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Abstract—Electronically steerable passive array radiator(ESPAR)
antennas are expected to gain prominence in the field of wireless
communication, because they can be steered toward a desired signal
and they can eliminate interference; in addition, they have a very
simple architecture that has significantly low power consumption and
are inexpensive to manufacture. In this paper, we proposed an ESPAR
antenna that has fastest convergence time. The downhill simplex
method is used to maximize the correlation coefficient between the
received signal and the reference signal. The simulation results indicate
that this antenna can be steered toward the desired signal if one signal
is used; in addition, it can eliminate interference if two signals, namely,
the desired signal and the interference are used by automatically
varying the reactance values.

1. INTRODUCTION

In the last few decades, steerable antenna arrays have been extensively
researched because such antennas can be steered toward a desired
signal. Harrington [1] has introduced a reactively controlled dipole
antenna in a circular array and used the univariate search method to
obtain the maximum gain. Dinger [2] proposed a reactively steerable
antenna using microstrip patch elements and used a steepest descent
algorithm to maximize the output interference power without any
reference signal. Several studies [3–7] have proposed methods to
control antenna beams using switched parasitic elements.
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In recent years, electronically steerable passive array radiator
(ESPAR) antennas have attracted considerable attention because of its
ability to significantly improve the performance of wireless systems by
automatically eliminating surrounding interference. This antenna has
a very simple architecture that has significantly low power dissipation
and is inexpensive to manufacture. The direction of maximum gain is
controlled by varying the load reactance.

Cheng et al. and Sun et al. [8, 9] introduced ESPAR and used
the steepest descent algorithm, for beamforming. They developed an
algorithm by which the ESPAR antenna steers its beam and nulls
automatically. In this algorithm, the loaded reactances are adjusted
to null out or at least reduce the source of interferences in order
to make the signal-to-interference ratio (SIR) as large as possible.
Kuwahara [10] used the direct search method to find the minimum
value of the cost function.

The problem with most ESPAR approached is that the involve
numerous calculations. It is necessary to calculate a certain number
of training sequences, and the simulations require a large number
of time to complete. Herein, we propose an adaptive beamforming
algorithm using the downhill simplex method. In this algorithm, the
cross correlation is used as a cost function.

The remainder of this paper is organized as follows. Section 2
presents certain mathematical formulations related to the ESPAR
antenna, before going on to discuss the simplex method. Section 3
describes the simulations carried out and discusses the results of the
same. Finally, Section 4 summarizes the conclusions of our study.

2. ADAPTIVE BEAMFORMING

2.1. ESPAR Formulation

This section briefly describes the configuration of ESPAR and how we
adapt the same to the downhill simplex method. As shown in Figure 1,
an ESPAR antenna basically comprises one active element surrounded
by six passive elements (M = 6). All passive elements are terminated
by a variable reactance denoted as xM . The reactance x is written as

x = [x1, x2, . . . , xM ]T (1)

The output of ESPAR, y(t), is given by

y(t) = iT s(t), (2)

where, i is a current vector of (M + 1)-elements that is expressed as

i = [i0, i1, . . . , iM ]T (3)
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Figure 1. Configuration of ESPAR.

v is a voltage vector and it is expressed as
v = [v0, v1, . . . , vM ]T (4)

From P = iv, we can obtained
i = Y v (5)

where Y denotes a mutual admittance with each entity yij denoted the
mutual admittance between the ith elements and jth elements. After
modification, Equation (5) can be written as

i = (I + jY X)−1y0 (6)
where I is the identity matrix. The vector y0 is the first column of
matrix Y , and it is expressed as

y0 = [y00, y10, . . . , yM0] (7)

X is diagonal matrix that is expressed as
X = diag[50, jx1, . . . , jxM ] (8)

The signal vector received by the virtual antenna corresponding
to each port is given by

s(t) =
Q∑

q=1

a(θq, φq)uq(t) (9)

where Q is the number of incident waves and (θq, φq), is the incident
direction of the q-th wave. uq(t) is the waveform of the q-th wave and
a(θq, φq), is a steering vector corresponding to each port [8].
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2.2. Simplex Method

In this simulation, the cross correlation is adopted as a cost function,
and therefore, it has to be maximized. The cross correlation of the
output signal y(t), and reference signal, r(t), is defined as

ρa =
|y(t)r(t)|√

|y(t)y(t)|
√
|r(t)r(t)| (10)

Now, the cross correlation represents the similarity of two signals.
A large correlation indicates that the received signal (summation of
desired signal and delayed signal) is similar to the reference signal.

Our goal is to find the maximum value of the cross correlation.
However, the downhill simplex method is used to search for the
minimum value of the cost function, and therefore, the negative of
the cross correlation value is used [11].

The M -dimensional (M = 6) coordinate (x1, x2, . . . , xM ) of the
simplex corresponds to a set of reactance values. The optimization
process is summarized as follows.

First, an initial point of (x1, x2, . . . , xM ) is chosen. This values
should be choose carefully to avoid the algorithm fall to local minimum.
After choosing the initial point, ρa can be calculated. A minus
sign is added to the coefficient since simplex method is searching
for a minimum value (ρ = −ρa). After that, the highest point
(xh), the lowest point (xl) and the second highest point (xsh) are
defined. Simplex method has three operations, reflection, expansion
and contraction to discard the highest point [12, 13].

The highest point, xh is reflected to a new point denoted as, xr

xr = (1 + α)x̄− αxh (11)

where, α is a reflection coefficient, and x̄ is a centroid point defined as

x̄ =
1
M

M∑

i=1

xi i 6= h (12)

If ρl < ρr < ρsh, then we replaced xh with xr and start the process
again. If ρr < ρl, then there is possibility to find new minimum point.
Therefore we expand the point along the same direction using the
following equation, xe

xe = x̄ + β(xr − x̄) (13)

where, β is an expansion coefficient (β > 1). If ρe < ρh, then we
replace xh with xe and repeat the process again. However, if ρe is
greater than or equals to ρh, then form new simplex by replacing xh

by xr and continue the process.
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If the reflection process leads the ρr to be greater than ρh, then
we perform contraction using the following equation, xc

xc = x̄ + γ(xh − x̄) (14)

where, γ is a contraction coefficient lies between 0 and 1. If ρc > ρh, we
cannot get rid the highest point, therefore we contract again around
the lowest point. Otherwise, we replace xh with xc and restart the
process again until we find the set of reactance value (x1, x2, . . . , xM )
that maximizes the coefficient.

3. SIMULATION AND RESULTS

In this study, the simulation was carried out using MATLAB R2010a.
A seven-elements ESPAR was employed. One element is the active
element which is denoted as x0 in Figure 1. The remaining six elements
(denoted as jx1 − jx6) are passive elements that surround the active
element, and these are connected to the variable reactance circuit. The
desired beam pattern is obtained by varying the reactance values. In
order to search for a global minimum, many trials of starting point
have been carried out. If an inappropriate initial value is used, the
algorithm might be fall to a local minima. Table 1 lists the details
about the parameters used in the simulation.

3.1. Case 1: One Signal

We verified whether the proposed algorithm can steer the beam toward
the desired signal when one signal is used. Figures 2 and 3 show the
beam pattern for desired signal 0◦ and 90◦, respectively.

In this section, we show three cases of initial point [0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 50, 0], and [0, 0, 0, 0, 0, 60]. For first initial point, the beam
steered toward 330◦ instead of 0◦ and it steered toward 110◦ instead of
90◦ after 206 and and 185 iterations as shown in Figures 2(a) and 3(a).
This phenomenon occurred when algorithm fall at local minimum.

Table 1. Simulation condition.

Modulation Binary phase shift keying (BPSK)
Symbol 10

No. of signals
Case 1: 1 signal
Case 2: 2 signals

Amplitude signals 1
SNR 30 dB
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(a) (b)

(c)

Figure 2. Beam pattern for desired signal 0◦ with different initial
point. (a) Initial point (0, 0, 0, 0, 0, 1). (b) Initial point (0, 0, 0, 0,
50, 0). (c) Initial point (0, 0, 0, 0, 0, 60).

For second initial point [0, 0, 0, 0, 50, 0], it successfully found
global minimum for desired signal 0◦. The beam steered exactly at 0◦
after 270 iterations (see Figure 2(b)). However, the reactance values
obtained after convergence is very high. The data can be referred in
Table 2. In contrast for desired signal 90◦, the algorithm failed to
convergence at global minimum. Therefore, the beam did not steer at
90◦ as shown in Figure 3(b).

For third initial point [0, 0, 0, 0, 0, 60], the beam steered toward
90◦ as shown in Figure 3(c) The algorithm is successfully convergence



Progress In Electromagnetics Research C, Vol. 22, 2011 29

(a) (b)

(c)

Figure 3. Beam pattern for desired signal 90◦ with different initial
point. (a) Initial point (0, 0, 0, 0, 0, 1). (b) Initial point (0, 0, 0, 0,
50, 0). (c) Initial point (0, 0, 0, 0, 0, 60).

after 202 iterations. However, the algorithm failed to fall at global
minimum for desired signal 0◦. The beam steered at 340◦ instead of
0◦ (see Figure 2(c)) after 350 iterations.

Since varactor circuit is difficult to be manufactures for a large
range of reactance, therefore the range is limited within −j300 < jx <
j300. Table 3 listed reactance loads obtained for each initial points and
DOAs. From this table we can see that, the first initial points generated
reactance loads within an acceptable range to be manufactured. This
initial point will be used as initial reactance value for the next section.
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Table 2. Simulation results for case 1.

Desired
signal

Initial
starting

Reactance value (Ω)
jx1 jx2 jx3

0◦
0, 0, 0, 0, 0, 1 −j33.15 j89.3 j191.6
0, 0, 0, 0, 50, 0 j0 j0 j1.0x107

0, 0, 0, 0, 0, 60 j0 j5.64x107 j3.35x106

90◦
0, 0, 0, 0, 0, 1 j70.9 j31.69 −j102.71
0, 0, 0, 0, 50, 0 j0 j4.5x106 j0
0, 0, 0, 0, 0, 60 j484.6 j2472 −j56

Desired
signal

Initial
starting

Reactance value (Ω)
jx4 jx5 jx6

0◦
0, 0, 0, 0, 0, 1 −j12.25 j114.85 −j81.42
0, 0, 0, 0, 50, 0 j0 j4.8x106 j0
0, 0, 0, 0, 0, 60 j0 j9.45x105 j0

90◦
0, 0, 0, 0, 0, 1 j4.06 −j25.29 j241.34
0, 0, 0, 0, 50, 0 j0 j9.5x105 j6.7x107

0, 0, 0, 0, 0, 60 −j6 −j11 −j829

Table 3. Simulation results for case 2.

Desired

signal

Delayed

signal

Reactance value (Ω)

jx1 jx2 jx3 jx4 jx5 jx6

0◦ 60◦ −j7.71 −j72.96 j51.03 j40.97 j95.19 −j7.26

0◦ 150◦ −j37.73 −j22.04 j102.42 −j30.77 j31.28 −j75.05

3.2. Case 2: 2 Signals (Desired Signal and Interference)

Next, we used two signals, namely, the desired signal and interference,
as the incoming signals. Both signals have the same amplitude
but different directions (angles). The reactance value is initialized
as [0, 0, 0, 0, 0, 1]. The beam pattern in Figure 4(a) shows
that the null (indicates by a black arrow) for a interference (60◦)
is performed after 105 iterations, with a signal-to-interference noise
ratio (SINR) of 30 dB. The beam pattern in Figure 4(b) shows that
the null for a interference of 150◦ is performed after 64 iterations,
with SINR of 28 dB. These results indicates that this antenna can
eliminate interference automatically. The reactance value differs for
each incoming direction of arrival (DOA), as shown in Table 3.
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(a) (b)

Figure 4. Beam pattern for desired signal 0◦. (a) Interference of 60.
(b) Interference of 150.

Table 4. Convergence time for simplex method, steepest descent and
direct search method for case 2.

Desired

signal

Delayed

signal

Convergence Time (s)

Simplex

Method

Steepest

Descent

Direct Search

Method

0◦ 60◦ 0.1707 12.0417 0.9356

0◦ 150◦ 0.1112 12.0825 0.3149

We verified that this algorithm has the fastest convergence time
by comparing it to steepest descent and direct search method by
simulation. The same parameters listed in Table 1 are used in the
simulation for all algorithms (simplex method, steepest descent and
direct search). The convergence time for all algorithms are tabulated
in Table 4. It shows that simplex method has the fastest convergence
time compared to steepest descent and direct search method.

A statistical analysis was carried out using 100 combinations of
DOAs, in which three ranges of reactance value were analyzed. The
complimentary cumulative distribution function (CCDF) was plotted
for each range of reactance values, as shown in Figure 5. The best
range of reactance values was found to be −j300 < jX < j300, in
which more than 90% of the signals had an SINR greater than 20 dB.
The CCDF indicates that if the range of reactance values is narrow,
the algorithm does not convergence suitable and the optimization is
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Figure 5. CCDF for different ranges of reactance values.

Figure 6. Desired signal of 0◦
and interferences of 60◦, 120◦,
150◦, and 240◦.

Figure 7. Desired signal of
60◦ and interferences of 0◦, 120◦,
180◦, and 240◦.

unsuccessful. Therefore, the antenna cannot obtain the correct beam
pattern. The same problem occurs if the range is limited to a positive
value.

3.3. Analysis for Multiple Interferences

In order to prove that this algorithm is capable to mitigate multiple
interferences, we analysed the antenna with one desired signal and
multiple interferences. Figure 6 shows the beam pattern for desired
signal coming from 0◦ and interferences coming from 60◦, 120◦, 150◦
and 240◦. The beam is performed after 519 iterations with SINR
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12.8 dB. Figure 7 shows the beam pattern for desired signal coming
from 60◦ and interferences coming from 0◦, 120◦, 180◦ and 240◦. The
beam is performed after 175 iterations with SINR of 6.14 dB. If the
number of interference increases the algorithm will take more time to
convergence and produce a low SINR. From Figures 6 and 7, it show
that this antenna is capable to steer closest toward the desired signal
and minimized interferences.

4. CONCLUSION

This study proposes an adaptive beamforming algorithm using
downhill simplex method. In this algorithm, the cross correlation
is used as a cost function. The simulation results shows that the
antenna can be steered toward a desired signal and interference can
be eliminated automatically by varying the reactance values.
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