of length h and characteristic impedance Zd = Z0/

√
εr, where

Z0 = 377Ω is the free-space wave impedance, terminated in a
vanishing impedance ZL modeling the metallic ground plane. The
shunt impedance Zg represents the averaged impedance of the grid [22],
which is a meaningful parameter when the periodicity D is smaller than
the operating wavelength. The total surface impedance of the HIS is
given by the input impedance Zs resulting from the parallel connection
between the grid impedance Zg and the line impedance Z`:

Zs =
(

1
Zg

+
1
Z`

)−1

(1)

where the input impedance Zs exhibits an anti-resonant behavior and
the structure shows high values of the surface impedance at and around
the resonant frequency.

In order to evaluate the grid impedance Zg, we investigate on
the distribution of the electric charges on the array plane when it is
illuminated by a plane wave in long-wavelength regime. As shown in
Figure 3, the electric charges are distributed along the curved edges

Figure 2. Transmission line model of the structure reported in
Figure 1.
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Figure 3. Map of the electric field amplitude on the plane of an array
of circular patches. The exciting electric field is polarized along the
y-direction.

(a) (b)

Figure 4. Side and top views of an HIS made by a regular array of
(a) circular and (b) squared patches.

of the metallic circular elements. In the region of minimum distance
between the edges of two adjacent vertical patches the electric field
amplitude is maximum.

The distribution of the electric field along the edge is more similar
to the one of a squared patch that, under the same condition of
excitation, is quite constant along the whole length. In the following
we show that, by using a proper modification, the formulas, used for
the squared patch case proposed in [24], can be effectively used also
for the circular case.
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In Figure 4 we show the squared- and the circular-patch-based
structures with the respective geometrical parameters. They have the
same periodicity D and the same gap g. The thickness and the electric
permittivity of the dielectric slab are also the same. The diameter
2R of the circular patches is equal to the length L of the edge of the
squared patches.

When an uniform plane-wave impinges normally on the surface
from the above, the grid impedance Zg of the structure in Figure 4(b)
is given by [22, 24, 25]:

Zg = −j
Zeff

2α
(2)

where α is the grid parameter defined as:

α =
keff D

π
ln

[
1

sin
( πg

2D

)
]

(3)

where Zeff = Z0/
√

εeff and keff = k0
√

εeff are the wave impedance
and the wave number in the effective medium, respectively, and εeff is
the effective permittivity of the space surrounding the array grid. In
fact, according to [27, 28], it is possible to analyze the electromagnetic
behavior of a structure at the interface between two dielectrics, one of
which is the air, using an effective permittivity εeff = (εr+1)/2 as if the
array elements were embedded in an equivalent effective medium. The
formula is accurate for periodic structures whose periodicity is smaller
than the operating wavelength and presents a slight dependence on
the thickness of the substrate since the electric field lines are confined

Figure 5. Full (solid line) and rectangular (dotted line) integrating
regions.
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essentially at the air-dielectric interface due to the proximity of the
metallic edges (i.e., the metallic ground plane slightly contribute to
the definition of the grid impedance of the array).

In order to modify such formulas for the circular patch case,
as reported in Figure 5, we observe that it is possible to identify
a finite region between two adjacent patches where the electric field
amplitude is maximum. By applying the integral mean value theorem
over this region, an averaged value of the gap g can be evaluated
and used in Equations (2)–(3), rectifying, de facto, the circular patch
in an equivalent squared one with the same periodicity, but with a
different value of the gap g. The integration area is shown in Figure 5.
The upper and lower integration limits are given by the edges of the

Figure 6. Rectangular area of integration.

Figure 7. Full area of integration.
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circular patches, while the right and left boundaries can be defined in
two alternative ways, considering either the solid or the dotted lines.
Solid lines limit the full region following the curvature of ideal electric
field lines intersecting orthogonally the metallic edges. Dotted lines,
instead, do not consider this curvature, defining a smaller, and less
accurate, rectangular region. In the following, we will consider these
two cases separately.

2.1. Rectangular Region

In order to determine the area of the rectangular region, we consider
only one quarter of the structure, as shown in Figure 6. The origin of
the rectangular coordinate system is translated between two adjacent
patches. The area is defined using x and y variables as:{

0 ≤ x ≤ x0

0 ≤ y ≤ C1(x) (4)

where x0 is the maximum value of x in the region of interest and C1(x)
is the function of the arc that identifies the upper limit of the region.
The expression of C1(x) can be found starting from the equation of a
circle centered in {x̄, ȳ} = {0, R + d} as:

C1(x) = d + R−
√

R2 − x2 (5)
The dashed area in Figure 6 is given by:

x0∫

0

C1(x)dx = (d+R)x0−1
2

[
R2 tan−1 x0√

R2 − x2
0

+ x0

√
R2 − x2

0

]
(6)

Since x0 = R/
√

2, expression (6) can be simplified as follows:
x0∫

0

C1(x)dx =
1
8
R

[
4
√

2d +
(
4
√

2− 2− π
)

R
]

(7)

Now it is possible to evaluate the new averaged value of d between two
adjacent patches:

d̄rect =
1
x0

x0∫

0

C1(x)dx (8)

One can express x0 and R in terms of the periodicity D and of the gap
g as: 




x0 = R√
2

R = 1
2(D − g)

g = 2d

(9)
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Using Equation (9) in Equations (7)–(8), we obtain:

ḡrect =

(
4
√

2− 2− π
)
D + (2 + π)g

4
√

2
(10)

or, evaluating the numerical coefficients:

ḡrect
∼= 0.91g + 0.09D (11)

Such an expression can be straightforwardly employed in
formulas (2)–(3) to estimate the behavior of the circular-patch-based
HIS.

2.2. Full Region

In the case of the full region (Figure 7), the integration area is larger
because we consider the area A under the arc of the curve C2(y), which
approximates the electric field lines between two adjacent patches.
Being the electric field always orthogonal to metallic surfaces, the arc
intersects normally the circumference of the patch. The expression of
the curve C2(y) has been found in the same way as for curve C1(x) as:

C2(y) = (x0 − y0) +
√

R2
2 − y2 (12)

Only the area A between C2(y) and x0 is of interest: the integral of
the function C ′

2(y) (i.e., function C2(y) shifted by an amount x0) is
evaluated as:

A =

y0∫

0

C ′
2(y)dy =

y0∫

0

(√
R2

2 − y2 − y0

)
dy (13)

which returns:

A =

y0∫

0

C ′
2(y)dy = −y2

0

+
1
2

[
y0

√
R2

2 − y2
0 + R2

2 tan−1

(
y0√

R2
2 − y2

0

)]
(14)

Being y0 = R2/
√

2, Equation (14) can be simplified as:

A =

y0∫

0

C ′
2(y)dy =

1
8
(π − 2)R2

2 (15)
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The new averaged value of d between two adjacent patches is:

d̄full =
1
x1




x0∫

0

C1(x)dx +

y0∫

0

C ′
2(y)dy


 (16)

where x1 = x0+(
√

2−1)y0. The two integrals in (16) have been already
evaluated in Equations (7) and (15). Consequently, one obtains the
expression:

d̄full =
1

2x1

[
R

[
4
√

2d +
(
4
√

2− 2− π
)

R
]

+ (π − 2)R2
2

]
(17)

Finally, expressing all the factors in terms of the periodicity D
and the gap g, we obtain:




R2 =
√

2(R + d)−R
x1 = (

√
2− 1)(2R + d)

R = (D − g)/2
g = 2d

(18)

and, thus:

ḡfull =
1

8(d−D)

[
2(1+

√
2)g2+(π−4)D2−((2+

√
2)π−4)gD

]
(19)

Again, such an expression can be straightforwardly employed in
formulas (2)–(3) to estimate the behavior of the circular-patch-based
HIS.

3. NUMERICAL VALIDATION

In this Section, we compare the analytical results obtained applying the
new proposed models to the ones obtained using the numerical results
obtained through CST Microwave Studio. As further comparison we
show the results obtained using the sub-wavelength-FSS-based model
and the polarizability-based model.

The aim is to show that the first expression of the gap, ḡrect ,
though simple, returns good results, but, generally, the second
expression of the gap, ḡfull , allows obtaining more accurate results.

In order to assess the effectiveness of the proposed model, we first
consider its ability to predict the resonance frequency of the HIS. To
do that, we define the percentage error on the resonance frequency of
the HIS as:

err% =
fmod

r − fsim
r

fsim
r

100 (20)
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where fsim
r is the resonance frequency of the structure given by the

numerical simulator and fmod
r is the one estimated by the model.

The couples (D, g), chosen to test the proposed models, have been
collected in cases as shown in Table 1.

Table 1. Couples of values of periodicity D and gap g of the analyzed
structures.

CASE D [mm] g [mm]
A 3.0 0.30
B 1.0 0.20
C 4.0 0.20
D 1.5 0.05
E 4.0 0.05

Table 2. Comparison between the resonant frequencies in GHz of
15 different configurations of HISs: fsim

r exact resonant frequency using
full-wave simulator; fmod

r using the analytical models.

err% err% err% err%

A 11.99 11.51 -4.0 11.87 13.5 +12.6 15.02 +25.3

B 19.00 18.11 -4.7 18.33 19.2 19.70 +3.7

9.38 -0.6 9.79 +3.7 +15.6 13.45 +42.5

D 13.65 -1.4 13.9 +1.8 15.5 +13.6 16.07 +17.7

8.72 9.16 +7.6 10.4 +22.2 13.01 +52.9

err% err% err% err%

7.37 -5.4 7.53 8.56 +9.9

-3.5 10.27 10.64 +1.0

6.22 -3.7 6.44 7.73 +19.7

8.30 -3.4 8.52 9.18 +6.9

5.83 -1.2 6.05 7.45 +26.3

err% err% err% err%

14.55 -5.5 14.1 16.29 +11.9

20.50 -2.9 20.03 20.98 +2.3

11.97 -4.3 11.87 14.58 +21.8

16.06 -1.9 16.16 17.62 +9.7

10.90 -1.7 11.15 13.99 +28.3

Case fr

C 9.44

E 8.51

A

B

D

Case

C

E

A

B

D

Case

C

E

sim

fr

sim

fr

sim

7.79

10.53

6.46

8.59

5.90

Substrate Parameters: ε  = 10.2, h = 1.0 mmr

Substrate Parameters: ε  = 10.2, h = 2.0 mmr

Substrate Parameters: ε  = 2.5, h = 2.0 mmr

Rect-region based Full-region based FSS-based [21] Polarizability-based [23]

Rect-region based Full-region based FSS-based [21] Polarizability-based [23]

Rect-region based Full-region based FSS-based [21] Polarizability-based [23]

fr

mod
fr

mod fr

mod
fr

mod

fr

mod
fr

mod fr

mod
fr

mod

fr

mod
fr

mod fr

mod
fr

mod

13.46

10.16

13.75

19.91

11.45

15.75

10.71

+2.5

-0.1

-3.5

-3.3

-2.5

-0.3

-0.8

+2.5

-3.1

-2.3

-0.8

-0.6

+2.3

10.91

8.25

10.54

7.2

9.24

6.87

15.51

20.74

13.36

17.7

12.72

+1.1

+5.9

+0.1

+11.5

+7.6

+16.4

+6.6

+1.2

+11.6

+10.2

+16.7
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Several different structures with different geometrical dimensions
and permittivity values have been simulated. The numerical results are
compared to the proposed analytical ones, as shown in Table 2 with the
header Rect-region based and Full-region based, respectively. In the
cases A, B, C, and D the resonance frequency is better predicted by the
model that uses the expression ḡfull for all the three combinations of
permittivity and thickness of the substrate. On the contrary, when the
periodicity D of the array is much larger than the separation g (case
E), the use of ḡfull is not recommended any more. In fact, as shown
in Figure 5, the proposed model has been developed considering the
region between two adjacent patches under a fixed angle of 90◦. On the
contrary, in case E, the electric field is strongly confined in the region
of minimum distance between two adjacent patches and, when ḡfull

is evaluated, we overestimate the area in which the electromagnetic
energy should be confined. For this reason, ḡrect better predicts the
frequency response of the array. However the percentage error is very
low for all fifteen configurations, showing the good agreement with the
exact full-wave numerical results.

The results of the other analytical models (presented in [21]
and [23]) are also shown in Table 2. They both overestimate the
resonant frequency of the HIS and return an absolute percentage error

Figure 8. Phase of the reflection coefficient of an HIS with circular
patches (D = 4 mm, g = 0.05mm, h = 2 mm and εr = 2.5).
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Figure 9. Phase of the reflection coefficient of an HIS with circular
patches (D = 3 mm, g = 0.3mm, h = 1 mm and εr = 10.2).

Figure 10. Phase of the reflection coefficient of an HIS with circular
patches (D = 4 mm, g = 0.2mm, h = 2 mm and εr = 10.2).
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which is generally higher than the one of the proposed method. It is
worth noticing that only in the case B the other two analytical models
are fairly accurate. In this case, in fact, the ratio g/D is smaller
compared to the other cases and, thus, the metallic inclusions are more
diluted, as required by the models based on the FSS theory [21] and
on the polarizability [23].

Three particular configurations have been chosen among the
15 ones reported in Table 2. For all of them the phase of the reflection
coefficient has been evaluated as a function of the frequency and
compared to the one obtained through the full-wave code (see Figure 8,
9, 10). The agreement between the proposed model based on the full
integrating region and the numerical simulations is rather good in a
broad frequency range.

4. CONCLUSIONS

In this work, we have presented new accurate analytical formulas for
the design of HISs consisting of circular metallic patches excited by
a normally impinging plane-wave. The structure can be described
using the transmission line theory where a shunt capacitive impedance
represents the dense array of circular metallic patches. We have shown
that, by inspecting the near-zone electric field distribution around the
patches, two sets of new analytical formulas can be derived properly
modifying the expression of the grid impedance of a squared-patch-
based HIS. They show different degrees of accuracy: the full-region
model, which takes into account the curvature of the electric field lines,
is generally better, but it gives less accurate results with respect to the
rectangular one when the diameter of the patch is much larger than the
gap g. However, for several different configurations of HIS, it predicts
the frequency behavior of the structure with a low percentage error
and a rather good agreement with the full-wave simulation in a broad
frequency range, confirming its aspect of general purpose.

The analytical results are compared also with two other models,
available in the open technical literature: the sub-wavelength-FSS-
based model [21], that has been derived approximating the Floquet
theory under the assumption that the periodicity is few tenths of
the operating wavelength, and the polarizability-based model [23],
that assumes the inclusions so electrically small that they can be
described in terms of an electric dipoles, losing the information about
the geometry of the inclusion itself. Except for one case, the models are
not able to describe correctly the frequency behavior of the different
HISs.
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An improvement of the proposed model can be obtained
considering a variable integration angle θ as a function of the physical
dimension of the array inclusions, rather than a fixed angle of 90◦.
Future works will be focused on this intriguing aspect, providing
eventually a more complete formulation involving also the polarization
and the angles of incidence of the impinging plane-wave.

REFERENCES

1. Bilotti, F., A. Toscano, and L. Vegni, “FEM-BEM formulation for
the analysis of cavity backed patch antennas on chiral substrates,”
IEEE Trans. Antennas Propagat., Vol. 51, 306–311, 2003.

2. Bilotti, F., A. Toscano, and L. Vegni, “Radiation and scattering
features of patch antennas with bianisotropic substrates,” IEEE
Trans. Antennas Propagat., Vol. 51, 449–456, 2003.

3. Scamarcio, G., F. Bilotti, A. Toscano, and L. Vegni, “Broad
band U-slot patch antenna loaded by chiral material,” Journal of
Electromagnetic Waves and Applications, Vol. 15, No. 10, 1303–
1317, 2001.

4. Bilotti, F. and L. Vegni, “Chiral cover effects on microstrip
antennas,” IEEE Trans. Antennas Propagat., Vol. 51, 2891–2898,
2003.

5. Vegni, L., A. Toscano, and F. Bilotti, “Shielding and radiation
characteristics of planar layered inhomogeneous composites,”
IEEE Trans. Antennas Propagat., Vol. 51, 2869–2877, 2003.

6. Ziolkowski, R. W. and N. Engheta, “Metamaterial special issue
introduction,” IEEE Trans. Antennas Propagat., Vol. 51, No. 10,
2546–2549, 2003.

7. Vardaxoglou, J. C., Frequency Selective Surfaces: Analysis and
Design, Research Studies Press, Taunton, England, 1997.
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