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Abstract—In this work, a metasurface consisting of an array of
circular holes in a metal conducting sheet with a sub-wavelength
periodicity is considered. The surface partially reflects the incident
field according to the shape and geometrical dimensions of the
inclusions and, due to this property, is widely employed in antenna
systems to improve the radiation pattern of regular radiators. Since
the reflection properties of the metasurface are determined by the
current density distribution on the metal, we inspect this distribution
and coherently develop a new, easy, and accurate analytical model to
describe the grid impedance of the metasurface. In order to validate
the model, we compare the reflection coefficient of the array obtained
through our approach to the one resulting from full-wave numerical
simulations and to other accurate analytical methods available in the
open technical literature.

1. INTRODUCTION

In the last two decades, the intriguing properties of artificial materials
and surfaces have been of interest for the scientific community [1–
3]. Engineered materials and surfaces with properties that cannot
be found in nature represent particular families of artificial materials,
known as metamaterials and metasurfaces, respectively. The recent
developments in the field of metamaterials and metasurfaces have led
to innovative designs of radiating and transmitting components [4–12].
A metamaterial/metasurface typically consists of a 3D/2D periodic
structure characterized by a sub-wavelength periodicity.

In this paper, we are interested in a metesurface consisting of a
planar array of sub-wavelength circular apertures drilled in a perfect
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conducting metallic sheet. Possible applications of such structures
include artificial dielectrics, antenna radomes, frequency selective
surfaces, etc.. Particularly, their use is highly desired in antenna
applications, allowing to: a) enhance the directivity of the radiators,
increasing their effective radiating area; b) reduce the back-radiation
and the wind resistance when used as reflectors. Interesting examples
of applications to enhance the antenna directivity are reported in [13–
15].

Being the dimensions of the array elements much smaller
compared to the operating wavelength, an effective boundary condition
can be used to describe the electromagnetic behavior of the
metasurface. By defining an average value of the tangential electric
field and of the surface current density on the array plane, in fact, it
is possible to introduce an effective grid impedance Zg describing the
electrical properties of the structure [16–20].

Exciting the metasurface through an impinging plane-wave and
inspecting the surface current density distribution on the metallic
region between two adjacent circular apertures, we observe varies
variation along the direction of the incident electric field. Since the
operating wavelength is assumed much larger than the periodicity,
a quasi-static approach can be used to describe the electromagnetic
behavior of the structure and the current density distribution should
depend only on the geometrical parameters of the metallic regions.
Considering a square lattice for the aperture arrangement, the
structure can be seen as a grid of metal strips with non-constant width
where the surface current flows.

Using this approach, the analytical formulas already developed for
the grid impedance of a grid of metallic strips with constant width [21]
can be properly modified in order to accurately describe the behavior
of the considered structure. The new proposed model is verified
comparing the obtained reflection coefficient to the one resulting from
full-wave numerical simulations based on the employment of CST
Studio Suite [22]. According to [23], we have simulated just one
unit-cell using proper boundary conditions. As a further reference,
we consider also the results given by other accurate analytical models
available in the open technical literature and based on the polarizability
of the inclusions [16].

The structure of the paper is as follows. In Section 1, we briefly
introduce the approach to the problem and present the analytical
method used to evaluate the effective width of the equivalent grid
of metal strips. In Section 2, we compare the amplitude of the
reflection coefficients for TE and TM polarizations obtained through
our model, other models, and full-wave results. In Section 4, we
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draw the conclusions and highlight, under the validity limitations, the
advantages of our proposed approach.

2. ANALYTICAL MODEL

When a plane-wave impinges on a metallic surface, the tangential
components of the electric and magnetic fields excite an uniform
surface current density. The electric field reflected by the surface
experiences a 180◦ phase-shift, due to the reaction of the surface.
Under the same illumination conditions, the surface current density

(a) (b)

(c)

Figure 1. Representation of the surface current and concatenated
magnetic field for an array of (a) circular holes in a metallic sheet and
(b) metallic strips; (c) map of the magnitude of the surface current for
k0S = 0.5 and R = 0.45S.
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on a metasurface consisting of an array of sub-wavelength circular
apertures is not uniform, but rather shows high values in the metallic
regions with minimum width between two adjacent holes (Figure 1).

Investigating the distribution of the surface current density, we
observe that its maximum value is in correspondence of the minimum
width of the metallic region between two holes and it decreases moving
away from this point (Figure 1(c)). Since the operating wavelength
is much larger than the periodicity of the structure, the unit-cell is
assumed as excited by a quasi-static electromagnetic field. In this case,
the current density distribution should depend only on the width of the
metallic region in x-direction (see Figure 1(a)). On the contrary, on
metasurface consisting of squared apertures the surface current density
is quite constant on the metallic strips between two adjacent squared
holes (see Figure 1(b)). Starting from this approach, we apply the
integral mean value theorem over the metallic region between two
circular holes, evaluating an effective width weff in order to model
it as an equivalent array of sub-wavelength squared holes.

In Figure 2 a zoom on the metallic region between two adjacent
circular patches is shown. The integrating area A is vertically defined
by the angle ϕ and horizontally delimited by the edges of the holes.

The area A can be expressed in terms of the radius R of the holes,
and the height y0 as follows:

A =
S

2
y0 − 1

2

[
R2 tan−1

(
y0√

R2 − y2
0

)
+ y0

√
R2 − y2

0

]
(1)

where y0 = R sinϕ. Dividing the area A by y0, an average value of the
width of the metallic region between the two holes as a function of the

Figure 2. Integrating region between two adjacent holes.
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(a) (b)

Figure 3. Oblique incidence: (a) TE polarization; (b) TM
polarization.

angle ϕ can be found as:

weff (ϕ) = S −R

(
cosϕ− ϕ

sinϕ

)
(2)

According to the polarization and to the angle of incidence of the
incoming wave, the area of the metallic region involved in the flow
of the current changes and consequently the effective width of the
equivalent strips too. The height y0, that is directly related to the
angle ϕ, defines the extension of the area A. In order to evaluate a
constant value of the effective width weff , we define the values of the
angle ϕ for TE and TM polarization (Figure 3).

For TE polarization, the electric field is parallel to the array plane
whatever the angle of incidence θ is as shown in Figure 3(a). In this
case, the metallic region involved in the flow of the current density is
maximum and defined by the angle:

ϕTE =
π

2
(3)

For TM polarization, the tangential component of the incident
electric field is Et = E0 cos θ (Figure 3(b)) and, consequently, the
intensity of the surface current density decreases with the angle of
incidence. The metallic region A (Figure 2), thus, should decrease
as function of the incident angle θ, accordingly. In this case, the
metallic region involved in the flow of the current varies with the angle
of incidence and is defined by the angle:

ϕTM =
π

2
cos2 θ (4)

where the quadratic dependence is justified by the fact that the angle
ϕ defines the coordinate y0 that in the circumference equation appears
in a quadratic form.
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Inserting Equations (3)–(4) into (2), we obtain the constant
effective width of an equivalent array of metallic strips for both
polarizations. It now can be used in the readily available analytical
formulas of the grid impedance of an array of metal strips [17, 18, 21]
and we obtain the grid impedance of an array of circular holes in a
metal sheet:

ZTE
gholes

= jZ0
k0S

2π
ln

[
sin−1

(
πwTE

eff

2S

)]
(5)

ZTM
gholes

= jZ0
k0S

2π
ln

[
sin−1

(
πwTM

eff

2S

)] (
1− sin2 θ

2

)
(6)

where Z0 and k0 = ω
√

ε0µ0 are the wave impedance and the wave
vector in vacuum, respectively, and S is the periodicity of the array.
The effective widths wTE

eff and wTM
eff are constant values evaluated using

Equation (2) when the ϕ is ϕTE and ϕTM, respectively.
The validity of Equations (5)–(6) is guaranteed when the

periodicity S of the structure is sub-wavelength and the effective width
of the strips is much smaller than the periodicity [17, 18, 21]. In order
to keep the validity of the formulas after the introduced modifications,
the dimensions of the holes should be comparable to the periodicity of
the array.

3. VALIDATION OF THE MODEL

The electromagnetic properties of the grid array can be expressed
in terms of the transmission and reflection coefficients. If the
metallic array is printed on a dielectric substrate, it is possible
to define an effective permittivity of the surrounding host medium
as described in [24]. Using a transmission line model, the shunt
reactive impedance Zg modeling the array is connected to two infinitely
extended transmission lines of impedance Z`, as show in Figure 4.

If the host medium is the free-space, the characteristic impedance
Z` of the transmission lines is Z0 =

√
µ0/ε0. In case of oblique

Figure 4. Transmission-line model of a dense array in a uniform host
medium.
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incidence, as show in Figure 3, the free-space impedances are given
by:

ZTE
0 =

Z0

cos θ

ZTM
0 = Z0 cos θ

(7)

and the reflection coefficients are:

ΓTE = − ZTE
0

ZTE
0 + 2ZTE

g

; ΓTM = − ZTM
0

ZTM
0 + 2ZTM

g

(8)

In Figures 5, 6, and 7 the amplitude of the reflection coefficient
versus the normalized period k0S for different angles of incidence and
both polarizations is shown. The radius R of the holes is set to
R = 0.45S. The solid lines represent the amplitude of the reflection
coefficient of the array of circular holes in a metallic sheet modeled
using the proposed method based on the effective width of the metallic
strips. The hollow circles represent the results obtained through the
full-wave numerical simulator CST Studio Suite [21]. The two sets of
results agree reasonably well in all the reported cases.

For a further validation, we compare our model to the one
presented in [16] for a complementary structure, i.e., an array of disks,
after a proper application of Babinet’s principle (dot-line).

The agreement between the proposed model, based on the effective
width, and the two references, i.e., the numerical simulations and the
polarizability-based model, is rather good, showing the validity of the
proposed approach.

Figure 5. Reflection coefficient vs. normalized periodicity at normal
incidence for both polarizations.
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Figure 6. Reflection coefficient vs. normalized periodicity at oblique
incidence (θ = 20◦) for both polarizations.

Figure 7. Reflection coefficient vs. normalized periodicity at oblique
incidence (θ = 40◦) for both polarizations.

4. CONCLUSIONS

In this paper, a new analytical model for a partially reflective
metasurface consisting of an array of circular holes in an ideally
conducting sheet has been presented. Investigating the distribution
of surface current density, we defined an effective width of the metallic
region between two adjacent circular holes. The effective width has
been inserted in the simple and compact formulas of the grid impedance
of an array of metallic strips. After the reported successful comparison
of the results obtained using this approach to the full-wave numerical
simulations and other analytical results obtained using more involved
and complex methods based on the derivation of the polarizability of
the unit-cell, we can conclude that the new model we have developed
can be straightforwardly employed for the accurate and fast design of
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metasurfaces, consisting of arrays of circular apertures in a metallic
sheet. The proposed model has been shown to be robust for both
polarizations and different angles of incidence.

Before concluding, we remark that the potential of the proposed
model resides in the ability to be applied to more complex unit-cell
shapes, such as ellipses, rounded bowties and rectangles with high
axial ratio, etc.. Using the same set of the equations for the grid
impedance of regular metallic strips, in fact, the effective width can
be straightforwardly evaluated for the different unit-cells, leading to
an easy, fast, and accurate design of different metasurfaces. It is
worth mentioning also that the methods based on the polarizability of
the unit-cell particle, though accurate, need the evaluation of special
functions, as reported for the circular case in [16], and, thus, are not
readily applicable for a fast design, as our proposed method does.
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9. Bilotti, F., A. Alù, and L. Vegni, “Design of miniaturized
metamaterial patch antennas with µ-negative loading,” IEEE
Trans. Antennas Propagat., Vol. 56, 1640–1647, 2008.

10. Bilotti, F., A. Toscano, K. B. Alici, E. Ozbay, and L. Vegni,
“Design of miniaturized narrowband absorbers based on resonant
magnetic inclusions,” IEEE Trans. Electromag. Comp., Vol. 53,
63–72, Feb. 2011.

11. Tretyakov, S. A., S. I. Maslovski, and P. A. Belov, “An analytical
model of metamaterials based on loaded wire dipoles,” IEEE
Trans. Antennas Propagat., Vol. 51, 2652–2658, 2003.

12. Belov, P. A. and C. R. Simovski, “Subwavelength metallic
waveguides loaded by uniaxial resonant scatterers,” Phys. Rev.
E, Vol. 72, 036618, 2005.
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