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Abstract—Several studies have investigated the possibility of using
the Radar Target Signature (RTS) of a tumour to classify the tumour
as either benign or malignant, since the RTS has been shown to
be influenced by the size, shape and surface texture of tumours.
The Evolved-Topology Spiking Neural Neural (SNN) presented here
extends the use of evolutionary algorithms to determine an optimal
number of neurons and interneuron connections, forming a robust
and accurate Ultra Wideband Radar (UWB) breast cancer classifier.
The classifier is examined using dielectrically realistic numerical breast
models, and the performance of the classifier is compared to an existing
Fixed-Topology SNN cancer classifier.

1. INTRODUCTION

In the United States alone, breast cancer accounts for 31% of new
cancer cases, and is second only to lung cancer as the leading cause
of deaths in American women [1]. The current standard screening
method for detecting non-palpable early stage breast cancer is X-
ray mammography. Despite the fact that X-ray mammography
provides high resolution images using relatively low radiation doses,
its limitations are well documented [2]. The search for new imaging
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techniques is motivated by the need for increased specificity and
sensitivity, especially in the case of radiographically dense tissue.

One of the most promising emerging breast imaging modalities
is UWB Radar imaging. The physical basis of UWB Radar imaging
is the dielectric contrast between normal and malignant breast tissue
that exists at microwave frequencies [3–8].

This dielectric contrast is due to the increased water content
present in the cancerous tissue, and this contrast ensures that when the
breast is illuminated by an Ultra Wideband (UWB) pulse, cancerous
tissue in the breast tissue will provide backscattered energy, which may
be used to detect, localise and classify tumours. UWB Radar imaging
is non-ionising, non-invasive, does not require uncomfortable breast
compression, and is potentially lower cost.

Several studies have also examined the use of UWB Radar to
classify breast cancer. This classification approach is based on the
Radar Target Signature, which reflects the size, shape and surface
texture of the tumour. Benign tumours typically have smooth surfaces
and have spherical, oval or at least well-circumscribed contours.
Conversely, malignant tumours usually present rough and complex
surfaces with spicules or microlobules, and their shapes are typically
irregular, ill-defined and asymmetric [9]. These tumour characteristics
are generally reflected in the details of the RTS and can be used in
classifiers. Several classifiers and classification architectures have been
investigated [10–15].

In this paper, a novel Spiking Neural Network (SNN) classifier
is presented and examined. SNNs [16] emulate biological neurons and
aim to replicate the brains ability to function well when presented with
noisy or incomplete data. SNNs are typically trained for a specific task
using a Genetic Algorithm (GA), a type of evolutionary algorithm.
This training process involves modifying neuron firing thresholds
and synaptic weights. This paper extends the use of evolutionary
algorithms to determine an optimal number of neurons and interneuron
connections to form a UWB breast cancer classifier. This approach
results in networks which are more compact than traditional fixed
topology networks and simplifies the search space resulting in faster
training time and increased accuracy.

The structure of the paper is as follows: Section 2 describes
the SNNs and the NEAT Genetic Algorithm used for SNN training;
Section 3 describes the generation of realistic tumour models, including
dielectric heterogeneity and corresponding FDTD simulations; while
Section 4 describes the results and Section 5 draws the corresponding
conclusions.
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2. SPIKING NEURAL NETWORKS AND EVOLVING
TOPOLOGIES

2.1. Spiking Neural Network

Spiking Neural Networks (SNNs) are more closely related to their
biological counterparts than previous Artificial Neural Networks
(ANNs) generations, such as multi-layer perceptrons. SNNs,
in contrast to previous models, employ transient pulses for
communication and computation. Maass has demonstrated that
spiking neurons are more computationally powerful than threshold-
based neuron models [16] and that SNNs possess similar and often
more computation ability compared to multi-layer perceptrons [17].

Inspired by nature, a Genetic Algorithm (GA) [18] models natural
evolution through a set of computational operators. A GA is a parallel,
population-based search strategy that encodes individual solutions
into a data-structure known as a genome. A population of such
genomes is maintained by the GA and mechanisms analogous to
evolution are employed to evolve high-fitness solutions. Exploration of
the search space is performed using a diversity introducing mutation
operator while crossover (mating of two parent solutions) is employed
to exploit good solution building blocks (known as genes) already in the
population. Selection pressure is added through a tournament selection
operator to incorporate “survival of the fittest”. Traditionally SNN
simulations involve constructing a fixed, regular structure of neurons
arranged in layers where all neurons are fully-forward connected
(Figure 1). This approach simplifies the design of the network and
provides a structure whose neuron firing thresholds and synaptic
interconnect weights may be evolved, with a fixed-length genome, to

Figure 1. Example fixed-topology spiking neural network.
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form a solution. Recently, there has been growing interest in exploiting
the adaptability provided by GAs to modify the interconnect structure
of an SNN in order to create a topology which is both simpler and
more suitable for the task at hand. A common issue with this concept
is designing an appropriate encoding mechanism for the structure of
the network such that it may be mutated and combined with other
networks in a feasible manner. Additionally network structures evolved
by a GA have a tendency to grow as the GA progresses. This topology
growth results in a more complex search space partly negating the
advantage of evolving a task specific network.

The authors have chosen to incorporate the NeuroEvolution
through Augmenting Topologies (NEAT) [19] algorithm which is
tailored to address these particular concerns. The NEAT algorithm
incorporates historical markers in the SNN gene which allows genes
with common ancestors to be combined as part of the GA’s crossover
mechanism. NEAT also uses this historical information to group
individuals into species based on common ancestors [19]. When the
GA creates a new generation, selection of individuals (i.e., choosing
which individuals will be combined together to form an individual for
the new population) is traditionally based on each individuals fitness.
NEAT implements explicit fitness sharing [20] within species, where
individuals in a species must share their combined fitness (i.e., the
fitness of an individual is modified to be the average fitness of all
individuals in that species). This deters species from growing too
large, as each individual must contribute to the species fitness, hence
allowing many diverse species (i.e., many unique approaches to solving
the problem) to co-exist. Species whose fitness does not increase
over a number of generations become extinct (i.e., the individuals
are deleted from the population and replaced with new, randomly-
initialized, individuals) ensuring individuals continue to improve as
the network complexity grows. Traditional fully connected SNNs will
contain many neurons and connections which do not contribute to
classifier accuracy. The NEAT operators create networks which are of
optimal size and only contain neurons and connections which aid the
function of the classifier.

2.2. Preprocessing and Fitness Function

The classifier considered here is a two-class problem (i.e., malignant vs.
benign). The Discrete Wavelet Transform (DWT) is applied to extract
the most significant classification features of the RTS, in a process
previously described more comprehensively in [21]. In this study, large
DWT values are mapped to high spike frequencies while small DWT
values are mapped to low frequencies. Since values are scaled between
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[−1, +1], it is necessary to decouple the positive and negative ranges of
each DWT component (D(n)) into two spike generating inputs (D(n)+
and D(n)−). This decoupling ensures that a +1 DWT input generates
the same number of spikes (and influence) on the SNN as a −1 DWT
input, thus removing any bias from the encoding process. The SNN
processes the 15 most significant DWT components. Thirty spike
generators are used to map real-valued DWT data into spike trains
using a linear magnitude to (spike train) frequency conversion [22].

Two output layer spiking neurons generate two spike trains, which
are processed by two spike counters to count the number of output
spikes within a given update interval [22]. These counter values are
used to determine classifier behaviour. The counter with the largest
spike count value designates the selected class. The neuron model
chosen for these experiments is based on the leaky integrate and fire
model [16]. Each SNN individual is initially composed of thirty input
neurons and two output neurons. The NEAT GA progressively adds
neurons and connections and hence each individual has a variable
number of genes. The GA also modifies the weights on the synaptic
connections and neuron firing threshold.

Synaptic weights range from [−1, 1] while thresholds vary between
[0, 5.0] [23]. Fitness assessment of the SNN-based breast cancer
classifier is achieved using a fitness function, which rewards individuals
based on the number of correct classifications made. Cm refers to the
number of correct malignant classifications made by the SNN. Cb refers
to the number of correct benign classifications. Cmax and Cmin are
defined in Equations (2) and (3). The fitness function, f , of the SNN
is defined as follows:

f = Cminβ + Cmax (1)

where

Cmax = max(Cm, Cb) (2)
Cmin = min(Cm, Cb) (3)

A β value of 1.6, chosen through empirical analysis, is employed in
this research to reward the correct classification of both tumour classes.
Without this fitness bias, fitness can be accumulated by classifying a
single tumour class repeatedly. By including a β value greater than one,
networks that select correctly from both classes are rewarded above
networks that correctly select from just one class.

3. BREAST AND TUMOUR MODELING

Shape and texture of the surface of a tumour are two of the most
important characteristics used to differentiate between a benign and
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a malignant tumour. The tumour models used in this paper are
based on the Gaussian Random Spheres (GRSs) method [24, 25].
Three different tumour models at two different sizes are considered
in this paper. Malignant tumours are represented by spiculated
and microlobulated GRSs, whereas benign tumours are modelled by
smooth GRSs. Microlobulated and smooth GRSs are obtained by
varying the correlation angle from low to high. Spiculated GRSs are
obtained by adding 3, 5 or 10 spicules to smooth GRSs. The average
radius of all types of spheres are 2.5 and 7.5mm. Between all sizes and
shapes, the number of tumour models developed was 160 (80 malignant
and 80 benign). Two sets of simulations were performed to examine
performance in heterogenous tissue. For the first set (Hetero I), a
single piece of fibroglandular tissue is added to the FDTD models,
positioned at one of ten random locations surrounding the tumour.
For the second set of simulations (Hetero II), two independent portions
of fibroglandular tissue are positioned at two of ten random locations
around the tumour. Portions of fibroglandular tissue were extracted
from the UCWEM Breast Phantom Repository (phantom ID 071904).
The background material is assumed to be homogeneous adipose tissue.
In order to model loss and dispersion, the dielectric properties of
adipose, fibroglandular and cancerous tissue are modelled using Debye
parameters based on the dielectric data as published by Lazebnik et
al. [7, 8].

The tumours (80 of size 2.5 mm and 80 of size 7.5 mm) are
placed in a 3D Finite-Difference Time-Domain (FDTD) model.
The FDTD model has a 0.5 mm cubic grid resolution and the
backscattered signals were generated through a Total-Field/Scattered-
Field (TF/SF) structure, in which the tumours and fibroglandular
tissue are completely embedded in the Total Field (TF) [13, 15].
A pulsed plane wave is transmitted towards the target from four
different equidistant angles (0◦, 90◦, 180◦, 270◦) and the resulting cross-
polarized backscatter is recorded and analyzed from four observation
points located at: (0, 0,−74), (−74, 0, 0), (0, 0, 74) and (74, 0, 0)mm in
(x, y, z) axes. The incident pulse is a modulated Gaussian pulse with
center frequency at 6 GHz where the 1/e full temporal width of the
Gaussian envelope was 160 ps. A more detailed description of both the
tumours and the model is presented in [21].

4. RESULTS

In this study, a direct “type” classifier that simply classifies each
tumour as either benign or malignant is considered. The tumour
backscatter is classified using the Evolved-Topology SNN presented
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Table 1. Comparison of fixed and evolved-topology SNN classifiers.

Classifier One-Stage Type (%)
Fixed-Topology SNN 73

Evolved-Topology SNN 83

Table 2. Effects of dielectric heterogeneity on performance of
SNN classifiers. Hetero I refers to models containing one piece of
fibroglandular tissue, while Hetero II refers to models with two pieces
of fibroglandular tissue.

Classifier Hetero I (%) Hetero II (%)
Fixed-Topology SNN 78 68

Evolved-Topology SNN 86.75 79.4

here, but also using a Fixed-Topology SNN previously presented by
the authors [21], providing a useful baseline when examining the
performance and robustness of the Evolved-Topology SNN classifier.
In order to evaluate both classification methods, the entire data-set
is randomly shuffled and divided into 75% (120 Tumours) and 25%
(40 Tumours) training and test groups respectively. The classification
process is repeated 10 times and the average performance of each
classifier is calculated. The results are presented in Table 1 and
illustrate a 10% increase in accuracy for the Evolved-Topology SNN
compared to the traditional fixed topology SNN.

4.1. Effects of Dielectric Heterogeneity

In order to examine the effect of increasing dielectric heterogeneity
on the performance of the SNN classifier, two specific scenarios are
considered. In the first instance, a single piece of fibroglandular
tissue surrounds the tumour, while in the second more difficult
scenario two separate pieces of fibroglandular tissue are located around
the tumour. The performance of the classifier in an increasingly
heterogeneous environment is shown in Table 2. The performance
of the classifiers drops by 10% and 7.4% for one-stage type for the
traditional and Evolved-Topology SNN respectively as heterogeneity
increases. Overall, the Evolved-Topology SNN classifier is shown to be
relatively robust to significant increases in dielectric heterogeneity. In
fact, in the most dielectrically heterogeneous models (Hetero II), the
average performance (across large and small tumours) of the Evolved-
Topology SNN classifier was almost 80%.
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5. CONCLUSION

The performance of an Evolved-Topology SNN based classifier (based
on the NEAT algorithm) in a dielectrically heterogeneous breast
was examined in this paper and compared to the performance of a
traditional fixed topology SNN. Results demonstrate the ability of
Evolved-Topology SNN classifiers to outperform a traditional SNN
classifier. The improved classification performance can be attributed
to the following:

• Specialisation within the GA population allows differing ap-
proaches to solving the task to evolve in parallel, effectively pro-
tecting potential innovative network structures and forcing search
within many solution spaces to proceed in parallel.

• Historical markers inserted into each individual’s genes by NEAT
allows divergent networks to be combined in an intelligent
manner. This feature allows different networks which have, for
example, evolved to perform well on a particular size of tumor
to be combined in a manner which preserves and combines each
networks specialisation.

• Finally, as NEAT promotes minimal networks, the search space
remains small allowing for a greater exploration of the search
space.
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